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Abstract—Among existing ocean data assimilation method-  One such compromise is a class of methodologies known as
ologies, reduced-state Kalman filters are a widely studied reduced-state Kalman filters and associated optimal smoothers.
compromise between resolution, optimality, error specification, Thege methodologies approximate general circulation model
and computational feasibility. In such reduced-state filters, the GCM ith f d f freed than th f
measurement u_pdate takes place on a coarser grid t_han that ofthe ( ) errors with fewer degrees of freedom f':m OS? 0
general circulation model (GCM); therefore, these filters require the ocean model. Therefore, these methods require 3'90“thm5
mapping operators from the GCM grid to the reduced state and that project the GCM state onto a reduced state and vice versa.
vice versa. The general requirements are that the state-reduction Application examples may be found in [2]-[12]. A key advan-
f‘h”ag t';‘éegg‘gf‘;éogtaﬁgeéz?gz :ilop:: du?j?/w;fnrii? S?/];tESnChthgtthtﬂletage of reduced-state filters is that they provide complete error
mapping operations be insensitive to noise, and that ’they be de_scrlptlons for the circulation estimates, alb_elt on a coarser
appropriate for regions with irregular coastlines and bathymetry. grid than that of the GCM. Another advantage is their computa-
In this paper, we describe three efficient algorithms for computing tional efficiency. Were it not for mapping requirements, which
the pseudoinverse: a fast Fourier transform algorithm that can demand large computational and storage resources, a given
serves for illustration purposes, an exact implicit method that o qced-state approximation could be applied to arbitrarily
is recommended for most applications, and an efficient iterative high uti lobal GCM ith minimal tati |
algorithm that can i_oe used f(_)r the Iargegt problems. The m_apping Igh-resolution, globa . S wi mlnlma _Compu ationa
performance of 11 interpolation kernels is evaluated. Surprisingly, overhead beyond that required to derive the filter. The present
common kernels such as bilinear, exponential, Gaussian, and and related work [13] aim to make reduced-state filters feasible
sinc perform only moderately well. We recommend instead three gt state-of-the-art resolutions.
kernels, smooth, thin-plate, and optimal interpolation, which — ne computational bottleneck results from a number of re-

have superior properties. This study removes the computational ) - ) ) - -
bottleneck of mapping and pseudoinverse algorithms and makes quirements relating the fine and coarse fields. In particular, if

possible the application of reduced-state filters to global problems the filter is to be stable over many time steps, it is normally
at state-of-the-art resolutions. required that the state reduction and interpolation operators be
Index Terms—Climatological models, data assimilation, inter- pSGUdOin\{erses Of, each Oth_er [14], which ensures that repeated
scale transforms, pseudoinverse methods, remote sensing, sparséubsampling and interpolation do not lead to a degradation of
pseudoinverses. the coarse-scale data. It is also required that the coarse state de-
fine a closed system, i.e., a perturbation within the coarse space
must remain in the coarse state following dynamic evolution. Fi-
nally, the mapping operations must be insensitive to noise and be
RIVEN BY A desire to understand and predict the generabppropriate for nonstationary problems, such as regions having
circulation of the oceans and its interaction with anthrarregular coastlines and bottom bathymetry.
pogenic forcing and climate, recent years have witnessed a progxisting mapping and pseudoinverse schemes that satisfy
liferation of ocean data assimilation studies and methodologi¢gse requirements often involve the brute-force computation
[1]. Advancements in computing, modeling, and measurememid manipulation of a; x n. matrix, wheren; andn. are
capabilities make possible increasingly accurate descriptiahg fine-grid dimension of the ocean model and the coarse-grid
of the time-varying ocean circulation. Nevertheless, all assimdimension of the reduced state, respectively. Here, grid dimen-
ilation methodologies, e.g., adjoint method, feature modelsions may refer to the three-dimensional (3-D) oceanic state
Kalman filters, nudging, and optimal interpolation, remain @ector [4] or, more commonly, to the horizontal grid dimension
compromise between what is required, an optimal estimg, [6], [11]. To illustrate the magnitude of the computational
with full error description at the highest possible resolutiorghallenge in computing pseudoinverse matrices by brute force,
and computational feasibility. consider the following hypothetical computation. Suppose
the horizontal fine grid is that of a global-ocean GCM with
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to compute and store it in dense form. Herein we discupslants ofz . This will be the case for all but the most unfortu-
general requirements for mapping and decimation operatanate choice oB*, since the number of columns B* is much
propose a number of efficient algorithms, and evaluate suitalgieeater than the number of rows. A more common approach, in
interpolation kernels for these mapping operators. Sectiondlir experience, is to explicitly chose the interpolation operator
introduces notation and provides a mathematical descripti® in which caseB* can then be computed as the Moore—Pen-
of the mapping problem. Section Il describes the threese pseudoinverse using

efficient algorithms for computing the pseudoinverse: a fast .

Fourier transform (FFT) algorithm that serves to illustrate B = (BTB) B, (6)
general properties of mapping and pseudoinverse operators, an_ _ - ) o

exact implicit method that is reasonable in most application®9ain, the requirement thd@" B be invertible is normally sat-

and an efficient iterative algorithm for the largest problem§fied' The challenge lies in the computation and representation

Various interpolation kernels are tested for suitability to thiStorage) of the gigantic matricésand B
reduced-state Kalman filter problem in Section IV. Discussion !N Practice, the mapping and pseudoinverse problem for the

and recommendations follow in Section V. full GCM state vector is often broken down into a number of
smaller horizontal mapping problems using, for example, ver-
Il. M ATHEMATICAL DESCRIPTION tical empirical orthogonal functions [5] or dynamical modes [9].

Symbolically, the 3-D interpolation operator can be written
Let z;(t) represent the state vector of an ocean GCM, e.g.,

temperature, salinity, and velocity on a 3-D grid, at some time B=B,B), @)

t. Algebraically, the GCM can be written as a rule for stepping _ o _
this state vector forward in time whereB), andB,, represent horizontal and vertical interpolation

operators, respectively. Conversely, the pseudoinverse operation
zp(t+1) = Mlzs(1), q(t)] L is

where M encodes the system dynamics, and vegtoy repre- B* = B}, B}, (8)
sents the boundary conditions and other model parameters spec- . . o )

ified at timet. For modern ocean GCMs, the state veatpft) With both B;, B;, and B, B, satisfying the pseudoinverse
can have a dimension of 1@r more. Thus, even for linear sys-condition (3). Although the discussion and intuition of the
tems, the dimensionality of the problem makes a full implemefmainder of the paper will apply primarily to the horizontal
tation of the Kalman filter and optimal smoother completely ir@PeratorsB, and Bj,, the mapping algorithms that are devel-
feasible. To reduce the filter and smoother complexity, mod@Ped apply to much broader contexts. For large problems, it is
errors are represented on a coarser gridhence the need for Often convenient to represeBtby specifying an interpolation

mapping operators between andz... kernelw, such that

A. Pseudoinverse zp(j) = Z ze(D)w(i, 7). )

The fine-to-coarse transformation is . . . .
This permits computational and storage savings when the

T.= B*zf (2) weightsw are stationary, i.e., not a function of as further
discussed in Section I1I-C.
where matrixB* represents a state reduction operator, intu-
itively a filter that, for example, attenuates mesoscale-eddy vai- Noise Sensitivity

ab|l|ty but I‘etains planetary'WaVe and Other |arge'sca|e CirCUIa-A second desired attribute for the mapp|ng Operators is that
tion features. A pseudoinverse operabbis defined such that  the transformations be stable with respect to errors. Since the
reduced-state filter is an approximation, the mapping and inter-
polation operations must be insensitive to inaccuracies of this
Sapproximation. Consider, for example, the degree to which a
perturbations at the fine scale affects the coarse-scale coeffi-
cients

z. = B*Bz, 3)

holds for all vectors:... B is an interpolation operator that map
the reduced-state vector back to the original grid so that

oy =Br.te Be=0 @ e B (zp 4+ 8) Bz (10)
where € represents the high-frequency/wavenumber compR- p-
nents that lie in the null space of transformatiBi. Given
some selected™, one possible solution faB, satisfying (3),
is the Moore—Penrose pseudoinverse [14]

were very close to singular, then a small disturbafice
could give rise to an arbitrarily large differen¢®. — z.). The
intuitive noise sensitivity criterion

|-"7c — :"'0|

B=B"(B"'B")". ) T (11)

B*B*T will be invertible if B* has full row-rank, implying that is not, however, sufficient becauseBfand B* are a pseudoin-
the elements i are computed as linearly independent intererse pair, then so areB andB* /-, in which case (11) can be
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made arbitrarily small by increasing The properly normalized promising direction is to investigate known reversible opera-
noise sensitivity criterion is tions from signal processing theory. Specifically, the condition
_ * of the pseudoinverse (3) can be satisfied using an FFT scheme
|Zc — x| |z¢| _ |B*8| |Bx| 5
e Zel = = (12) [5]
6] =l 18] |zl )
The upper bound for this sensitivity is given by the product of zp =% [Vl\/(k'x, ky) 72 (1 )] a7
the largest singular values,,. of B and B*; thus, the noise z.= | F W (ks, ky) P2 (z5)] (18)

sensitivity is limited b . . .
y y where %, represents the two-dimensional (2-D) Fourier trans-

Omax(B) * Omax(B*) = cond(B) = cond(B*) > 1. (13) form, and the arrow$ and| represent oversampling and sub-
sampling, respectivelyV is a filtering function, the Fourier

Thatis, the noise sensitivity is bounded by the condition numbginsform of the kernel in (9) if the grid is regular and pe-
of the pseudoinversB™, which is equal to the condition numberjodic. W* is the pseudoinverse filter o, i.e.,

of the interpolatolB, implying that the noise sensitivity can be i =
evaluated before attempting to compiRé. wro = W, Vi, ky W #0 (19)

_ o = 0, otherwise
C. Shift Sensitivity
Th

Athird desired attribute is that the coarse state define acloseof"IS’ the interpolation (].'7) IS equwalenF to oversampling the
coarse state,. and applying a lowpass filterV. Conversely,

dynamical system. This implies that the energy of the large, rt%ttt:_}e?ﬁtate reduction (18) is equivalent to lowpass filtering the fine
a

solved scales should not degrade or be corrupted over repeal ez ; and then subsampling at the coarse-grid locations, the

. ; S
time steps, i.e., lowpass filter being required to avoid aliasing. Note that in order

B* Mz (1), q(t)] = B*M[BB*z(t), q(t)]. (14) for the pseudoinverse condition (3) to be satisfied exactly, the
number of nonzero elements ¥ must be equal to or greater
A specific example is that the dynamics 8fl typically in- than the number of coarse-grid elements.
volve advection or propagation of waves on scales consider-The FFT approach provides a simple intuition for the noise
ably smaller than the coarse-scale discretization interval. Thed shift sensitivity criteria described in Section Il. First, if the
mapping-interpolation operatiaBB™ should therefore be in- filtering function)V is constant for all wavenumbers where it is
sensitive to spatial shifts, to ensure that a slow, advective flavenzero, then the noise sensitivity criterion (13) is satisfied with
is not progressively corrupted by repeated mapping-interpokguality. Second, if the interpolation is perfectly band limited,
tions, i.e., i.e.,WW = 0 for all scales not resolved by the coarse grid, then
. . the shift-sensitivity criterion (16) is identically zero (see Ap-
SBB" ~ BB"S (1%) pendix | for details). That is, noise sensitivity is minimized by

whereS represents a spatial translation on the fine scale. TREOOSING interpolation and state-reduction operators that have a

condition that an operator be unaffected by fine shifts is effeflat wavenumber response, and shift sensitivity is minimized by
choosing bandlimited operators. In general, however, with the

tively an antialiasing or bandlimiting criterion as further dis* ' _ St ) -
cussed in Section I1I-A and in Appendix I. Experimentally, Wé:xceptlon of _statlonary periodic domains, flatness_ and bandllm-
define the shift sensitivity as the root-mean-square (rms) ratiff¢dness are incompatible goals, so the FFT case is the exception

in achieving both of these criteria perfectly.
rms{S(B¢;) — BB*[S(B&)]} (1)  The FFT approach is elegant in that both interpolation and
rms{Bé,;} subsampling operations are represented implicitly, rather than
. . L as a dense matrix, and because the transformations are very fast.
whereé; is a coarse unit-vector with pixélset to one and the . )

. . . - . A,major drawback, however, stems from the stationary prop-
rest to zero. The noise and shift sensitivity criteria, descnbe(I;It of the EET- manpind is possible onlv on a reqular. periodic
above, are used to evaluate various interpolation kernels in secy . - Mapping 1S possit y gutar, period
tion IV grid, making this approach ill-suited to global studies with ir-

' regular boundaries (coastlines, etc.). Global studies [9] have,
instead, relied on defining a suitable sparse interpolation op-
erator,B, and then computing the pseudoinveBt by brute

We next discuss three efficient algorithms for computing therce (6). Sections I1I-B and 11I-C discuss efficient alternatives
pseudoinverse: an FFT algorithm (which serves to further flor the computation oB*.
lustrate noise and shift sensitivities), an exact implicit method

(which is recommended for most applications), and an efficieBt Implicit Algorithm
iterative algorithm (which can be used for the largest problems). a first efficient alternative to (6) is based on noting that
A. FET Algorithm the specified qperator (eithd® or B*) is t_JsuaIIy chosen to
_ _ _ ‘be sparse, which suggests a more sensible approach than the
The straightforward computation of the pseudoinverse, usiBgute-force operations of (5) or (6). For example, given a fixed
(5) or (6), is made difficult because even if one operation, sugiterpolatorB, if
as the interpolatiorB, is chosen to be simple and sparse, the .
computed pseudoinverse is normally complex and dense. A Q' = (BTB) (20)

I1l. COMPUTATION OF THE PSEUDOINVERSE
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is computed off-line, ahead of time, then TABLE |
AVERAGE NUMBER OF CONJUGATEGRADIENT ITERATIONS TOACHIEVE A
— —1— 0,
z.=Q lBTzf =Q 1zc (21) rms ACCURACY OF0.5%
T . Problem Size | Density of Q@ Interpolator Size 7
where the producB xy can bg computed efficiently beca.use (coarse scale (fine-scale pixels)
of the sparsity oB” . The matrixB* is never computed explic- pixels) 23 5 8 12 17 28
itly; rather, it is represented implicitly, with the following huge =~ 33 x 33 0.09 4 6 11 41 174 303 240
advantages. 29 x 29 0.12 3 6 11 43 165 291 245
1) Computation.The calculation ofQ ! is much simpler 25 x 25 0.15 3.6 11 3(1) 169 ;gg ;gg
than the direct computation @*. 21 x:21 0.21 3.6 11 158
P . 17 x 17 0.30 3 6 11 41 155 238 195
2) StorageRather than storing®™ densely, we have an im-
. . « : . 13 x 13 0.45 3 6 11 38 115 232 168
plicit representation oB* in the form of a dense matrix 9x9 073 4 6 11 27 117 172 115

Q! and a huge implicit operatd. The required storage
is a function ofonly the coarse scale; fine scalesasfy

size can be accommodated. TABLE I
3) ACCUI‘acy.B* iS based 0I’B.|| Of the ﬁne'scale elements, COMPARISON OFSTORAGE AND COMPUTATIONAL REQUIREMENTS
reducing aliasing problems. Storage Initialization ~ Effort Per
Nevertheless, for large problems (esg.,= 10?) the storage of B,.Q'Q Effort Mapping
Q ! requires about 1 GB, the inversion@frequires ten hours Brute Ty ny + a’ng Ne - My
on a modern workstation, and the prod@t'z. is still rela- Force | 100 GB 101 101
tively expensive. Although this may be tolerable for a one-time Implicit g g n + a’ng
initialization, it certainly precludes testing a variety of interpo- Method | 1GB 107 10
lators. The following section develops a novel, faster, iterative ~ Lterative ane @ ”f/ B aingtiatm
approach. Method | 1 MB 10 2 x 10

C. Iterative Algorithm The benefits of the iterative approach can be quite significant

We continue to assume that the interpol&nhas been spec- for large problems (see Table Il). Consider 2-D fine-scale and
ified, and thatB* needs to be inferred. However, we are natoarse-scale grids with; andn, pixels, respectively, and let
interested inB™ per se our goal is the inference af. fromz;. s = \/n;/n. be the corresponding fine-to-coarse scale sub-

Inverting (21), we deduce the equivalent linear system sampling ratio. Finally, letx control the size of the region of
_ support of interpolatotw in (9): the region is square and has
Qz. = .. (2 coarse-scale axs fine-scale pixels on a side. Then the initial-

- . . %zation of the iterative approach requires the computatiof,of
In distinct contrast to the previous section, where a dense matliX: 1 has at most2n.. nonzero elements. as compared to dense
Q ! is computed and stored, hefe = BT B is sparse if the ¢ ’ P

: 1 N N
interpolation operatoB is sparse. The computation €f E?;!fzzgroégﬁez,7;)52225/;&6 x ny) for the implicit and
_ o . The computational effort in derivingQ scales with
Qui =3 wli jyu(k. j) (23) a’n.(as)®/B = a3ng/B: the number of nonzero elements
of @, multiplied by the effort per dot product, divided by
is particularly rapid if the interpolation kernekh(z, 5) in (9), redundancies in (23). In the worst case of a fully nonstationary
is stationary (independent @j for mosti, e.g., for all but a problem,3 = 1. However, away from irregularities (e.g.,
relatively small number of coastline pixels. The linear systenoastlines), the weights are normally stationary so that
(22) can be solved using any of the usual iterative approachgically increases with the size of the coarse state( 2.5
with Gauss—Jacobi, Gauss-Seidel, and conjugate—gradientthe large 81x 121 coarse grid of Fig. 5). In comparison,
being the most straightforward choices [15]. We recommettide computational effort for the inversion @' scales with
the conjugate gradient approach because of its simple impig; and the computation d8* requires on the order @f?n.n s
mentation and excellent convergence characteristics. Tabladditional operations.
presents experimental results showing the average number ofhe direct method requires.n s multiplications per fine-to-
conjugate—gradient iterations required to reduce the error in tt@arse mapping. The implicit and iterative methods are initial-
pseudoinverse to 0.5%, averaged over a variety of interpolatiaed by computinge., requiring on the order ofi?n opera-
kernels (see Section IV for details). All of the tests were carridobns. The implicit method completes the mapping by solving
out with nonperiodic, square domains of size specified in tif21), an effort ofn?. The iterative method solves (22) and re-
first column of the table and with ten fine-scale pixels peguires an effort okv’n. per conjugate gradient iteration.
coarse-scale pixel in each dimension. Variablés a scale  Table Il provides some perspective on the relative cost of the
parameter that controls the spatial size of the interpolattiiree methods. It lists values for a problem having= 10*
Table | shows that the conjugate gradient iterative convergeramarse-scale and; = 10° fine-scale elements, an interpo-
depends strongly on the scale of the kernel, but is only weak$tion footprint ofa = 3 coarse-grid elements, redundancy
dependent on problem size. factor 3 = 2, andi = 100 conjugate gradient iterations. In

J
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(.!_[T’IJT}E C—{'.l';"r] t,:——|.|:|.,f1'{',—|:q|,"'r (1 - ]_{'_!) (1 o ‘.‘JI)
Gaussian Nonseparable Exp. Separable Exp. Bilinear
. o 4 Fe\E - . _,_._
11—z 14z (;) e~/ sinc(r/T) sinc(z/7) - sinc(y/7)
Cone-shaped Negative-lobe Nonseparable Sinc Separable Sinc
G
(1 - t;’_[Elz) e~7 +e (7 (see Appendix 2) (see Appendix 2)
Smooth Thin-Plate Optimal Interpolation

Fig. 1. Interpolation kernels tested= /x? 4+ y? measures the distance to the origin, arid a scale parameter that controls the spatial size of the interpolator.

this context, compared to the implicit approach, the new itera 10" - —r T -~--
tive method uses only 0.1% of the memory (a saving of 1 GB)

initializes in a minuscule fraction of the time, and computes 10'+
each pseudoinverse about five times faster. Compared to a ¢~ | i .
rect, brute-force pseudoinverse calculation, the comparison £ 10" . #io
even more extreme. '

» Gaussian-shaped weights g
IV. INTERPOLATION KERNELS © Exponeniial, non-sepaiabls weights
10 F % Exponential, separable weights

& Separable Bi-incar—chaped weights

mental Noise Sensitivit

Having determined an extremely efficient algorithm for the

pseudoinverse, it is now possible to test a large number of ir & 100: :xmiiimﬁmﬁﬁi
terpolation kernels and parameters in relation to the Noise ar< | o nowepwasie soweighs
shift sensitivity criteria of Section Il. Fig. 1 displays the 11 in- | Sepmiing G Welonks

. - 10°F 9 Nonseparable smooth test function
terpolation kernels that were tested. The kernels include a vi E o in-PlaeGCorsiaon
riety of standard and heuristic kernels: Gaussian, nonseparat o[  #ownelmepdaien
and separable exponential, bilinear, cone-shaped, negative-lot 10° b

. . Cxperimental Shift Sensitivity
nonseparable and separable sinc, smooth, thin-plate, and op- Erperimairal SRR Seusivey

timal interpolation-based functions. Of these, the latter two aggy. 2. comparison of experimental shift sensitivity versus experimental noise
implicit in their formulation; details are provided in Appendixsensitivity for the 11 interpolation kernels of Fig. 1. Better performance is down
II. All tests were carried out in 2& 20 coarse-scale, 209 and to the left. Results are shown for= 8, 10.

200 fine-scale domains. The region of support for the interpo-

lation kernel was varied from 20 20 to 100x 100 fine-scale  For comparison purposes and to validate our understanding,

pixels (i.e.,a = 2,...,10); however, results are shown onlythe counterpart theoretical results are plotted in Fig. 3. The con-
for « = 8, 10. The scale parameter was varied from 2-30 dition number (13), which represents an upper bound on the
fine-scale pixels. noise sensitivity, is plotted versus interpolation kernel aliasing

The two predominant criteria, noise sensitivity (conditioning27). In both cases, the lower left corner of Fig. 3 represents
and shift sensitivity (aliasing), were tested both experimentalbetter kernel performance. The fit between the aliasing criterion
and theoretically. The experimental results were computed efB7) and experimental shift sensitivity (16) is very close, with
pirically using a Monte Carlo approach. Noise sensitivity wathe differences primarily attributed to boundary effects. The fit
computed as the rms noise sensitivity to random fine-scale nosween the condition number and experimental noise sensi-
(12). Shift sensitivity was computed using a skifof one-half tivity is less close because the condition number establishes an
of the coarse-scale discretization for a unit coarse-grid pertupper bound rather than an expected value. However, although
bation in the middle of the test domain (16). These results afee theoretical and experimental quantities measure slightly dif-
plotted in Fig. 2. ferent things, the overall patterns and conclusions from the two
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= Gaussian-shaped weights
) Exponental, non-separable weights ¢
% Exponental, separable weights
| & Separable Bi-lnear—shaped weights
10°F W Nensaparable cone—shaped walghts
* Nonseparable negative-loba weights -
L :t oL* B B
[ O Nonssparable sin: weights oW = Fgpo
__0|! - Separable sinc weights . ___") _.l‘*t o'l © o o
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Fig. 3. Theoretical partner to Fig. 2. Shift sensitivity is based on kernel (a)
aliasing, and noise sensitivity is measured by the interpolator condition numbe- .
Although there are slight differences, qualitatively the same kernels perforn 107 'f ) 93
well. Results are shown far = 8, 10. -

#oe o
o® @

Do 00 €
WG o)

#*

figures are identical: the five kernels along the optimum en-,
velope (lower left) are Gaussian, separable-sinc, smooth, thir:
plate, and optimal-interpolation.

To further characterize the properties of the 11 kernels an
to assist in the selection of scale parameteFig. 4 displays
experimental noise and shift sensitivity results versus scal
parameterr, for fixed « = 10 (i.e., an interpolator size of
100 x 100 fine-scale pixels). The basic trend, as expected, i.5 | .
that increasing produces a smoother kernel, thereby reducing
shift and increasing noise sensitivity. Interestingly, the trenc _ TR~
reverses for large values of because we have fixed = 10, .
the interpolator is truncated to 10 100 pixels, and the 2 5 10 2 0
truncation error increases asincreases. As- — oo, all of Length Parameter < (pixels)
the truncated interpolants will converge to a constant function (b)
over a 100x 100 square. Fig. 4. (a) Experimental noise and (b) shift sensitivity results versus scale

As discussed, for a square, periodic domain, the FFT wilhrameter for the 11 interpolation kernels (same symbol legend as in Figs. 2
have zero shift sensitivity. However, it is interesting to obsen@8d 3). In all casesy = 10.
that the separable-sinc kernel, which should be equivalent to the
FFT, in fact has significant shift sensitivity because of boundary TABLE Il
conditions and finite kernel size: the sinc function is very slow ' TEEE;’(;’;T'gggf{;‘;‘f&gﬁ"“ikIUDSﬁgﬁéé’ﬂéffSCTO':E'Z;%?AEF“{"EDB?O“’;AL'\,‘\‘ Is A
decaying, and our tests are based on finite-sized kernels in @ssug OnLy THE FINAL THREE KERNELS CAN BE RECOMMENDED FOR
finite-size domain with aperiodic boundaries. On the other hand, GENERAL MAPPING PROBLEMS
the Gaussian function is strongly bandlimited in both the spati&

iy

g v OO WM

perimental Shift Sensitiv

and frequency domains, and so is able to exhibit extremely lo_ight Positivity Properties Comments :

. LS . Gaussian + + OK with good numerics
shift sensitivities for certain values of Nonsep. Exp H N

Two additional criteria may be appropriate to consider. First Separable Exp. T

it may be desirable for the interpolation kernels to be smoott g;jinear _

often for aesthetic reasons. This criterion is already asserted, Cone-shaped - -
some degree, by the shift/aliasing test, which will be sensitiv Neg.-lobe
to local or sharply peaked interpolators. Second, if the positio Nonsep. Sinc -

of the coarse elements is irregular, or if the interpolation kerne¢ Sep. Sinc + Good if regular grid

footprint is finite, then a kernel that passes through zero may n Smeoth + + Recommended

atall (or just barely) sample certain fine-scale elements, makir Lhin-Plate + + Recommended
Optimal Interp. + + Recommended

the problem nearly singular. Arguably this issue should hav.
been detected as part of noise sensitivity; however, the noise

sensitivity test is problem-geometry dependent and may not diee Ol kernels, since these kernels adjust themselves to changes
tect all such singular cases (note that this issue does not applintgeometry). These criteria, and the performance of the kernels
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Fig. 5. Mapping test for global-scale problem. We have a<782 coarse grid and a 2160 960 fine grid. The centered locations of the 3551 interpolants are
shown as white dots in the top panel; each interpolant has a footprint ok Blpixels, or 20x 13°. (b) Result of fine-coarse-fine mapping.

with respect to them, are summarized in Table IlI: the positivithe result of fine-coarse-fine mapping, shows no evidence
column assesses whether kernels are strictly posiiyelhave of distortions or noise amplifications, despite the use of a
zero-crossings—), and the properties column assesses the ekaussian kernel. Although it appears that a number of weights
tent to which the shift and noise sensitivities lie on the desiréié over land, these “land” weights actually capture coastline
(lower left) envelope in Figs. 2 and 3. The Gaussian kernel musformation because of the size of the kernel footprint.

be used with caution: although it has outstanding shift sensi-

tivity, it also has the greatest noise sensitivities. The large noise V. SUMMARY AND RECOMMENDATIONS

sensitivites can lead to numerical problems if insufficient nu-
merical accuracy is used. Three efficient interpolation and pseudoinverse algorithms

Finally, Fig. 5 shows a mapping test for a global-scaleave been described. The first of these, the FFT algorithm, is
problem. The centered locations of the 3551 interpolants amely appropriate for regular, periodic grids. Nevertheless, the
shown as white dots in the top panel, where each interpol&#®T algorithm provides theoretical intuition for the properties
has a footprint of 20x 13°. The bottom panel, which showsof mapping and pseudoinverse operators. Specifically, noise
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sensitivity is minimized by choosing interpolation and state-requal to the number of coarse-grid points, i.e., to achieve zero
duction operators that have flat wavenumber response, and séiifift sensitivity (16),)V must be bandlimited with a bandwidth
sensitivity is minimized by choosing bandlimited operators. equal to that spanned by the coarse grid. (Because of symmetry
A second efficient algorithm is based on an implicit reprezonstraints at Nyquist, the shift sensitivity will in fact be exactly
sentation of the pseudoinverse operator. This method is recararo only for coarse domaina x n where bothm andn are
mended for all but the largest problems because it is exact adtl.) As an approximation, we may measure the shift sensitivity

relatively efficient. as the fraction of energy that is aliased
For the largest problems, we have developed an iterative ap-
; - . N, /2s Ny /2s
proach that is extremely efficient, but with the drawback that ) S OWG, §)?
guestions of convergence rate, stability, and parameter settings i=—N./2s j=—N,/2s '
are functions of the interpolant and therefore need to be tested 1= S S W(3, §)? (@7)
empirically in a given setting of interest. However, the advan- i

tages are astonishing: the initialization step is so fast that one

could, if appropriate, choosedifferentinterpolatorw at each

time step. Furthermore the memory and computational require-

ments make it feasible to define multiple interpolaunis apply

all of them, and chose between the results in some context-serOf the 11 interpolants tested, two have implicit definitions.

sitive manner. First, the “thin-plate” interpolant is found from a second-order
The computational efficiency of the iterative algorithneonstraint. An efficient approach to the generation of such func-

makes it possible to test a large number of interpolatidions is using a 2-D FFT. For a correlation lengtitofr_len

kernels and parameters in relation to desirable propertieséof4x 64 interpolant kernel can be generated in Matlab as

the interpolation and mapping operations. Eleven kernels were ) ]

tested for a wide range of problem sizes, kernel sealand 70 Create Thin-Plate convolutional mask

region of support. In general;r trades off noise versus shift w = zeros (64, 64);

APPENDIX Il
INTERPOLANTS

sensitivity, andy trades off accuracy versus computational costn = [ 0 0 1 0 O0;
In most problems, where numerical issues may be a concern 0 2 -8 2 0
and where the coarse domain possesses irregularities dueto 1 -8 20 -8 1;
coastlines, only three kernels—smooth, thin plate, and optimal 0 2 -8 2 0;
interpolation—can be recommended. 0 0 1 0 0l
fori=1:5 forj=1:5
APPENDIX | w(1+ rem (61 + 1, 64),1 + rem(61 + j, 64)) =m(i, j);

SHIFT SENSITIVITY . .
end; end;

If the coarse and fine domains are regularly gridded and peri{1, 1) = 20 + 10" (—6 — 4 * log 10(corr_len/53));
odic and if the interpolation operator is stationary, then the fine
scale is given by the convolution of weight:, j) from (9) with

. % Invert this to get correlation
an oversampled version of the coarse scale

w=real (ifft2(1 ./ (real(£fft2(w)))));
zp=wx (] zc). (24)  w=tftshift (w./w(1, 1)).

Shift insensitivity, (15), implies that for any coarse veciQr Second, the “optimal-interpolation” interpolant is found as the

and shift operatior®, there exists a new coarse veciorthat  set of weights for the least-squares estimation of the fine-scale

satisfies values from the coarse-scale ones. We defifi¢, y(i) as the

spatial coordinate of thith element, subscripted for the fine and

coarse scales. There are three parameters to specify: the length
caleso,., o, and the weight) (for this papers was varied

rom 0.01-1.0). The interpolation follows as

Swx (] z.) =w* (] ). (25)

Taking the Fourier transform of (25) and using elementary pro
erties of the Fourier transform, we obtain

WE(T zc)eQﬁi(kT(Sm/Nm-l-ky&y/Ny) — WE(T Ec) (26) PFF('L7 _j) = '1/161’-]

zr(1) —xr(y yr(2) — 7T
where)V is the Fourier transform ab; ¢,, ands, are the spatial +eXP{—[ A )% f(‘})} - [Jf( )Uyyf(J)} } (28)
shifts in thez andy directions, respectively; amil, andN, are

the dimensions of the fine grid. Note that although the number

of degrees of freedom i (] z.) is small, equal to the number o z(i) — x¢(J) 2 ye (i) — y£(4) 2

of coarse-grid points, the wavenumber content is much higheIlEjCF(“ j)=exp _[ op } - [ Oy }
generally spanning the complete range of fine-grid wavenum- B ! (29)
bers, due to discontinuities in the oversampled sigfhat.). from which the interpolant is derived as

Therefore, to satisfy (26) exactly for all possihte, 6., and

6y, the number of nonzero elements in filléi must be exactly Ty = PCFP;}zC. (30)
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In practice, this computation is impossibly large to undertake |
brute force, so the problem is usually divided spatially, and on
local least squares is performed.
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