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Abstract—Among existing ocean data assimilation method-
ologies, reduced-state Kalman filters are a widely studied
compromise between resolution, optimality, error specification,
and computational feasibility. In such reduced-state filters, the
measurement update takes place on a coarser grid than that of the
general circulation model (GCM); therefore, these filters require
mapping operators from the GCM grid to the reduced state and
vice versa. The general requirements are that the state-reduction
and interpolation operators be pseudoinverses of each other,
that the coarse state define a closed dynamical system, that the
mapping operations be insensitive to noise, and that they be
appropriate for regions with irregular coastlines and bathymetry.
In this paper, we describe three efficient algorithms for computing
the pseudoinverse: a fast Fourier transform algorithm that
serves for illustration purposes, an exact implicit method that
is recommended for most applications, and an efficient iterative
algorithm that can be used for the largest problems. The mapping
performance of 11 interpolation kernels is evaluated. Surprisingly,
common kernels such as bilinear, exponential, Gaussian, and
sinc perform only moderately well. We recommend instead three
kernels, smooth, thin-plate, and optimal interpolation, which
have superior properties. This study removes the computational
bottleneck of mapping and pseudoinverse algorithms and makes
possible the application of reduced-state filters to global problems
at state-of-the-art resolutions.

Index Terms—Climatological models, data assimilation, inter-
scale transforms, pseudoinverse methods, remote sensing, sparse
pseudoinverses.

I. INTRODUCTION

DRIVEN BY A desire to understand and predict the general
circulation of the oceans and its interaction with anthro-

pogenic forcing and climate, recent years have witnessed a pro-
liferation of ocean data assimilation studies and methodologies
[1]. Advancements in computing, modeling, and measurement
capabilities make possible increasingly accurate descriptions
of the time-varying ocean circulation. Nevertheless, all assim-
ilation methodologies, e.g., adjoint method, feature models,
Kalman filters, nudging, and optimal interpolation, remain a
compromise between what is required, an optimal estimate
with full error description at the highest possible resolution,
and computational feasibility.
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One such compromise is a class of methodologies known as
reduced-state Kalman filters and associated optimal smoothers.
These methodologies approximate general circulation model
(GCM) errors with fewer degrees of freedom than those of
the ocean model. Therefore, these methods require algorithms
that project the GCM state onto a reduced state and vice versa.
Application examples may be found in [2]–[12]. A key advan-
tage of reduced-state filters is that they provide complete error
descriptions for the circulation estimates, albeit on a coarser
grid than that of the GCM. Another advantage is their computa-
tional efficiency. Were it not for mapping requirements, which
can demand large computational and storage resources, a given
reduced-state approximation could be applied to arbitrarily
high-resolution, global GCMs with minimal computational
overhead beyond that required to derive the filter. The present
and related work [13] aim to make reduced-state filters feasible
at state-of-the-art resolutions.

One computational bottleneck results from a number of re-
quirements relating the fine and coarse fields. In particular, if
the filter is to be stable over many time steps, it is normally
required that the state reduction and interpolation operators be
pseudoinverses of each other [14], which ensures that repeated
subsampling and interpolation do not lead to a degradation of
the coarse-scale data. It is also required that the coarse state de-
fine a closed system, i.e., a perturbation within the coarse space
must remain in the coarse state following dynamic evolution. Fi-
nally, the mapping operations must be insensitive to noise and be
appropriate for nonstationary problems, such as regions having
irregular coastlines and bottom bathymetry.

Existing mapping and pseudoinverse schemes that satisfy
these requirements often involve the brute-force computation
and manipulation of a matrix, where and are
the fine-grid dimension of the ocean model and the coarse-grid
dimension of the reduced state, respectively. Here, grid dimen-
sions may refer to the three-dimensional (3-D) oceanic state
vector [4] or, more commonly, to the horizontal grid dimension
[2], [6], [11]. To illustrate the magnitude of the computational
challenge in computing pseudoinverse matrices by brute force,
consider the following hypothetical computation. Suppose
the horizontal fine grid is that of a global-ocean GCM with
1/12 -spacing, such that , and that the coarse grid has
approximate grid spacing of 2in latitude and longitude, i.e.,

. The mapping and pseudoinverse operations, stored
as a dense matrix, would require the storage and manipulation
of a 1-TB matrix, which seems completely disproportionate to
the problem at hand.

Clearly what is required is a sparse, implicit, or iterative
representation of the pseudoinverse, rather than attempting
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to compute and store it in dense form. Herein we discuss
general requirements for mapping and decimation operators,
propose a number of efficient algorithms, and evaluate suitable
interpolation kernels for these mapping operators. Section II
introduces notation and provides a mathematical description
of the mapping problem. Section III describes the three
efficient algorithms for computing the pseudoinverse: a fast
Fourier transform (FFT) algorithm that serves to illustrate
general properties of mapping and pseudoinverse operators, an
exact implicit method that is reasonable in most applications,
and an efficient iterative algorithm for the largest problems.
Various interpolation kernels are tested for suitability to the
reduced-state Kalman filter problem in Section IV. Discussion
and recommendations follow in Section V.

II. M ATHEMATICAL DESCRIPTION

Let represent the state vector of an ocean GCM, e.g.,
temperature, salinity, and velocity on a 3-D grid, at some time
. Algebraically, the GCM can be written as a rule for stepping

this state vector forward in time

(1)

where encodes the system dynamics, and vector repre-
sents the boundary conditions and other model parameters spec-
ified at time . For modern ocean GCMs, the state vector
can have a dimension of 10or more. Thus, even for linear sys-
tems, the dimensionality of the problem makes a full implemen-
tation of the Kalman filter and optimal smoother completely in-
feasible. To reduce the filter and smoother complexity, model
errors are represented on a coarser grid,, hence the need for
mapping operators between and .

A. Pseudoinverse

The fine-to-coarse transformation is

(2)

where matrix represents a state reduction operator, intu-
itively a filter that, for example, attenuates mesoscale-eddy vari-
ability but retains planetary-wave and other large-scale circula-
tion features. A pseudoinverse operatoris defined such that

(3)

holds for all vectors . is an interpolation operator that maps
the reduced-state vector back to the original grid so that

(4)

where represents the high-frequency/wavenumber compo-
nents that lie in the null space of transformation. Given
some selected , one possible solution for , satisfying (3),
is the Moore–Penrose pseudoinverse [14]

(5)

will be invertible if has full row-rank, implying that
the elements in are computed as linearly independent inter-

polants of . This will be the case for all but the most unfortu-
nate choice of , since the number of columns in is much
greater than the number of rows. A more common approach, in
our experience, is to explicitly chose the interpolation operator

, in which case can then be computed as the Moore–Pen-
rose pseudoinverse using

(6)

Again, the requirement that be invertible is normally sat-
isfied. The challenge lies in the computation and representation
(storage) of the gigantic matricesand .

In practice, the mapping and pseudoinverse problem for the
full GCM state vector is often broken down into a number of
smaller horizontal mapping problems using, for example, ver-
tical empirical orthogonal functions [5] or dynamical modes [9].
Symbolically, the 3-D interpolation operator can be written

(7)

where and represent horizontal and vertical interpolation
operators, respectively. Conversely, the pseudoinverse operation
is

(8)

with both and satisfying the pseudoinverse
condition (3). Although the discussion and intuition of the
remainder of the paper will apply primarily to the horizontal
operators and , the mapping algorithms that are devel-
oped apply to much broader contexts. For large problems, it is
often convenient to represent by specifying an interpolation
kernel , such that

(9)

This permits computational and storage savings when the
weights are stationary, i.e., not a function of, as further
discussed in Section III-C.

B. Noise Sensitivity

A second desired attribute for the mapping operators is that
the transformations be stable with respect to errors. Since the
reduced-state filter is an approximation, the mapping and inter-
polation operations must be insensitive to inaccuracies of this
approximation. Consider, for example, the degree to which a
perturbation at the fine scale affects the coarse-scale coeffi-
cients

(10)

If were very close to singular, then a small disturbance
could give rise to an arbitrarily large difference . The
intuitive noise sensitivity criterion

(11)

is not, however, sufficient because ifand are a pseudoin-
verse pair, then so are and , in which case (11) can be
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made arbitrarily small by increasing. The properly normalized
noise sensitivity criterion is

(12)

The upper bound for this sensitivity is given by the product of
the largest singular values of and ; thus, the noise
sensitivity is limited by

(13)

That is, the noise sensitivity is bounded by the condition number
of the pseudoinverse , which is equal to the condition number
of the interpolator , implying that the noise sensitivity can be
evaluated before attempting to compute.

C. Shift Sensitivity

A third desired attribute is that the coarse state define a closed
dynamical system. This implies that the energy of the large, re-
solved scales should not degrade or be corrupted over repeated
time steps, i.e.,

(14)

A specific example is that the dynamics of typically in-
volve advection or propagation of waves on scales consider-
ably smaller than the coarse-scale discretization interval. The
mapping-interpolation operation should therefore be in-
sensitive to spatial shifts, to ensure that a slow, advective flow
is not progressively corrupted by repeated mapping-interpola-
tions, i.e.,

(15)

where represents a spatial translation on the fine scale. The
condition that an operator be unaffected by fine shifts is effec-
tively an antialiasing or bandlimiting criterion as further dis-
cussed in Section III-A and in Appendix I. Experimentally, we
define the shift sensitivity as the root-mean-square (rms) ratio

rms
rms

(16)

where is a coarse unit-vector with pixelset to one and the
rest to zero. The noise and shift sensitivity criteria, described
above, are used to evaluate various interpolation kernels in Sec-
tion IV.

III. COMPUTATION OF THEPSEUDOINVERSE

We next discuss three efficient algorithms for computing the
pseudoinverse: an FFT algorithm (which serves to further il-
lustrate noise and shift sensitivities), an exact implicit method
(which is recommended for most applications), and an efficient
iterative algorithm (which can be used for the largest problems).

A. FFT Algorithm

The straightforward computation of the pseudoinverse, using
(5) or (6), is made difficult because even if one operation, such
as the interpolation , is chosen to be simple and sparse, the
computed pseudoinverse is normally complex and dense. A

promising direction is to investigate known reversible opera-
tions from signal processing theory. Specifically, the condition
of the pseudoinverse (3) can be satisfied using an FFT scheme
[5]

(17)

(18)

where represents the two-dimensional (2-D) Fourier trans-
form, and the arrows and represent oversampling and sub-
sampling, respectively. is a filtering function, the Fourier
transform of the kernel in (9) if the grid is regular and pe-
riodic. is the pseudoinverse filter of , i.e.,

otherwise
(19)

Thus, the interpolation (17) is equivalent to oversampling the
coarse state and applying a lowpass filter . Conversely,
the state reduction (18) is equivalent to lowpass filtering the fine
state and then subsampling at the coarse-grid locations, the
lowpass filter being required to avoid aliasing. Note that in order
for the pseudoinverse condition (3) to be satisfied exactly, the
number of nonzero elements in must be equal to or greater
than the number of coarse-grid elements.

The FFT approach provides a simple intuition for the noise
and shift sensitivity criteria described in Section II. First, if the
filtering function is constant for all wavenumbers where it is
nonzero, then the noise sensitivity criterion (13) is satisfied with
equality. Second, if the interpolation is perfectly band limited,
i.e., for all scales not resolved by the coarse grid, then
the shift-sensitivity criterion (16) is identically zero (see Ap-
pendix I for details). That is, noise sensitivity is minimized by
choosing interpolation and state-reduction operators that have a
flat wavenumber response, and shift sensitivity is minimized by
choosing bandlimited operators. In general, however, with the
exception of stationary periodic domains, flatness and bandlim-
itedness are incompatible goals, so the FFT case is the exception
in achieving both of these criteria perfectly.

The FFT approach is elegant in that both interpolation and
subsampling operations are represented implicitly, rather than
as a dense matrix, and because the transformations are very fast.
A major drawback, however, stems from the stationary prop-
erty of the FFT: mapping is possible only on a regular, periodic
grid, making this approach ill-suited to global studies with ir-
regular boundaries (coastlines, etc.). Global studies [9] have,
instead, relied on defining a suitable sparse interpolation op-
erator, , and then computing the pseudoinverse by brute
force (6). Sections III-B and III-C discuss efficient alternatives
for the computation of .

B. Implicit Algorithm

A first efficient alternative to (6) is based on noting that
the specified operator (either or ) is usually chosen to
be sparse, which suggests a more sensible approach than the
brute-force operations of (5) or (6). For example, given a fixed
interpolator , if

(20)
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is computed off-line, ahead of time, then

(21)

where the product can be computed efficiently because
of the sparsity of . The matrix is never computed explic-
itly; rather, it is represented implicitly, with the following huge
advantages.

1) Computation.The calculation of is much simpler
than the direct computation of .

2) Storage.Rather than storing densely, we have an im-
plicit representation of in the form of a dense matrix

and a huge implicit operator. The required storage
is a function ofonly the coarse scale; fine scales ofany
size can be accommodated.

3) Accuracy. is based onall of the fine-scale elements,
reducing aliasing problems.

Nevertheless, for large problems (e.g., ) the storage of
requires about 1 GB, the inversion ofrequires ten hours

on a modern workstation, and the product is still rela-
tively expensive. Although this may be tolerable for a one-time
initialization, it certainly precludes testing a variety of interpo-
lators. The following section develops a novel, faster, iterative
approach.

C. Iterative Algorithm

We continue to assume that the interpolanthas been spec-
ified, and that needs to be inferred. However, we are not
interested in per se; our goal is the inference of from .
Inverting (21), we deduce the equivalent linear system

(22)

In distinct contrast to the previous section, where a dense matrix
is computed and stored, here is sparse if the

interpolation operator is sparse. The computation of

(23)

is particularly rapid if the interpolation kernel, in (9),
is stationary (independent of) for most , e.g., for all but a
relatively small number of coastline pixels. The linear system
(22) can be solved using any of the usual iterative approaches,
with Gauss–Jacobi, Gauss–Seidel, and conjugate–gradient
being the most straightforward choices [15]. We recommend
the conjugate gradient approach because of its simple imple-
mentation and excellent convergence characteristics. Table I
presents experimental results showing the average number of
conjugate–gradient iterations required to reduce the error in the
pseudoinverse to 0.5%, averaged over a variety of interpolation
kernels (see Section IV for details). All of the tests were carried
out with nonperiodic, square domains of size specified in the
first column of the table and with ten fine-scale pixels per
coarse-scale pixel in each dimension. Variableis a scale
parameter that controls the spatial size of the interpolator.
Table I shows that the conjugate gradient iterative convergence
depends strongly on the scale of the kernel, but is only weakly
dependent on problem size.

TABLE I
AVERAGE NUMBER OF CONJUGATE-GRADIENT ITERATIONS TOACHIEVE A

rms ACCURACY OF0.5%

TABLE II
COMPARISON OFSTORAGE AND COMPUTATIONAL REQUIREMENTS

The benefits of the iterative approach can be quite significant
for large problems (see Table II). Consider 2-D fine-scale and
coarse-scale grids with and pixels, respectively, and let

be the corresponding fine-to-coarse scale sub-
sampling ratio. Finally, let control the size of the region of
support of interpolator in (9): the region is square and has
coarse-scale or fine-scale pixels on a side. Then the initial-
ization of the iterative approach requires the computation of,
which has at most nonzero elements, as compared to dense
matrices and for the implicit and
direct approaches, respectively.

The computational effort in deriving scales with
: the number of nonzero elements

of , multiplied by the effort per dot product, divided by
redundancies in (23). In the worst case of a fully nonstationary
problem, . However, away from irregularities (e.g.,
coastlines), the weights are normally stationary so that
typically increases with the size of the coarse state (
for the large 81 121 coarse grid of Fig. 5). In comparison,
the computational effort for the inversion to scales with

, and the computation of requires on the order of
additional operations.

The direct method requires multiplications per fine-to-
coarse mapping. The implicit and iterative methods are initial-
ized by computing , requiring on the order of opera-
tions. The implicit method completes the mapping by solving
(21), an effort of . The iterative method solves (22) and re-
quires an effort of per conjugate gradient iteration.

Table II provides some perspective on the relative cost of the
three methods. It lists values for a problem having
coarse-scale and fine-scale elements, an interpo-
lation footprint of coarse-grid elements, redundancy
factor , and conjugate gradient iterations. In
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Fig. 1. Interpolation kernels tested;r =
p
x + y measures the distance to the origin, and� is a scale parameter that controls the spatial size of the interpolator.

this context, compared to the implicit approach, the new itera-
tive method uses only 0.1% of the memory (a saving of 1 GB),
initializes in a minuscule fraction of the time, and computes
each pseudoinverse about five times faster. Compared to a di-
rect, brute-force pseudoinverse calculation, the comparison is
even more extreme.

IV. I NTERPOLATION KERNELS

Having determined an extremely efficient algorithm for the
pseudoinverse, it is now possible to test a large number of in-
terpolation kernels and parameters in relation to the noise and
shift sensitivity criteria of Section II. Fig. 1 displays the 11 in-
terpolation kernels that were tested. The kernels include a va-
riety of standard and heuristic kernels: Gaussian, nonseparable
and separable exponential, bilinear, cone-shaped, negative-lobe,
nonseparable and separable sinc, smooth, thin-plate, and op-
timal interpolation-based functions. Of these, the latter two are
implicit in their formulation; details are provided in Appendix
II. All tests were carried out in 20 20 coarse-scale, 200
200 fine-scale domains. The region of support for the interpo-
lation kernel was varied from 20 20 to 100 100 fine-scale
pixels (i.e., ); however, results are shown only
for . The scale parameter was varied from 2–30
fine-scale pixels.

The two predominant criteria, noise sensitivity (conditioning)
and shift sensitivity (aliasing), were tested both experimentally
and theoretically. The experimental results were computed em-
pirically using a Monte Carlo approach. Noise sensitivity was
computed as the rms noise sensitivity to random fine-scale noise
(12). Shift sensitivity was computed using a shiftof one-half
of the coarse-scale discretization for a unit coarse-grid pertur-
bation in the middle of the test domain (16). These results are
plotted in Fig. 2.

Fig. 2. Comparison of experimental shift sensitivity versus experimental noise
sensitivity for the 11 interpolation kernels of Fig. 1. Better performance is down
and to the left. Results are shown for� = 8; 10.

For comparison purposes and to validate our understanding,
the counterpart theoretical results are plotted in Fig. 3. The con-
dition number (13), which represents an upper bound on the
noise sensitivity, is plotted versus interpolation kernel aliasing
(27). In both cases, the lower left corner of Fig. 3 represents
better kernel performance. The fit between the aliasing criterion
(27) and experimental shift sensitivity (16) is very close, with
the differences primarily attributed to boundary effects. The fit
between the condition number and experimental noise sensi-
tivity is less close because the condition number establishes an
upper bound rather than an expected value. However, although
the theoretical and experimental quantities measure slightly dif-
ferent things, the overall patterns and conclusions from the two
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Fig. 3. Theoretical partner to Fig. 2. Shift sensitivity is based on kernel
aliasing, and noise sensitivity is measured by the interpolator condition number.
Although there are slight differences, qualitatively the same kernels perform
well. Results are shown for� = 8; 10.

figures are identical: the five kernels along the optimum en-
velope (lower left) are Gaussian, separable-sinc, smooth, thin-
plate, and optimal-interpolation.

To further characterize the properties of the 11 kernels and
to assist in the selection of scale parameter, Fig. 4 displays
experimental noise and shift sensitivity results versus scale
parameter , for fixed (i.e., an interpolator size of
100 100 fine-scale pixels). The basic trend, as expected, is
that increasing produces a smoother kernel, thereby reducing
shift and increasing noise sensitivity. Interestingly, the trend
reverses for large values of: because we have fixed ,
the interpolator is truncated to 100 100 pixels, and the
truncation error increases asincreases. As , all of
the truncated interpolants will converge to a constant function
over a 100 100 square.

As discussed, for a square, periodic domain, the FFT will
have zero shift sensitivity. However, it is interesting to observe
that the separable-sinc kernel, which should be equivalent to the
FFT, in fact has significant shift sensitivity because of boundary
conditions and finite kernel size: the sinc function is very slowly
decaying, and our tests are based on finite-sized kernels in a
finite-size domain with aperiodic boundaries. On the other hand,
the Gaussian function is strongly bandlimited in both the spatial
and frequency domains, and so is able to exhibit extremely low
shift sensitivities for certain values of.

Two additional criteria may be appropriate to consider. First,
it may be desirable for the interpolation kernels to be smooth,
often for aesthetic reasons. This criterion is already asserted, to
some degree, by the shift/aliasing test, which will be sensitive
to local or sharply peaked interpolators. Second, if the position
of the coarse elements is irregular, or if the interpolation kernel
footprint is finite, then a kernel that passes through zero may not
at all (or just barely) sample certain fine-scale elements, making
the problem nearly singular. Arguably this issue should have
been detected as part of noise sensitivity; however, the noise
sensitivity test is problem-geometry dependent and may not de-
tect all such singular cases (note that this issue does not apply to

(a)

(b)

Fig. 4. (a) Experimental noise and (b) shift sensitivity results versus scale
parameter� for the 11 interpolation kernels (same symbol legend as in Figs. 2
and 3). In all cases,� = 10.

TABLE III
INTERPOLATION KERNEL CONCLUSIONS: UNLESS THEPROBLEM DOMAIN IS A

LARGE, REGULAR GRID, AND NUMERICAL CONCERNSARE NOT AN

ISSUE, ONLY THE FINAL THREE KERNELSCAN BE RECOMMENDED FOR

GENERAL MAPPING PROBLEMS

the OI kernels, since these kernels adjust themselves to changes
in geometry). These criteria, and the performance of the kernels
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(a)

(b)

Fig. 5. Mapping test for global-scale problem. We have a 71� 62 coarse grid and a 2160� 960 fine grid. The centered locations of the 3551 interpolants are
shown as white dots in the top panel; each interpolant has a footprint of 121� 81 pixels, or 20� 13 . (b) Result of fine-coarse-fine mapping.

with respect to them, are summarized in Table III: the positivity
column assesses whether kernels are strictly positive () or have
zero-crossings (), and the properties column assesses the ex-
tent to which the shift and noise sensitivities lie on the desired
(lower left) envelope in Figs. 2 and 3. The Gaussian kernel must
be used with caution: although it has outstanding shift sensi-
tivity, it also has the greatest noise sensitivities. The large noise
sensitivites can lead to numerical problems if insufficient nu-
merical accuracy is used.

Finally, Fig. 5 shows a mapping test for a global-scale
problem. The centered locations of the 3551 interpolants are
shown as white dots in the top panel, where each interpolant
has a footprint of 20 13 . The bottom panel, which shows

the result of fine-coarse-fine mapping, shows no evidence
of distortions or noise amplifications, despite the use of a
Gaussian kernel. Although it appears that a number of weights
lie over land, these “land” weights actually capture coastline
information because of the size of the kernel footprint.

V. SUMMARY AND RECOMMENDATIONS

Three efficient interpolation and pseudoinverse algorithms
have been described. The first of these, the FFT algorithm, is
only appropriate for regular, periodic grids. Nevertheless, the
FFT algorithm provides theoretical intuition for the properties
of mapping and pseudoinverse operators. Specifically, noise
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sensitivity is minimized by choosing interpolation and state-re-
duction operators that have flat wavenumber response, and shift
sensitivity is minimized by choosing bandlimited operators.

A second efficient algorithm is based on an implicit repre-
sentation of the pseudoinverse operator. This method is recom-
mended for all but the largest problems because it is exact and
relatively efficient.

For the largest problems, we have developed an iterative ap-
proach that is extremely efficient, but with the drawback that
questions of convergence rate, stability, and parameter settings
are functions of the interpolantand therefore need to be tested
empirically in a given setting of interest. However, the advan-
tages are astonishing: the initialization step is so fast that one
could, if appropriate, choose adifferent interpolator at each
time step. Furthermore the memory and computational require-
ments make it feasible to define multiple interpolants, apply
all of them, and chose between the results in some context-sen-
sitive manner.

The computational efficiency of the iterative algorithm
makes it possible to test a large number of interpolation
kernels and parameters in relation to desirable properties of
the interpolation and mapping operations. Eleven kernels were
tested for a wide range of problem sizes, kernel scale, and
region of support . In general, trades off noise versus shift
sensitivity, and trades off accuracy versus computational cost.
In most problems, where numerical issues may be a concern
and where the coarse domain possesses irregularities due to
coastlines, only three kernels—smooth, thin plate, and optimal
interpolation—can be recommended.

APPENDIX I
SHIFT SENSITIVITY

If the coarse and fine domains are regularly gridded and peri-
odic and if the interpolation operator is stationary, then the fine
scale is given by the convolution of weight from (9) with
an oversampled version of the coarse scale

(24)

Shift insensitivity, (15), implies that for any coarse vector
and shift operation , there exists a new coarse vectorthat
satisfies

(25)

Taking the Fourier transform of (25) and using elementary prop-
erties of the Fourier transform, we obtain

(26)

where is the Fourier transform of ; and are the spatial
shifts in the and directions, respectively; and and are
the dimensions of the fine grid. Note that although the number
of degrees of freedom in is small, equal to the number
of coarse-grid points, the wavenumber content is much higher,
generally spanning the complete range of fine-grid wavenum-
bers, due to discontinuities in the oversampled signal .
Therefore, to satisfy (26) exactly for all possible, , and

, the number of nonzero elements in filter must be exactly

equal to the number of coarse-grid points, i.e., to achieve zero
shift sensitivity (16), must be bandlimited with a bandwidth
equal to that spanned by the coarse grid. (Because of symmetry
constraints at Nyquist, the shift sensitivity will in fact be exactly
zero only for coarse domains where both and are
odd.) As an approximation, we may measure the shift sensitivity
as the fraction of energy that is aliased

(27)

APPENDIX II
INTERPOLANTS

Of the 11 interpolants tested, two have implicit definitions.
First, the “thin-plate” interpolant is found from a second-order
constraint. An efficient approach to the generation of such func-
tions is using a 2-D FFT. For a correlation length ofcorr_len ,
a 64 64 interpolant kernel can be generated in Matlab as

-

Second, the “optimal-interpolation” interpolant is found as the
set of weights for the least-squares estimation of the fine-scale
values from the coarse-scale ones. We define as the
spatial coordinate of theth element, subscripted for the fine and
coarse scales. There are three parameters to specify: the length
scales and the weight (for this paper, was varied
from 0.01–1.0). The interpolation follows as

(28)

(29)
from which the interpolant is derived as

(30)
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In practice, this computation is impossibly large to undertake by
brute force, so the problem is usually divided spatially, and only
local least squares is performed.
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