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Rightmost figure derived from Alexander Smola, Machine Learning Summer School, 2008.
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a function of two inputs               , mapped to a feature space F,    

. 

an inner product for all inputs, 

real-valued and symmetric in its arguments,

6

Kernels

Formally, a kernel is
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Mercer or p.d. kernels

A kernel function is Mercer or positive definite (p.d.) if
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Mercer’s condition in 
matrix (finite) form, 

where kernel/Gram matrix 
G is p.s.d. if…

Mercer or p.d. kernels

A kernel function is Mercer or positive definite (p.d.) if

k is an inner 
product

convex optimization; 
a cone in the vector space 

of pxp matrices

positive  
singular values 
and eigenvalues
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Mercer or p.d. kernels

SVMs are derived with positive definite (p.d.) kernels

A kernel function is Mercer or positive definite (p.d.) if
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The problem

The sigmoid kernel: 

is not: Mercer-compliant ⇔ positive definite (p.d.) 

thus not prima facie valid for SVM
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But it is used in health care!

For 2011-2014, a search on “sigmoid kernel” AND “clinical” 
yields 33 and 451 hits on ScienceDirect and Google scholar 

1 of 4 widely implemented kernels 

Two fuzzy-logic (non-Mercer) sigmoid kernels were created in 
2004 and 2006 to improve/replace it, but neither perform as 
well as the sigmoid kernel.

e.g. Matlab, R, SAS, SPSS, libsvm, Shogun, 
Orange, etc. 
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is conditionally positive definite (c.p.d.), but is that valid for SVM?  
!
Against - most lit’:      only Mercer kernels are valid 

      - Smola:     proves the sigmoid is not Mercer 

For      -  Boughorbel:  argmin 2*W(Kcpd,α/2) = argmin W(Kpd,α) 

      -  Scholkopf:     argues the sigmoid is valid

~

The sigmoid kernel

α α
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it is only valid when conditionally positive definite, 
c.p.d. — hard to determine & data-dependent! 

it is only valid for specific kernel methods

The sigmoid kernel

If invalid the optimality & stability of results are not guaranteed 

but health care applications need trustworthy results!

Even if valid
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Our new Mercer sigmoid kernel

Is similar to the sigmoid kernel, Mercer-compliant, p.d., and 
always valid for any kernel method. 

Performs clinical data classification significantly better on 3 
data sets vs. Gaussian RBF, linear, polynomial, sigmoid. 

Performs non-clinical data classification about the same as the 
Gaussian RBF, and better than others.
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Comparison
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tanh(xz)   ≈  tanh(x)·tanh(z) 

!
dot-product kernel  vs.  separable kernel 

non-Mercer  vs.  Mercer  

infinite/implicit  vs. finite/explicit feature space 

  < 10.1% RMS deviation 

Comparison

form in Mercer sigmoidform in sigmoid
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We tested kernels on six data sets

x 60 hyperparameters using random search (best result per kernel)

x 29 experiments (average of best results per kernel)

 Dr. Ehrsam 

Experiment
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Clinical results
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Accuracy  
(with sensitivity & specificity > 50%)

Mean accuracy with 95% confidence intervals

Linear

Sigmoid

Normalized 
Sigmoid

Mercer Sigmoid

Gaussian RBF
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Non-clinical results
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Linear

Sigmoid

Normalized 
Sigmoid

Gaussian RBF

Mercer Sigmoid

Polynomial

Accuracy  
(with sensitivity & specificity > 50%)

Mean accuracy with 95% confidence intervals
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Conclusion

Since: 

The Mercer sigmoid kernel outperforms other kernels             
on 3 clinical data sets 

The existing sigmoid kernel lacks assurance 

SVM classifiers are developed with multiple candidate kernels 

We recommend including the Mercer sigmoid kernel as a 
candidate for SVM classification of clinical data
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Our dot-product normalization of the existing sigmoid kernel is 
novel and significantly improves accuracy. 

The Mercer sigmoid kernel, as a separable kernel, is 
theoretically advantageous for big data. Platforms or tools 
made specifically for big data are required to exploit this.

Other benefits
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Try it!

Download it from the VIP lab at Univ. Waterloo. 

Matlab script:     example.m 

    MSig.m 

Matlab C/MEX code:   mexMSig.c 

!
And please tell us about your results! 

amcarrin@uwaterloo.ca

http://vip.uwaterloo.ca/files/misc_pub_files/MSig.zip
mailto:amcarrin@uwaterloo.ca
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Thank-you
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amcarrin@uwaterloo.ca

mailto:amcarrin@uwaterloo.ca
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Appendix A: references,  
FAQ, experimental limitations
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Frequently Asked Questions (FAQ)

Q: Why is the Mercer sigmoid kernel significantly more accurate in 
classification with the 3 clinical data sets?  What is the cause? What 
differentiates them from non-clinical data? 

A: The result may not generalize to other data sets since 
confounding factors may apply (i.e. Simpson’s paradox).  Note: it is 
also best in preliminary results with real-life nephrology data. We 
have a hypothesis regarding the cause in other work underway. 

Q: Does 1/p in the Mercer sigmoid kernel have any effect in SVM? 

A: No, it has no effect with SVM.  1/p is included so that comparison 
(RMS deviation) with the sigmoid kernel is meaningful.  The output is 
also more intuitive for users.
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Q: The Mercer sigmoid kernel has an explicit basis function and finite 
dimensional feature space. Aren’t kernels usually defined with an implicit basis 
function and an infinite dimensional feature space? Is that the kernel trick? 

A: The kernel trick is the ability to replace XXT in the SVM dual with any 
kernel (explicit or implicit). There are 9 other explicit and separable kernels 
in the literature.  

A: Also, infinite dimensional feature spaces are overrated for SVM: 

The significance of terms in a Taylor series taper off very quickly. The 
effect of the latter terms in optimization (re error) is negligible. 

Classifiers are based on a finite number of support vectors or SV (less 
than the number of instances) — i.e. finite complexity, as appropriate 
for generalization. 

When the Mercer sigmoid performs better, it uses 35% less SV.

Mercer sigmoid FAQ 2
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Mercer sigmoid FAQ 3

Q: Does the kernel only partition data into two regions per dimension? 

A: Yes.  If data is trimodal within one dimension, other dimensions 
are completely independent, and the data is not separable in other 
dimensions, then this kernel is sub-optimal. 

Q: How can it perform better than the Gaussian RBF kernel?   

A: Future work may investigate this. Lin and Lin noted a close 
relationship between the sigmoid kernel and the Gaussian RBF 
kernel, where the former is c.p.d. 

Q: Have advantages of (i.e. specific applications for) the pre-existing 
sigmoid kernel been identified? 

A: No.
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Q: The RMS deviation < 10.1% is specific to a=[0.1,10] for the normalized 
sigmoid kernel, where a is the maximum slope. Some literature 
recommends a=1/N for the sigmoid kernel. 

A: While we learned about a=1/N after-the-fact, I posit that smaller 
values of a would have a negligible effect. At a=0.1, both a sigmoid 
kernel and a normalized sigmoid kernel look like a near-horizontal 
plane. 

Q: Are there any disadvantages with using the Mercer sigmoid kernel? 

When using random search for hyperparameters in our experiment, 
the Mercer sigmoid kernel had a higher standard deviation in its 
accuracy than the Gaussian RBF kernel.  As a result one has to use 
more hyperparameters than the Gaussian RBF kernel for best results. 

Mercer sigmoid FAQ 4
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Experimental limitations

We allowed Sequential Minimal Optimization (SMO) to violate Karush 
Kuhn Tucker (KKT) conditions for kernels where it was not needed 

52% of our skin data used the clinician (vs. pathology) as ground-truth 

We used balanced costs, although melanoma detection should use an 
imbalanced cost  

None of the 6 data sets had a large number of instances (i.e. big data) 

We tested the Mercer sigmoid kernel with SMO not QP.  

We did not use a final test set after cross-validation
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Appendix B: other details 
(following the presentation order)
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A kernel matrix is p.s.d. if

Mercer or p.d. kernels

A kernel function is Mercer or positive definite (p.d.) if
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c.p.d. kernels

A kernel matrix is c.p.d. if
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Proof of Mercer compliance 
for our Mercer sigmoid kernel

A valid kernel, a kernel that is positive semidefinite and symmetric, and a 
Mercer kernel are equivalent conditions and terms.  We therefore seek a valid 
kernel to ensure Mercer compliance. 

k(x,z) =f(x)f(z) is a valid kernel for real-valued f(.) on X, X⊆Rp                  (1) 

k(x,z) = k1(x,z) + k2(x,z) is a valid kernel if k1 and k2 are valid kernels (2) 

Let f(xi)=(1/√p) tanh((xi-b)/d) where xi and f are real-valued               (3) 

From (1,3): k(xi,zi)=(1/√p) tanh((xi-b)/d)*(1/√p) tanh((zi-b)/d) is valid (4) 

From (2,4): kM(x,z)=Σi k(xi,zi) = Σi (1/√p) tanh((xi-b)/d) * (1/√p) tanh((zi-b)/d) 
is a valid kernel, which is our proposed kernel.
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Current SVMs (i.e. soft-margin) were introduced in 1995 by Boser, 
Guyon and Vapnik. 

Vapnik, the creator of SVM, published a book in 1995 discussing 3 
kernels (or SVM types): polynomial, radial basis function, or two layer 
neural networks [i.e. sigmoid]: k(x,z) = S(axTz + r).

Why is the sigmoid kernel widely 
implemented?

He asserts that all 3 can 
approximate a continuous 
function to any degree of 
accuracy (p.155).

… …

…

yNαN

y2α2

y1α1

k(x1,x)

k(x2,x)

k(xN,x)

x1

x2

xN

x3
y=sign(  Σ    yi    αi  k(xi  ,  x)  -‐  b  )

i=1

N

input  vector:    
x  =  (x1,  …,  xN)

support  vectors:    
x1,  …,  xN

SVM Figure adapted from Vapnik
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The sigmoid kernel dispute

Boughorbel et al: Show that using a p.d. kernel with the SVM dual 
argminα W’(α) is equivalent to using its related c.p.d. kernel with 
2*argminα W(α/2).  Conclude c.p.d. kernels valid for SVM. 

Scholkopf: Argues (does not show) that a c.p.d. kernel is valid for 
SVM; shows it is valid for kernel PCA.
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Boughorbel et al: Show that using a p.s.d. kernel with the SVM dual 
argminα W’(α) is equivalent to using its related c.p.d. kernel with 
2*argminα W(α/2).  Conclude c.p.d. kernels valid for SVM. 

Scholkopf: Argues (does not show) that a c.p.d. kernel is valid for 
SVM; shows it is valid for kernel PCA. 

Smola et al: Impossible to use the kernel (with a=1) for SVM.  Does 
not satisfy Mercer’s condition for any parameter values. 

Most literature: Only p.d. (Mercer) kernels are valid for SVM.

The sigmoid kernel dispute
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It is only valid for a specific range of parameters that is 
difficult to determine & data-dependent!   

A range that is proven to exist. Solving r for your data, is 
analytically difficult, but you can check a proposed r. 

Lin et al: r must be small. {a>0, r<0} is the most suitable 
quadrant (corroborated by implementations). 

Burges: There are 3 conditions for dot-product kernels to be 
p.d. (not c.p.d.) including a data-dependent range of a & r.

Even if valid…
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Linear kernel  

Hellinger kernel 

Hellinger exponential kernel 

Wavelet kernel 

Generalized histogram intersection kernel

Chi-square kernel 

Probability product kernel  

Bhattacharyya kernel 

Expected Likelihood kernel

Separable kernels are explicitly of the form k(x,z)=f(x)g(z).  They 
have lower space complexity, since only the vectors x and z need to 
be stored instead of the kernel matrix.  Genton reduces some kernels 
to separable kernels and asserts benefits for big data. 

Other separable kernels include:

Separable kernels



André M. Carrington 41

Experimental method

We randomly generate hyperparameters from a uniform 
distribution (i.e. random search) 

!
!

 log = log10

 *a lower = 0.1 for RMS Δ

*
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