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ABSTRACT
We present Temporal Conditional Random Fields, a proba-

bilistic framework for modeling object motion. The state-

of-the-art discriminative approach for tracking is known as

dynamic conditional random fields. This method models an

event based on spatial and temporal relation between pixels

in an image sequence without any prediction. To facilitate

such a powerful graphical model with prediction and come

up with a CRF-based predictor, we propose a set of new tem-

poral relations for object tracking, with feature functions such

as optical flow (calculated among consequent frames) and line

filed features. We validate our proposed method with real data

sequences and will show that the TCRF prediction is nearly

equivalent with result of template matching. Experimental

results indicate that our TCRF can predict future state of any

maneuvering target with nearly zero error during its constant

motion. Not only the proposed TCRF has a simple and easy

to implement structure, but also it outperforms the state-of-

the-art predictors such as Kalman filter.

Index Terms— Visual Tracking, Discriminative Models,

Conditional Random Fields, Potential Function

1. INTRODUCTION
Event modeling has generated a large body of research dur-

ing the past two decades. In modeling real events we usually

have somehow corrupted or insufficient measurements, mak-

ing the problems ill-posed. In such cases some sort of prior

knowledge or constraints may be applied to allow a problem

solution. Object tracking, image denoising and surface re-

construction are among the problems that are addressed by

statistical modeling.

Our objective is to model the target dynamic in object

tracking problems. A significant number of methods have

been proposed to solve this problem, some statistical and

some heuristic, where the Kalman filter is the optimum least-

squares framework in the presence of Gaussian measurement

noise. The Kalman filter, and its many variations, predicts the

next state of the object with a predefined dynamic and then

updates the predicted state with measurements.

Within the context of graphical modeling, the Kalman fil-

ter behavior is like that of Hidden Morkov Models (HHM),

based on a generative model that models the joint distribu-

tion of measurements and label. Similarly, in computer vi-

sion, Markov Random Fields (MRF) are another generative

model applied, assuming conditional independency between

measurements when conditioned on labels (states).

Motivated by the modeling success of MRFs, Conditional

Random Fields (CRF) were introduced, directly modeling the

conditional probability distribution of labels given measure-

ments, and relaxing the conditional independence assump-

tion. Whereas many image processing problems have limited

data for the purpose of modeling, leading to comparatively

inaccurate MRF models, the key idea is the CRF can better

solve many problems of computer vision because it explicitly

models only the conditional distribution, and does not attempt

to learn a prior.

In this paper we propose a new probabilistic approach to

object tracking based on the CRF. In a discriminative frame-

work, the object motion using a number of frames is mod-

eled by a Temporal Conditional Random Field (TCRF). After

training the TCRF and finding weights corresponding to each

potential function, we use the TCRF to predict the new state

of the target.
2. TRACKING

Taycher et al. [1] proposed human tracking based on a condi-

tional random field, with an L1 similarity space correspond-

ing as the potential functions. In this work different poses

were considered as states for tracking within a sequence of

images, where the number of states was defined ahead of time.

CRFs are also applied to image-sequence segmentation

[2, 3], where the random fields are modeled using spatial and

temporal dependencies.

Sigal et al. [4] used two-layer spatio-temporal models for

component-based detection and tracking of objects in video

sequences. Each object or component of an object is consid-

ered as a node of a graphical model at a given time. Moreover,

the graph edges correspond to learned spatial and temporal

constraints. Following this work, Ablavsky et al. [5] pro-

posed a layered graphical model for partially occluded object

tracking. A layered image-plane represents motion around a

known object that is associated with a pre-computed graphi-

cal model.
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All of the approaches discussed above suffer from com-

plexity and required pre-processing stages. Furthermore these

works were proposed for specific purposes and are not asso-

ciated with any prediction phase. In this paper we aim to

model the object motion in a simple and general way. It is

assumed that there is no sudden change in position and mo-

tion direction of the object along the consecutive frames. Ini-

tially, the motion conditional distribution P (Y |M) is mod-

eled by TCRF using the first two frames where measurements

are shown as M and prediction states as Y . Then, the object

position in the next frame can be predicted given the current

frame. We empirically observed that, often, the prediction

has no error when no change occurs in the object motion. Af-

ter the prediction stage a heuristic procedure searches around

the predicted coordinates to find the best matching sub-image

with a target template extracted using the two last training

frames. If the TCRF prediction for time t has significant dif-

ference with matching coordinates of the template, the CRF

is again trained with frames t+ 1 and t.

3. TEMPORAL CONDITIONAL RANDOM FIELDS
The idea of a conditional random field was first proposed by

Lafferty et al. [6]. It is a discriminative model that relaxes

the conditional independence assumption of generative mod-

els by directly estimating the conditional probability of labels

given measurements. The general form of a CRF is

P (Y |M) = (1)

1

Z(M)

∏
c∈C

∏
φc∈c exp

{∑
k λφc,kfφc,k(Yφc ,M)

}

where Z(M) is a constant normalization with respect to all

possible values of Y , C represents the set of clique templates,

fφc(Yφc ,M) is a potential function with respect to clique φc,

and finally λ shows the weight of each potential function.

Early CRFs use only spatial relations among random

fields, thus, Sutton et al. [7] proposed dynamic conditional

random fields (DCRF) to capture spatial relations between

neighbor nodes and temporal relations across temporally-

separated frames [8]. The DCRF introduces two new terms

to the original definition of CRF, a single temporal feature

function and an interaction temporal feature function.

In this paper, we study temporal conditional random fields

with feature functions describing temporal relations between

successive frames. In other words, our objective is to inves-

tigate the adding of prediction to the CRF, in which case one

frame is considered as a measurement of the next frame. For

modeling object motion, a simple temporal relation among

frames is sufficient, since we assume that the tracked object

is rigid. Eq.(2) shows the formal definition of our TCRF:

P (Yt+1|mt) =
1

Z(mt)
exp

{ ∑

yi∈Yt+1

{∑

k1

λk1
fk1

(yt+1,i,mt)

+
∑

k2

λk2fk2(yt+1,i, yt+1,Ni ,mt)
}}

(2)

where yt+1,j labels any pixel j within frame t + 1 as fore-

ground or background and mt is an observation of frame t.
In our temporal CRF we use two kinds of feature functions

f(yt+1,i,mt) and f(yt+1,i, yt+1,Ni
,mt) as single potential

and interaction potential functions, respectively, and Ni is the

set of neighbors for each node i.
Our goal is to study the effect of different potential func-

tions in modeling object motion in the context of CRFs. Be-

cause tracking problems are inherently temporal, clearly our

potential functions need to be based on motion features with

some sort of temporal dependency. The following sections

summarize the functions that we propose to use.

3.1. Optical Flow
Optical flow is an approximation of motion based upon local

derivatives in a given sequence of images [9]. Optical flow

estimates pixel movement adjacent images, based on the in-

tensity invariance assumption that

I(x, y, t) = I((x+ δx), (y + δy), (t+ δt)) (3)

which can be rewritten, after a first-order Taylor expansion

and simplification, as

(Ix, Iy).(vx, vy) = −It (4)

where (Ix, Iy) is the spatial intensity gradient and vx and vy
are motion velocities in the x and y directions.

3.2. Line Field
Line fields were first introduced by Geman and Geman [10],

as a hidden binary model indicating the presence (state = 1)

or absence (state = 0) of edges. Here, we define a slightly

different form of the original definition in [10]:

F (mt, Yt+1,Ni
, i) =

∑

j∈Ni

1− δ(mt(i)− yt+1(j)) (5)

where δ(a) is Kronecker delta function. We also exploit the

duality of feature functions in order to reduce the similarity

between the value function of each configuration in temporal

relation neighbors and to reinforce feature functions be more

discriminative. The dual of (5) is:

F (mt,N̄i
, Yt+1, i) =

∑

j∈N̄i

1− δ(yt+1(i)−mt(j)) (6)

where Ni and N̄i are the neighborhood sets of i in fields Y
and m, respectively.

3.3. Ising
The Ising model [10] is a classic, very simple binary prior

model. The CRF does not require a prior model, however the

local, four-neighbor Ising model can be adapted and modified

into potential form as

F (mt, Yt+1,Ni
, i) =

∑

j∈Ni

mt(i)× yt+1(j) (7)

with the following dual:

F (mt,N̄i
, Yt+1, i) =

∑

j∈N̄i

mt(j)× yt+1(i) (8)
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3.4. Consistency Measure
Yin [8] introduced a feature function to evaluate the consis-

tency between two adjacent hidden nodes, such that when a

pixel has state si at some time t, this state value is likely to

spread to its neighbors in the following time steps:

F (mt, Yt+1,Ni
, i) =

∑

j∈Ni

δ(mt(i)− yt+1(j))

F (mt,N̄i
, Yt+1, i) =

∑

j∈N̄i

δ(mt(j)− yt+1(i)) (9)

4. TRACKING MODEL

We recognize that object tracking has a vast literature, span-

ning many years. The purpose of this paper is not to contest

that literature, or to make claims of superior tracking, rather

we wish to study the effectiveness and the potential of CRF

methods in tracking, specifically in prediction. Our goal is to

study several candidate potential functions, and to assess their

ability in the context of CRF prediction.

Given a temporal potential function, we can create a tem-

poral CRF to predict object position in future frames. After

predicting the position of an object, a heuristic method (such

as template matching) searches around the predicted position

to find the coordinates of the best matched candidate. If these

predicted and matched coordinates are very different, then the

CRF training is repeated using two last frames.

4.1. MAP Predicion
After training the TCRF, we use maximum a posteriori

(MAP) estimation to predict the object position at time t+ 1.

Since the TCRF models the object motion, prediction is ac-

complished by evaluating the probability of the next target

location around its previous position at time t. The object’s

predicted position in frame t + 1 is obtained from an ensem-

ble of frames, such that we create a set of synthetic images

with a synthesized target obeying a variety of dynamics, with

the probability of each image assessed by the TCRF. The

predicted target position (in frame t + 1) is found from that

sample with maximum probability.

4.2. Position Update
A separate update step serves to validate the TCRF. A tem-

plate matching procedure is used to obtain the exact posi-

tion of the object in each scene, where the template is con-

structed using the measurement and label frames that are used

for training the TCRF. Experiments show that the predicted

positions and template matching coordinates are often equiv-

alent. If these two coordinates are different, the TCRF must

be re-trained with last two frames.

5. RESULTS AND DISCUSSION
Our proposed method is evaluated by both real and simulated

data. For the simulated motion, a black disk was moved on a

Figure 1: A sample of the maneuvering target used to test the proposed

method. The object motion starts at top right of the domain and the dashed

lines show the center of the object at different time slots.

Figure 2: Simulated Motion: The moving object (black circle) has a trajec-

tory over 35 frames, starting at the top-right of the image. The blue dashed

line shows the true trajectory, the red circles the measurements, and the green

stars the TCRF predicted state.

white background, rendered into frames having a 120× 160
resolution. The simulated motion dynamics are plotted in Fig-

ure 1, with the corresponding TCRF prediction in Figure 2.

The results show that the TCRF prediction error is zero when

the object velocity does not change; if the motion dynamics

change we have prediction error at the time that the change

occurs.

A separate comparison of the TCRF is shown in Table 1,

where the prediction of the TCRF is compared with that of

the Kalman filter. The strength of the TCRF becomes clear,

in that a simple potential function is able to produce credi-

ble predictions, with an error much smaller than that of the

Kalman filter. We examined quite a large number of feature

functions. Our experiments show that not all selected features

improve TCRF prediction. For this paper, only a combination

of the reported features was utilized. The reader is reminded

that since the DCRF does not posses any prediction step, we

can not compare our proposed method with DCRF.

Finally, we examined our algorithm on real data, selected

from standard datasets. The two selected sequences are

shown in Figure 3 and Figure 4. In each evaluated sequence

we show the prediction ability of the TCRF (top) followed by

heuristic template-matching update step (bottom). In both ex-

periments, it can be seen that the prediction of the TCRF and

resulting heuristic update are very nearly equivalent, meaning

that the TCRF alone accomplishes the bulk of the tracking
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Table 1: MSE of prediction for Kalman filter and our TCRF

method examined with two simulated motions.
Simulation No. TCRF Kalman Filter

Motion 1 0.8977 135.0659

Motion 2 0.6739 1.5021

Figure 3: Real Sequence 1: the results from 3, 10 and

15 are shown. Top row: the TCRF prediction. Bottom

row: further template matching, on the basis of the pre-

diction in the top row. The prediction step alone accom-

plishes quite credible tracking, meaning that the template-

matching update contributes relatively little to the track-

ing accuracy. (The examined dataset was obtained from

www.cse.ohio-state.edu/otcbvs-bench)

task. It is worth noting the robustness of the TCRF, in the

sense that the first dataset has background changes over time

(cloud shadow) and object appearance changes in the second

dataset.

6. CONCLUSIONS
In this paper we proposed a novel modification to CRFs to

make them suitable for visual object tracking. The object

motion is estimated using two consecutive frames (training

phase) and the trained model is utilized to predict the posi-

tion of the object in the following frames. The novelty of

the our algorithm stems from the fact that it exploits temporal

features, such as optical flow, in the CRF potential functions.

This paper demonstrated the feasibility of temporal process-

ing with CRFs, and specifically that the proposed TCRF is

able to give credible tracking predictions, an important prop-

erty has not yet been studied for the CRFs.
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