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ABSTRACT 

In this paper we investigate the correlation structure of the 
wavelet Coefficients corresponding to random fields. The 
context of this work is the study of Bayesian approaches 
to wavelet shrinkage for the purposes of image denoising. 
This paper concentrates on both within-scale and across- 
scale statistical dependencies for a variety of wavelets and 
random fields, with examples provided for both 1-D and 
2-D signals. The results show the whitening effect of the 
wavelet transform to be quite clear - even for particular 
highly correlated spatial processes the within-scale correla- 
tion decays cxponentially fast, however the correlation be- 
tween scales is surprisingly substantial, even for separations 
several scales apart. Our goal, initiated in this paper, is the 
development of an efficient random field model, describing 
these statistical correlations, and the demonstration of its ef- 
fectiveness in the context of Bayesian wavelet shrinkage for 
signal and image denoising. 

1. INTRODUCTION 

The past few years have seen considerable activity in mul- 
tiresolution wavelet analysis [ l ,  21 of signals and images, 
in particular methods of wavelet thresholding and shrink- 
age [3 ,  41 for the removal of additive noise from corrupted 
signals. However, virtually all Bayesian shrinkage methods 
model the wavelet coefficients as independent and identi- 
cally distributed random variables. 

The models based on independent wavelet coefficients 
are sensibly motivated by the fact that the wavelet trans- 
form is an effective whitener for a wide variety of random 
processes [4]. However the wavelet transform is not a per- 
fect whitener - that is, the wavelet coefficients normally do 
possess some degree of correlation both between and across 
scales. This fact is not unknown in the literature, as es- 
tablished by Flandrin [5 ]  for fractional Brownian motion, 
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and recent work in wavelet denoising with a hidden Markov 
model [ 2 ] ,  however, by and large the correlations have been 
ignored. 

In this paper, we propose to challenge the assumption of 
the wavelet transform as an always perfect whitening opera- 
tion. To make our prior model of wavelet coefficients more 
accurate and to improve significantly its performance both 
in peak SNR and visual metrics it is necessary to design a 
statistical model for the correlation structure of wavelet co- 
efficients of real images. 

In order to propose a strategy for a modified wavelet de- 
noising algorithm which incorporates some understanding 
of wavelet correlations we need to determine two things: 

I .  The wavelet coefficient correlations; 

2 .  A method for taking advantage of the known correla- 

This paper concentrates on the former issue, a straightfor- 
ward Monte-Carlo study of the within-scale and across-scale 
statistical dependencies of the wavelet coefficients for a va- 
riety of wavelets and random fields. The results show that 
the within-scale correlation decays very fast, whereas the 
inter-scale correlation remains substantial, even for separa- 
tions of several scales apart. 

tions. 

2. WAVELET THRESHOLDING 

An image is often degraded by noise in different stages, 
such as in discretization or transmission. The goal of clean- 
ing a noisy image is to remove the corrupting noise while 
retaining the important features of the image. Tradition- 
ally, image denoising is achieved by classical linear Wiener 
filtering [6]. However, a tremendous interest has recently 
emerged on using nonlinear wavelet thresholding or shrink- 
age techniques [3,  4, 71 for removing additive white Gaus- 
sian noise from the wavelet transform of a corrupted image. 

Let {y(m, n)) represent the measurement of the origi- 
nal signal z(m,  n) corrupted by additive noise ~ ( m ,  n) 

m, n = 1, - - . , N y(m, n) = z(m,  n) + ~ ( m ,  n), (1) 
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Fig. 1. Image denoising through wavelet thresholding. 
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where the { ~ ( m ,  n)} are iid normal N ( 0 ,  02) and indepen- 
dent of { z (m ,  n)). The goal of denoising is to remove 
the noise from the observations {y(m, n)) by computing 
estimates { 2 (m, n)} which satisfy aesthetic psychovisual 
and/or mean square error (MSE) criteria, 

Let Y = W y  denote the matrix of wavelet coefficients 
of { y ( m ,  n)} ,  where W stands for the 2-D dyadic orthog- 
onal wavelet transform process and y denotes the observed 
image y in a long vector format. Similarly, the 2-D wavelet 
transform of X = Wx and V = WE satisfy (1) as 

Y j = X j + v j ,  l < j < J  (3) 

where J indicates the coarsest resolution level. The orthog- 
onality of the wavelet transform implies that 
{y(i,k)},l 5 .i,k 5 N/2j arealsoiidnormal N ( 0 , a 2 ) .  

The wavelet thresholding operation T filters each detail 
wavelet coefficient {Yj (i, k)} with a predefined threshold X 
to obtain { X i  (i, k ) } .  

X j  = T(Y,, A),  Er = W-'[kj]  (4) 

Eq. (4) indicates that the inverse wavelet transform W-' 
is then applied to the denoised estimate to achieve Er. The 
complete process of wavelet thresholding is shown in Fig. 1. 

While the idea of thresholding is simple and effective, 
finding a good threshold is not an easy task. Due to the 
mathematical property of the wavelet transform, i.e. com- 
pact support, only a few large wavelet coefficients really 
contain information about the original image while a large 
number of small coefficients are attributed to the noise [6]. 
This reasonable assumption has motivated various wavelet 
thresholding algorithms which are classified into three ma- 
jor categories: 

0 Universal thresholding [6] 

0 Data-adaptive thresholding [4] 

0 Bayesian thresholding [2, 31 

In the statistical Bayesian literature, many works have 
been concentrated on deriving the best threshold based on 
the prior models such as Laplacian [4] and mixture of Gaus- 
sian [3]. These prior models assume the wavelet coeffi- 
cients are independent and identically distributed. They are 

Fig. 2. Three-level wavelet decomposition of a synthesized 
image. White pixels indicate large magnitude coefficients, 
and black pixels carry small magnitude. 

thus completely determined by the marginal statistics of the 
residual coefficients. On the other hand, Crouse et. al [2] 
model the coefficients as a Hidden Markov model by con- 
sidering only two hidden states for each coefficients. Por- 
tilla and Simoncelli [7] also model the coefficients by cap- 
turing their dependencies within-scale and with the parent 
scale, only. 

The major reason for independent models is based on 
the localization property, i.e., the parsimonious represen- 
tation, plus the interpretation of the wavelet transform as 
a decorrelator that attempts to make each wavelet coeffi- 
cient statistically independent of all others. However, the 
wavelet transform cannot completely decorrelate real val- 
ued signals and a residual dependency structure usually re- 
mains between the coefficients. Although the family of wavelet 
bases constitutes an orthogonal system, there is a priori no 
reason for the wavelet coefficients to be uncorrelated [5]. 

In this work, we assume the wavelet coefficients, in gen- 
eral, to be correlated in both space and scale. This fact was 
observed for non-stationary Brownian motion processes [5] 
and for real images [2,7]. It would be, however, interesting 
to evaluate how strong this correlation is, or even to point 
out special cases for which decorrelation could be achieved. 

3. JOINT STATISTICAL MODEL OF WAVELET 
COEFFICIENTS 

3.1. Joint Histogram of Wavelet Coefficients 

Our experiments with wavelet coefficients of a group of 
real images revealed that along the cascade of several scales 
there exists a persistency [2] between the magnitude of par- 
ent and child coefficients. This important property implies 
the statistical dependencies along the different resolutions. 
This fact becomes more obvious from Fig. 2 which shows 
the magnitudes of coefficients in a three-level separable wavelet 
decomposition of a synthesized image. Note that large- 
magnitude coefficients tend to occur near each other within 
subbands, and also occur at the same relative spatial loca- 
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Fig. 3. Joint histograms of wavelet coefficients: 
(a) Histogram of coefficients d j , k  and d j . k + l ;  
(b) Histogram of coefficients d j , k  and dj ,k+5;  

(c) Histogram of coefficients d j , k  and dj+l,e; 
(d) Histogram of coefficients d j , k  and dj+3,p. 

tions in subbands at adjacent scales, and orientations. 
To make this fact more explicit, Fig, 3 shows joint his- 

tograms of four different pairs of coefficients. Here, ergod- 
icity and stationarity are assumed, i.e., 

in order to consider the joint histogram of pairs of coeffi- 
cients. Each plot is obtained by counting the number of cor- 
responding pairs of coefficients whose magnitude belongs 
to a predefined interval. The plots (a) and (b) in Fig. 3 il- 
lustrate that at a particular resolution j the adjacent coef- 
ficients d j , k  and d,,k+l produce joint histograms that ex- 
hibit the correlation between coefficients, whereas the far 
away coefficients, e.g. d,,k and d j , k + S ,  produce a nearly 
circular histogram. Fig. 3(c,d) shows the coefficients joint 
histograms in the nearby scales d j , k  and d j + l , k  are clearly 
extended along the axes, which indicates strong dependency 
along the resolutions. Indeed, these plots show the underly- 
ing joint density of the wavelet coefficients. 

The preliminary observations of the joint statistics of the 
wavelet coefficients have revealed that as the further dis- 
tance coefficients (either in spatial positions or across dif- 
ferent scales) are chosen, the dependencies become weaker. 
The conditional dependency given a square of neighbor- 
hood within or across scales suggests investigating the Markov 
random field models of wavelet coefficients. 

3.2. Monte-Carlo Study of Wavelet Correlation Coeffi- 
cients 

First, we present the results of the straightforward Monte- 
Carlo analysis, where the finest-scale image is a sample of 
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Fig. 4. The within scale length of correlation for 2-D Haar 
wavelet coefficients when the spatial correlation length is: 
(a) 1 pixel, (b) 10 pixels, (c) 30 pixels. 

a parameterized random field. With the associated ensem- 
ble of wavelet-transformed images we were able, albeit only 
approximately, to highlight some of the significant residual 
correlations between coefficients within and across scales. 

A. Random field generation 
The statistical study of the wavelet coefficients was started 

by generating an ensemble of parameterized random fields 
with a spatially stationary assumption. Because of the sta- 
tionary property, the correlation structure of any N x N ran- 
dom field takes the same form as Eq. 5. Therefore the au- 
tocorrelation structure of the zero-mean random field would 
be 

The covariance matrix is toroidally stationary, i.e., a circu- 
lant matrix, which can be diagonalized by the 2-D FFT. A 
Gaussian random field X is then synthesized as 

Where sqr t ( . )  and . are element-by-element operations and 
Q is a matrix of unit variance Gaussian random variables 
with the same size as C 

B. Correlation coeficients 
A variety of sample path ensembles of both small and 

large correlation lengths were transformed into the wavelet 
domain. For each case the within-scale sample correlation 
coefficients were calculated for a local spatial neighborhood 
at the same orientation, i.e., horizontal, vertical or diago- 
nal direction. For convenience in understanding the results, 
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Fig. 5. The within scale length of correlation for 4-tap 
Daubechies wavelet coefficients when spatial correlation 
length is: (a) 1 pixel, (b) 10 pixels, (c) 30 pixels. 

the resulting variances are normalized, so that the inter- 
coefficient relationships are measured as correlation coef- 
ficient 

(9) 

where -1 5 p 5 1. Indeed, IpJ = 1 shows the coefficients 
are completely correlated and the value p = 0 indicates to- 
tally decorrelation between two wavelet coefficients. Fig. 4 
summarizes the extent of the correlation for a typical coef- 
ficient of the Haar wavelet basis in the horizontal, vertical 
or diagonal channels. It also shows the change of the cor- 
relation length, from Fig. 4(a) to Fig. 4(c), at a typical res- 
olution when the spatial correlation length increases. This 
simulation was repeated for the commonly used Daubechies 
wavelets. Fig. 5 illustrates the within-scale correlation length 
for the 4-tap Daubechies wavelet, albeit less significant than 
the results achieved for the Haar wavelet. 

Fig. 6 plots the within scale correlation length in the 
Haar wavelet domain for all three orientations vs. the length 
of the spatial correlation. Although the whitening effect of 
the wavelet transform is quite clear for the within scale diag- 
onal coefficients, the coefficients in the horizontal and ver- 
tical directions exhibit a residual relation along their orien- 
tation which grows, albeit very slowly, with increasing cor- 
relation length in the spatial domain. It worths mentioning 
here, that the decorrelation illustrated for diagonal coeffi- 
cients is a direct consequence of generated random fields 
considered in our simulations. If diagonal correlation in the 
spatial domain increases, it is expected that the diagonally 
aligned wavelet coefficients also exhibit strong dependency. 
Fig. 7 also highlights the correlations between pairs of hor- 
izontally aligned coefficients at four different resolutions. 
The increasing trend of correlation between the coefficients 
up to five pixels apart is quite obvious in this plot. 
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Fig. 6. A plot of within-scale correlation length for Haar 
wavelet coefficients in all directions vs. spatial correlation 
length. 

4. DISCUSSIONS 

Our primary research goal is the development of a multiscale- 
based Bayesian denoising algorithm, which explicitly takes 
into account some prior model, as illustrated in Figures 3 
to 5, of the true correlation structure exhibited by the wavelet 
coefficients. 

In this paper we have described the joint statistics for en- 
semble of generated random fields in the wavelet domain. 
The empirical wavelet coefficient correlations illustrate a 
substantially more powerful joint model than the traditional 
Generalized Gaussian models proposed based on the inde- 
pendent assumption for the coefficients. As is demonstrated 
by these figures, there is a clear locality to the correlation 
structure, and so we propose to model the wavelet coef- 
ficients not as independent, but as governed by a Markov 
random field. We have started to investigate the use of mul- 
tiscale MRF models to capture the conditional density based 
on a neighborhood of wavelet coefficients. Since correla- 
tions are present both within and across scales, a random 
field model for the wavelet coefficients with itself need to 
be hierarchical. The development of Markov random field 
methods on hierarchies has some past literature, but is still 
relatively new. 
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