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Abstract Visual inspection based on closed circuit televi-
sion surveys is used widely in North America to assess
the condition of underground pipes. Although the human
eye is extremely effective at recognition and classification,
it is not suitable for assessing pipe defects in thousand of
miles of pipeline because of fatigue, subjectivity, and cost. In
this paper, simple, robust, and efficient image segmentation
and classification algorithm for the automated analysis of
scanned underground pipe images is presented. The experi-
mental results demonstrate that the proposed algorithm can
precisely segment and classify pipe cracks, holes, laterals,
joints and collapse surface from underground pipe images.

Keywords Segmentation · Morphology · Classification ·
Inspection

1 Introduction

Closed Circuit Television (CCTV) surveys are used widely
in North America to assess the structural integrity of un-
derground pipes [1]. Underground pipe scanning technology
has advanced considerably during the past decade and cur-
rent pipe scanners are capable of attaining very high resolu-
tions; typical scanned images of underground concrete pipes
are shown in Fig. 1. However, despite substantial progress in
the technology, the basic means of analysis are unchanged:
the video images in surveys are examined visually on a TV
monitor and classified into grades according to the degrees
of damage. Although the human eye is extremely effective
at recognition and classification, it is not suitable for assess-
ing pipe defects in thousand of miles of pipeline images due
to fatigue and subjectivity, motivating the development of
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automated inspection systems which can assess pipe condi-
tions to ensure accuracy, efficiency and economy. We have
acquired a data set consisting of thousands of images of un-
derground pipes from 15 major cities in North America.

The goal of our research is to develop an automated
method which, given a pipe image, classifies each pixel in
the image into one of five classes: background, crack, hole,
joint, and lateral. In principle, after the image has been seg-
mented into its classes, each class could be separated further
into extents of distress (e.g., minor crack, major crack, mul-
tiple crack, etc.). In general, this image segmentation prob-
lem is difficult to automate because the differences between
classes such as joints and cracks, although obvious to a hu-
man, can be very difficult to encode mathematically at the
pixel level.

A large number of segmentation algorithms have been
proposed in the literature [2, 3]. However, the literature on
segmentation of defects in concrete structures is very lim-
ited. Maser [4] algorithm recommends a histogram thresh-
olding approach, however it is not clear how the value of the
threshold is originally determined. More recently, Chen et
al. [5] applied a segmentation method, introduced by Kittler
et al. [6], to pavement images, although the effectiveness of
the method is unclear. An approach to the recognition of seg-
mented pavement distress images is studied by Mohajeri and
Manning [7], using directional filters to classify the objects.
An entropy-based approach [8], which finds a bilevel thresh-
old to maximize entropy criteria, did not improve pavement–
surface images. The cluster classification process, which as-
signs a particular object to one of many groups by compar-
ing typical features from each group such as a minimum
distance, reported a significant amount of error [9].

In general, segmentation techniques take one of two
possible approaches [10]: edge detection and thresholding.
An edge is defined as the boundary between two regions
with relatively distinct gray-scale characteristics, thus edge-
detection techniques attempt to segment objects by outlin-
ing their boundaries. Thresholding, on the other hand, seeks
to distinguish objects on the basis of their absolute intensi-
ties, for example separating a darker object from a lighter
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Fig. 1 Typical images of underground concrete pipe showing different objects

background, in which case a good way of segmenting might
be to determine a threshold T, such all pixels with an inten-
sity above T are classified as being part of the background.

The literature on segmentation based on gray-level in-
tensity is inapplicable in our context since cracks, holes,
joints, and laterals all appear as comparably dark objects
on a lighter background, as shown in Fig. 1. Rather, it is
the geometry, rather than the intensity, which distinguishes
these objects. Mathematical morphology [11] provides an
approach to the segmenting of digital images that is based on
shape. Appropriately used, morphological operations tend
to simplify images, preserving their essential shape char-
acteristics and eliminating irrelevancies. On the basis of a
formal mathematical framework, mathematical morphology
is a fast, robust method that analyzes the geometry of an
image directly in the spatial domain. In this paper, we de-
velop a morphological algorithm to distinguish cracks, ran-
dom background patterning, pipe joints, and pipe laterals,
based on geometric criteria.

2 Image pre-processing

Since we intend to apply morphological operators, we re-
quire a grey-scale image, in which each pixel xg is a scalar
xg = wT xc, where w is some linear projection. In the case

of a two class discrimination problem, such as distinguish-
ing between cracks and pipe background, Fisher’s linear dis-
criminant [12] can be used to determine the axis, w, onto
which vector color data can be projected which preserves as
much of the discriminating capability of the color informa-
tion as possible. The resulting “Fisher linear discriminant”
maximizes the separability of the two classes. Crack images
representative of those likely to be encountered during scan-
ning of underground pipes can be used to learn the Fisher
discriminant axis using the following algorithm.

1. Calculate mean color in class k = 1, 2

mk = 1

nk

∑

x∈χk

x (1)

2. Determine the within class scatter matrices, k = 1, 2

Sk =
∑

x∈χk

(x − mk)(x − mk)
T (2)

3. Find the Fisher discriminant vector

w = S−1
w (m1 − m2) where Sw = S1 + S2 (3)
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Fig. 2 Fisher’s discriminant analysis can be used to enhance the contrast between the pipe background and cracks. In gray-scale image (b) there
is little contrast between the background and cracks. The Histogram equalization (c) enhances the contrast of image by transforming the values
in an intensity image. The HIS and YIQ color models can also be used to provide additional contrast (d) and (e), respectively; although the pipe
image shows high contrast, the crack boundary is blurred and the image is noisy. Projection onto a Fisher axis (f) enhances the contrast and
enables better extraction of the crack features

Pipe images representative of those likely to be encoun-
tered during object recognition and classification can be
used to learn the Fisher discriminant axis. Figure 2 shows
that Fisher’s discriminant analysis can be used to enhance
the contrast between the pipe background and cracks. In
the gray-scale image (Fig. 2b) there is little contrast be-
tween the background and cracks. The HIS and YIQ color
models can also be used to provide additional contrast as
shown in Fig. 2c and d, respectively; although the pipe
image shows high contrast, the crack boundary is blurred
and the image is noisy. The projection onto the Fisher axis

(Fig. 2e) enhances the contrast and enables better extraction
of the crack features.

3 Morphological segmentation and classification

Mathematical morphology [11] is a widely used methodol-
ogy for image analysis. Morphology operates on image re-
gions (e.g., the light and dark portions of an image), where
the regions can be reshaped (i.e., morphed) in various ways
under the control of a structuring element. The structuring
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element can be thought of as a parameter to the morpholog-
ical operation. The most fundamental operations are mor-
phological dilation and erosion. On the basis of these, two
compound operations, opening and closing, can be defined.

In underground pipe image segmentation, the following
classes are of general interest: the pipe joints (horizontal
dark straight lines), pipe laterals (circular dark objects), sur-
face cracks (irregularly shaped thin dark lines), and the pipe
background (anywhere from a smooth to a highly patterned
surface). The goal of our research is to segment pipe joints,
laterals, and cracks based on the geometric differences be-
tween them, specifically based on morphology.

The premise of the morphological approach is to dis-
tinguish objects on the basis of shape. With the canonical
shapes being thin and wide (joints), large and round (later-
als), and small and irregular (cracks, holes), the key idea of
this paper is to use two parameterized structuring elements:
a circular structuring element (SC) of radius r (Fig. 3), and
a horizontal structuring element (SH) of varying length l and
fixed width w = 3 (Fig. 4). As the effect of an opening
is to remove those features, which are small relative to the
structuring element S while preserving features greater than
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Fig. 3 Circular structuring element, SC
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Fig. 4 Horizontal structuring element, SH

S, the choice of these two elements (circular and rectangu-
lar) is clearly designed to mimic the geometry of the laterals
and joints to be extracted. The key idea, then, is that we can
isolate objects of a given “size” by performing a series of
opening operations, on the basis of structuring elements of
varying size. The “size” of any object can then is defined
mathematically as the largest structuring element (measured
here in terms of radius r or length l) that can be inscribed
in the object. Note that, aside from the general shape of the
structuring element, we do not make any specific assumption
regarding the shape of the object being measured, therefore
this definition of size is quite general and will prove effective
in measuring sizes of cracks, irregular laterals, etc., which
otherwise resist specific characterization. The segmentation
algorithm consists of a sequence of processing steps, illus-
trated in Fig. 5.

3.1 Morphological opening and thresholding

We performed a morphological opening operation on the un-
derground pipe image with increasing sizes of the circular
and horizontal structuring elements. Clearly, as the size of
the structuring element is increased features of increasing
size are removed by the morphological opening. For exam-
ple, a structuring element of intermediate size will preserve
laterals and a collapsed pipe, but will remove cracks and
small holes.

Gray Scale Image

Opening Operations  by Circular 

Structurin g Element 

Opening Opera tions by Horizontal 

Structurin g Element

Feature Extracti on and 

Classification of Objects

Binary Image with 

Segmented Objects  

Binary Image after G lobal Thresholding 

by  Otsu’s Technique 

Original Color  Image

Gray-Scale Conversion

Fig. 5 Overview of the proposed morphological segmentation
approach
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Fig. 6 This figure illustrates joint/lateral discrimination using different structuring element: a horizontal element (top) of length 285 mm, con-
sistent with the geometry of a perfect joint, as opposed to a circular element (bottom) of radius 57 mm, tuned to the shape of a perfect lateral

Figure 6b shows two examples of the results of gray-
scale opening. Although some of the original features in 6a
are still clearly present, the output of the morphology is con-
fusing and not easily interpreted. What we really want is an
additional processing step, a thresholding function t( ), clas-
sifying each pixel as

t (p(x, y)) =





0, pixel is geometrically consistent with

structuring element

1, pixel is not consistent






(4)

That is, the set of all “dark” (zero valued) pixels will
identify the object(s) in the image which are compatible
(i.e., bigger than) the selected structuring element. Ideally,
we would like a single global threshold “T” such that

t (p(x, y)) =
{

0, p(x, y) ≤ T

1, p(x, y) ≥ T

}
(5)

Unfortunately, it is difficult in general to find a single
threshold that is best for an arbitrary gray-scale image. Many
approaches have been proposed to find an optimal threshold
level for certain image cases [13, 14]. We propose to use
Otsu’s method [14] because it is non-parametric, unsuper-
vised, and automatic. A discriminant criterion is computed
for each possible threshold “T”; the optimal threshold is that
gray-level where this measure is maximized. The results of
Otsu’s method are illustrated in Fig. 6c: the segmented joint
and lateral stand out very clearly. With a methodology in

place for understanding the results of a given morphology,
we can now study the choice of structuring elements that will
be most effective in classifying each pipe object. Figures 7
and 8 plot the average area of objects in each class (crack,
hole, joint, etc.) based on circular and horizontal structuring
elements, respectively. That is, if we let |t (I )| represent the
number of dark pixels in I after binary thresholding, then
Figs. 7 and 8 actually plot the normalized areas

aL(r) = |t (I ◦ SC(r))|
|t (IL)| (6)

aJ(l) = |t (I ◦ SL(l))|
|t (IJ)| (7)

where IL, IJ are idealized, prototype images of the perfect
lateral and joint. Note that all of the curves are monotoni-
cally decreasing,

|I ◦ SC(r1)| ≥ |I ◦ SC(r2)| , for all r1 ≤ r2 (8)

since a larger structuring element cannot leave more pixels
in place than a smaller element. Although the plots in Figs. 7
and 8 are interesting and intuitive, in order to accurately iso-
late and classify different objects in an image we have to
take into account the variations in the area of each class.
That is, holes, laterals, etc., all come in a range of sizes, and
this range must be taken into account in selecting the appro-
priate structuring element to serve as a classifier.

We can compute or assess the ability of any structuring
element to discriminate between any two classes (e.g., crack
and hole) by examining the Di, j degree to which two classes
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Fig. 7 Morphological analysis based on a circular structuring element: the average area of each class is plotted as a function of the structuring
element diameter; area is normalized to that of an ideal lateral. Clearly, as the diameter is increased, classes with thin, elongated geometries (e.g.,
cracks, joints) are quickly eliminated
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Fig. 8 Morphological analysis based on a horizontal structuring element: the average area of each class is plotted as a function of the structuring
element length; area is normalized to that of an ideal joint. Clearly, as the length is increased, classes with small geometries (e.g., cracks, holes)
are quickly eliminated

are separated relative to their standard deviations:

Di, j (r) = |µi (r) − µ j (r)|2
σ 2

i (r) + σ 2
j (r)

(9)

µi (r) = 〈aL(r)〉i (10)

σ 2
i (r) = 〈

aL(r)2〉
i − 〈aL(r)〉2

i (11)

where 〈 〉i represents an average taken over images of class i.
A parallel definition exists for discriminant Di, j (l) based on
a horizontal structuring element. The value of r for which
Di, j (r) is maximized represents the optimal feature by which
to discriminate between classes i and j on the basis of the

area (i.e., the number of pixels) remaining after a morpho-
logical opening by element SC(r). By plotting Di , j (r) and
Di , j (l) for different classes i, j we can deduce the set of fea-
tures to be extracted for classification. Figures 9 and 10 plot
DL,i (r) and DJ,i (l) respectively, indicating peaks to identify
these features.

The average morphological operations execution times
for horizontal and circular structuring elements are 25 and
32 ms, respectively. All experiments are conducted on Intel
Pentium Dual Processor 3.2 with 800 MHz running Matlab
software.

The proposed morphological segmentation and classifi-
cation algorithm will work very well for underground pipe
images containing one class of object only in a given frame.
In the real world problem, underground pipe images may
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Fig. 9 Lateral discrimination: we can distinguish between laterals and other classes by opening with a circular structuring element, as in Fig. 6.
We can plot the ability to discriminate “D” between an ideal lateral and any other class as the difference in response (normalized to standard
error) to the structuring element
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Fig. 10 Joint discrimination: we can distinguish between joints and other classes by opening with a horizontal structuring element, as in Fig. 7.
We can plot the ability to discriminate “D” between an ideal joint and any other class as the difference in response (normalized to standard error)
to the structuring element

contain cluttered objects as shown in Figs. 11a and 12a.
For segmentation and classification of such images, we sug-
gest a slightly different approach. The new approach is
based on taking the difference of image after each mor-
phological opening and thresholding operations. Figures 11c
and 12c illustrate the procedure of taking difference of im-
age after successive opening operations to segment vari-
ous objects present in the image. Once the objects are seg-
mented, then feature extraction and classification can be
done.

3.2 Feature extraction and classification

The sizes of structuring elements for the classification of
objects in images can be determined from the discriminant
method described in the previous section. For example, if

an image is opened with SC(2) – the circular structuring ele-
ment of radius 2 mm – then small objects (e.g., random back-
ground patterning) are removed. By repeating this process
for different sizes of elements SC(7), SC(23), SC(57), we can
group objects by size, into their classes.

Specifically, we propose to keep as our features

aL(r) = |t (I ◦ SC(r))| , r ∈ {2, 7, 23, 57} (12)

where the features are selected to discriminate between suc-
cessive class pairs clean-pipe, cracks, holes-joints, laterals,
and pipe-collapse. A further set of four features is chosen
based on rectangular elements:

aJ(l) = |t (I ◦ SH(l))| , l ∈ {2, 47, 121, 155} (13)
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Fig. 11 Classification results by using circular structuring element: the original images are opened by structuring element of different sizes as
outlined in Table 1, and finally binary images are obtained by global thresholding technique. a Gray-scale image; b thresholded images after
opening operations; c classified images

selected to discriminate between successive pairs of clean-
pipe, cracks-holes, laterals, joints, and pipe-collapse. The
classifier is then made up of pairwise discriminants, such as

Class 1

aL(l)〉〈τ(l)

Class 2

(14)

where the threshold τ(l) is based on criterion discriminating
between two classes. To maximize Di, j (r) – the separation
of the class means normalized to the standard deviations—
the optimum threshold in discriminating classes i and j is the
weighted mean

τi, j (r) = σi (r)µi (r) + σ j (r)µi (r)

σi (r) + σ j (r)
, (15)

thus

τ0,1(r) = σcrack(r)µclean(r) + σclean(r)µcrack(r)

σcrack(r) + σclean(r)
(16)

The deduced thresholds are listed in Tables 1 and 2 The
threshold values shown in Tables 1 and 2 are selected on
the basis of the pixel count area of the classified class. For
example, segmented collapse pipe image will have the pixel
area count of more than 1700 as compared to the segmented
crack or hole in the pipe image, which will have pixel area
count of less than 1700.
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Fig. 12 Classification results by using horizontal structuring element: the original images are opened by structuring element of different sizes
as outlined in Table 2, and finally binary images are obtained by global thresholding technique. a Gray-scale image; b thresholded images after
opening operations; c classified images

4 Experimental results

We have applied the proposed approaches to 825 under-
ground concrete sewer pipe images. These images are ob-
tained from SSET inspection of flush cleaned concrete sewer

Table 1 Appropriate threshold selected for classification of various objects in the underground pipe images by circular structuring element

Threshold values for classification by circular structuring element

No. AR(2) AR(7) AR(23) AR(57) Classified class

1 <150 Clean pipe
2 >150 <1000 Crack
3 >150 >1000 <1700 Hole/joint
4 >150 >1000 >1700 <3150 Lateral
5 >150 >1000 >1700 >3150 Collapse pipe

pipes, eighteen inches in diameter, from various munici-
palities in North America. In this study, 500 of the images
are used for training the classifiers and the remaining 325
are used to test the classifiers. The training and testing
sets are randomly selected from each class of defects in the
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Table 2 Appropriate threshold selected for classification of various objects in the underground pipe images by horizontal structuring element

Threshold values for classification by horizontal structuring element

No. AL(2) AL(47) AL(121) AL(155) Classified class

1 <150 Clean pipe
2 >150 <1000 Crack/hole
3 >150 >1000 <1700 Lateral
4 >150 >1000 >1700 <3150 Collapse pipe
5 >150 >1000 >1700 >3150 Joint

Table 3 Confusion matrix using the circular structuring element as classifier (Row-Morphological classifier results and Column-Expert labeling)

Clean pipe Crack Hole/joint Laterals Pipe collapse
Class 1 2 3 4 5 Total Percent correct

1 50 0 0 0 0 50 100
2 0 85 15 0 0 100 85
3 0 0 95 5 0 100 95
4 0 0 1 47 2 50 94
5 0 0 0 4 21 25 84

Total 50 85 111 56 23 325
Overall percentage correct classification 91.7

Table 4 Confusion matrix using the horizontal structuring element as classifier (Row-Morphological classifier results and Column-Expert
labeling)

Clean pipe Crack/hole Lateral Pipe collapse Joints
Class 1 2 3 4 5 Total Percent correct

1 49 0 0 0 1 50 98
2 0 141 0 0 9 150 94
3 0 0 48 0 2 50 96
4 0 0 0 24 1 25 96
5 0 0 0 0 50 50 100

Total 49 141 48 24 63 325
Overall percentage correct classification 96

825 image database. We may evaluate the performance of
proposed segmentation and classification methods by con-
fusion matrix indicating whether the classification tendency
is reasonable or not. On the confusion matrix, if we have
a normal distributed matrix with few outliers, centered on
the diagonal, the classification can be said to be reasonable.
Tables 3 and 4 show the agreement and disagreement
between the expert classification and the proposed classifier
in terms of confusion matrix for the testing set of 325 im-
ages by using circular and horizontal structuring elements,
respectively.

We have also evaluated the performance of our color
image pre-processing methodologies as discussed earlier in

Table 5 Evaluation of image pre-processing methodologies

Morphological classifier results Morphological classifier results
by circular structuring element by horizontal structuring element

Processing methods (% Correct) (% Correct)

Gray-scale 77.2 82.6
Histogram equalization 65.1 62.7
HIS color model 69.8 72.2
YIQ color model 59.4 61.6
Fisher Discriminant 91.7 96

Sect. 2. The results are presented in Table 5. As shown in
Table 5, the morphological classification results obtained by
using Fisher Discriminant pre-processing method are much
better than other standard image pre-processing methods
(Gray-scale, Histogram equalization, HIS color model, and
YIQ color model).

5 Conclusions

We have demonstrated a morphological approach to seg-
ment and classify images of underground concrete pipes.
We assume that an image consists of five types of objects,
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namely the crack, hole, joints, laterals and surface collapse,
and we estimate their sizes on the basis of the concept of
gray-scale morphological opening operations. With this size
information, we provide a precise removal and classification
of various objects present in an underground pipe image. Ex-
perimental results demonstrate that the proposed approach
is effective for dealing with the underground pipe images
with varying background pattern and non-uniform illumi-
nation. Once the laterals, joints and holes are segmented
and classified from the image then the crack filters, as de-
scribed in [15], can be used for precise detection of crack
features.
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