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Abstract. We study a low complexity, motion-compensated recursive
video denoising scheme in the wavelet domain. To preserve weak
spatial textures, both spatial and temporal filtering are carried out in
the wavelet domain. We justify the proposed approach by evaluating
the relative increase of mean squared error (MSE) with respect to
the optimal estimator. Various multiresolution motion estimation
schemes are studied to allow us to exploit the high temporal corre-
lation present in most video. Kalman filtering is then applied to the
wavelet coefficients along motion trajectories to efficiently suppress noise.

We show experimentally that our wavelet-based recursive denoising
compares favorably with other wavelet-based denoising approaches.
Specifically, we can preserve both strong and weak spatial details while
removing noise.

Keywords: Video denoising, motion compensation, wavelet transform,
Kalman filtering.

1 Introduction

With the maturity of digital video capturing devices and broadband transmission
networks, numerous applications have been emerging. These include teleconfer-
encing, remote surveillance, multimedia services and digital television, to name
a few. However, the video signal is almost always corrupted by noise from the
capturing devices or during transmission due to random thermal or other elec-
tronic noises. Usually, noise reduction can considerably improve visual quality
and benefit the subsequent processing tasks, such as video compression.

There are many existing video denoising approaches in the spatial domain
[T21419], which can roughly be divided into two classes:

Temporal-only: A temporal-only approach utilizes only the temporal correla-
tions, neglecting spatial information. Since video signals are strongly corre-
lated along motion trajectories, motion estimation/compensation is normally
employed. In those cases where motion estimation is not accurate, motion
detection may be used to avoid blurring. These techniques can preserve spa-
tial details well, but the resulting images usually still contain removable noise
since spatial correlations are neglected.
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Spatio-temporal: More sophisticated methods exploit both spatial and tem-
poral correlations, such as simple adaptive weighted local averaging [3], 5-D
order-statistic algorithms [2], 8-D Kalman filtering [4] and 3-D Markov ran-
dom models [5].

Although there have been many papers addressing the application of wavelet
transforms to image denoising, comparatively few have addressed wavelet-based
video denoising. Roosmalen et. al. [6] proposed video denoising by threshold-
ing the coefficients of a specific 3-D wavelet representation and Selesnick et. al.
[7] found an efficient 3-D orientation-selective wavelet transform, 3-D complex
wavelet transforms, which avoided the time-consuming motion estimation pro-
cess. The main drawbacks of the 3-D wavelet transforms include a long time
latency and the inability to adapt to fast motions.

In most video processing applications a long latency is unacceptable, so re-
cursive approaches are widely employed. Pizurica et. al. [§] proposed sequential
2-D spatial and I-D temporal denoising, in which they first do sophisticated
wavelet-based image denoising for each frame and then recursive temporal aver-
aging. However, 2-D spatial filtering tends to introduce artifacts and to remove
weak details along with the noise.

In this paper, we propose wavelet-domain recursive video denoising. We use
a 2-D spatial wavelet, and filter recursively to preserve low latency. But un-
like [8], our temporal filtering works on the wavelet coefficients themselves (in-
stead of on the spatial pixels). In such a way we minimize spatial blurring to
preserve the weak spatial details in still areas. The key to processing directly
in the wavelet domain is an efficient shift-invariant transform, allowing spatial
motion to be meaningfully reflected in the wavelet coefficients. We study sev-
eral schemes for robust wavelet-domain motion estimation and then proceed to
motion-compensated temporal filtering in the wavelet domain using an adaptive
Kalman filter.

2 Wavelet-Based Video Denoising

In standard wavelet-based image denoising [9] the 2-D wavelet transform is
used to get a compact representation. Thus it would seem natural to select
3-D wavelets for video denoising [6]7]. However, there are compelling reasons
to choose a 2-D spatial wavelet transform with recursive temporal filtering for
video denoising:

1. There is a clear asymmetry between the spatial and temporal axes, in terms
of correlation and resolution. A recursive approach is naturally suited to this
asymmetry, whereas a 3-D wavelet is not.

2. Recursive filtering can significantly reduce time delay and memory require-
ments.

3. For autoregressive models the optimal estimator can be achieved recursively.

4. Motion information can be efficiently exploited with recursive filtering.
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A. Problem Formulation
The video denoising problem can be modeled as follows: given video mea-
surements y with spatial indices 7, j and temporal index k

y(iaj> k) - SC(i,j, k) +’U(i,j, k)a Za] = 1323 "';Na k= 1a27"'7M (1)

corrupted by i.i.d Gaussian noise v, we need to estimate the true image sequence
x. Define x(k), y(k) and v(k) to be the column-stacked images at time k, then
() becomes

y(k) =x(k)+v(k), k=1,2,... M (2)

We propose to do denoising in the wavelet domain; let H be the 2-D wavelet
transform matrix, then () is transformed as

Hy(k) = Hx(k) + Hv(k) (3)
Denoting wavelet coefficient vector as y g (k), @) is rewritten as
yu (k) = xu (k) + vu (k) (4)

Since we seek a recursive temporal filter we assert an autoregressive form for the
signal model

x(k+1) = Ax(k) + Bw(k + 1) (5)
thus
XH(kJ+1):AH-XH(k)+BH-WH(k+1) (6)

where Ay = HAH™', By = HBH~'. It should be noted the wavelet domain
state model still has an autoregressive form. Therefore, optimal filtering can be
achieved in a recursive way in the wavelet domain.

B. An Example: Recursive Image Filtering in the Spatial
and Wavelet Domains

As a quick proof of principle, we can denoise 2-D images using a recursive
1-D wavelet procedure, analogous to denoising 3-D video using 2-D wavelets.
We do not propose this as a superior approach to image denoising, rather as a
measure of promise in the video case. We use an autoregressive image model and
do 1-D wavelet transform on each column, followed by recursive filtering column
by column. We assess estimator performance in the sense of relative increase of
MSE:

MSE — MSEoptimal
MSEoptimal

(7)

OMSE =

where M SFE,ptimar is the MSE of the optimal Kalman filter.
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Table 1. Percentage increase dassg in estimation error relative to the optimal estima-
tor. Estimating wavelet coefficients independently introduces only slight error.

SNR(dB) 10 0 —10

omse (spatial) [1.88% 14.10% 18.65%
dnmse (wavelet)| 0.1% 1.09% 6.51%

Table 2. Comparison of PSNR (in dB) of the proposed method and 3-D complex
DWT for sequence Paris.

PSNR (Original) 28.2 22.1 18.6 16.1

PSNR (Proposed method) | 37 30 27 26
PSNR (3-D complex DWT [7])| 35 28 24 23

We use a common image model

2(i,§) = por(i — 1,) + pnz(i.j — 1) — pupnz(i— 1,4 — 1) + w(i,5), pn = pu = 0.95
(8)

which is a causal MRF model and can be converted to a vector autoregressive
model [10].

The optimal recursive filtering requires the joint processing of entire columns.
As this would be completely impractical in the video case, for reasons of compu-
tational complexity we recursively filter the wavelet coefficients independently,
ignoring inter-coefficient relationships. As shown in Table 1, scalar processing
in the wavelet domain leads to only very moderate increases in MSE relative to
the optimum, whereas this is not at all the case in the spatial domain. It should
be noted that the wavelet-based scalar processor is comparable to the optimal
filter when SNR > 0dB, a condition satisfied in many practical applications.

3 The Denoising System

The success of 1-D wavelet image denoising motivates the extension to the video
case. There are three crucial aspects: (1) the choice of 2-D wavelet transform,
(2) wavelet-domain motion estimation, and (3) the recursive filtering applied to
the motion-compensated wavelet coefficients. These steps are detailed below.

2-D wavelet transform: We apply a 2-D wavelet transform to each
frame, rather than a 3-D transform for the whole image sequence, and the
coefficients are then filtered recursively.

A huge number of wavelet transforms have been developed (e.g., orthogonal /
non-orthogonal, real-valued /complex-valued, decimated / redundant). For image
denoising problems, three criteria are desired:

1. Shift invariance: to suppress frequency aliasing and related artifacts;

2. Direction selectivity: of importance when image has dominant oriented
features;

3. Low complexity.
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The 2-D dual-tree complex wavelet proposed by Kingbury [7] satisfies these
requirements very well. Unfortunately it is not convenient for motion estimation
since the motion information is related to the coefficient phase, which is a
non-linear function of translation. Alternatively, specially designed 2-D wavelet
transforms (e.g., curvelet, contourlet) are sensitive to feature directions but are
too complex for computation. In this paper, we choose to use an over-complete
wavelet representation proposed by Mallat et. al. [I1]. Although this wavelet
representation does not have very good directional selectivity (e.g., it mixes
45-degree and —45-degree features), several researchers have used it for natural
image denoising with impressive results (e.g.[q]).

Multiresolution Motion Estimation (MRME): We utilize the well-
used block matching (BM) technique for motion estimation. Compared with
other motion estimation approaches, such as optical flow and pixel-recursive
methods, block matching is straightforward to compute and less sensitive to
noise.

Single-resolution block matching approaches have been studied extensively
[1] and are successfully used in modern video compression standards. Multi-
resolution block matching (MRBM) was first proposed by Zhang et. al. [I] for
wavelet-based video coding, and recent developments can be found in [12]. The
basic idea of standard MRBM is to start block matching at the coarsest level,
using this estimate as a prediction for the next finer scale. Oddly, a critically
decimated wavelet was used [12], which implies that the motion is not a constant
function of scale. A much more sensible choice of wavelet, used in this paper, is
the overcomplete transform which is shift-invariant, leading to consistent motion
as a function of scale, except in the vicinity of motion boundaries. Clearly, this
high inter-scale relationship of motion should be exploited to improve accuracy.
We developed a sequence of four approaches of increasing accuracy:

1. The standard MRME scheme [12].
2. Block matching separately on each level, combined by median filtering.
3. Joint block matching simultaneously at all levels:

Let €!(i, v) denote the displaced frame difference (DFD) at position i of level
I with displacement v). Then the total DFD over all levels is defined as

e(i,v) = Zel(i,v) (9)

=1

and the displacement field v(i) = [v, (i), vy(1)] is found by minimizing €(i, v).
4. Block matching with smoothness constraint:

The above schemes did not assert any spatial smoothness or correlation in

the motion vectors, which we expect in real-world sequences. This is of

considerable importance when the additive noise levels are large, leading

to irregular estimated motion vectors. Therefore, we introduce an additional
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(c¢) Standard (d) Smoothness-constrained

Fig. 1. Compare MRBM results of the standard approach (c) and the proposed one (d).
The standard does not exploit the smoothness property (a prior knowledge) of motion
fields. Therefore, it performs poorly in the presence of noise. For sharp comparison,
our proposed approach give much better results.

smoothness constraint and perform BM by solving the optimization problem

argmin { 3" y-e(i,v)+(|v$(i)—% vo(i+m)|
i meNy (i)
@) -2 3 vl m) (10)

neNy (i)

where Nj is the neighborhood set of the element i and M is the number of
elements in Np. v = [vq, Vg, ...,VN}T is the motion field to be estimated.
controls the tradeoff between €(i, v) (see (@) and smoothness.

Experimentally, we have found Approach 4 to be the most robust to noise
and yield reasonable motion estimates. In the simulation results given below we
will use this latter approach for motion estimation.

Wavelet coefficient filtering: The key to our approach is to support
both spatial and temporal filtering, as appropriate. Specifically, when the
motion information is unambiguous, i.e.,

|z (m,n, k) — p(xg(m,n, k—1))] <2\/§O'UH, (11)

where p(-) is the motion compensation function, we restrict the filtering to be
purely temporal to avoid any spatial blurring. However, when motion estimates
are poor, i.e.,
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Fig. 2. Denoised images : (a) & (c) the proposed method (b) & (d) 3-D complex DWT.
ovy = 10 for Paris, 0., = 20 for MissAmerica.

jwrr(m,n k) = pe(m,n, k — 1)) > 2V20,,,, (12)

we apply wavelet shrinkage to exploit spatial correlation. Although this intro-
duces some blurring, wavelet shrinkage is state-of-the-art in static image denois-
ing.

4 Experimental Results

We have tested all four of the MRBM approaches listed in the previous section.
Due to space limit we show only the results of standard MRBM (hierarchical
prediction-updating approach) and our proposed smoothness-constrained
motion estimation in Fig.[I It is clear that MRBM becomes much less sensitive
to noise if the smoothness constraint is applied, so we propose to use this
method for the subsequent video denoising tests.

To show denoising performance of the proposed method we have experi-
mented on several standard video sequences (e.g., Paris, Salesman, MissAmer-
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ica). We compare the denoising results of the proposed method with those from
the 3-D complex DWT [7] (http://taco.poly.edu/WaveletSoftware/), in terms of
Peak SNR (PSNR) in Table 2 and our method gives a consistent improvement
in performance. Several denoised images are shown in Fig. B, where a careful ex-
amination of spatial textures (in the face and table top) shows the supperiority
of our proposed approach. In particular, there are fewer aliasing artifacts, and
stationary objects (such as the bookshelf) are denoised much more crispy.
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