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ABSTRACT 
Sea surface temperature (SST) can be estimated from 
remotely-sensed images. Because of the sparsity of the 
available observation it is ideal to do estimation using 
dynamic methods (such as Kalman filtering). To model 
dynamics of SST accurately we need to know motion of 
sea current. 

The traditional video motion estimation problem is 
straightforward, in some ways, because there are so few 
constraints. That is, the motion vectors are pretty much 
arbitrary, and successive image frames are densely 
pixellated, have the same number of pixels, with similar 
noise statistics. However there are many motion 
estimation problems, particularly in the area of remote 
sensing, which do not share these properties. 
In this paper we investigate the problem of determining 
the motion field of the sea surface, based on infrared 
measurements of surface temperature. This problem is 
challenging in that only a subset of the whole domain is 
measured at each point in time; specifically, only a few 
stripes are imaged. In addition, because of clouds, the 
measured subset varies from time to time; in fact, some 
days absolutely nothing is imaged. The quality (level of 
noise) can also vary from pixel to pixel. 
Our research will be based on the following assumptions 
and observations: the motion field should be smooth and 
ideally divergence-free, i.e. the motion field is close to 
time-stationary. Based on these assumptions we choose 
to use optical flow method for this motion problem. We 
handle difticulty of data sparcity by pre-estimation to get 
a dense field. Pre-estimation can be refined by 
integrating this motion estimation result. Preliminary 
experiment result will be shown in the end. 

I .  INTRODUCTION 
To track the changes of sea surface temperature (SST) 
we need to dynamically estimate temperature field from 
remotely-sensed images. For this purpose accurate model 
of sea dynamics is required. 

There are two main factors to concern in modelling 
SST: temperature diffusion and current motion. 
Diffusion model 
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Figure 1 - Sparse Field of SST 

has been studied extensively and has already been 
employed in a Kalman filtering scheme ([2]). However 
because of some difficulties, especially data sparcity, 
motion estimation for SST is still an open problem. Here 
data sparcity means that usually only a subset of the 
whole domain is measured at each point time in time; 
specifically, only a few stripes are imaged. In addition, 
because of clouds, the measured subset varies from time 
to time; in fact, some dayes absolutely nothing is 
imaged. The quality ( level of noise) can also vary from 
time to time. 

In this paper we discuss a motion estimation method 
for SST field. Based on the assumption that this motion 
field is smooth and close to be time-stationary we 
propose using optical flow algorithm with smoothness 
constraint for motion estimation. To handle sparcity 
problem we first use diffusion-based Kalman filter to get 
a dense estimate of the field. Then we apply optical flow 
method to this dense field. 

2. DYNAMIC ESTIMATION OF SST FILED 

The dynamic evolution of SST is assumed to obey the 
linear discrete dynamic model given by: 

x(t + 1) = Ax(t)  + w(t) (1) 
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where w(r) - N(O,Q)  is an uncorrelated Gaussian noise 
process, with zero mean, diagonal covariance Q. 

The ATSR measurements are linearly related to SST: 

where u( r )  - N ( O , R )  is an uncorrelated Gaussian noise 
process, with zero mean, diagonal covariance R . 
For physical systems giver by models ( l j ,  (2 ) ,  the 
Kalman filter can be used to obtain filtered estimates for 
the state x ( t )  at time t based on the data available up 
to time t . 

The need to generate and invert enormous matrices 
makes the brute-force implementation of the Kalman 
filter for ATSR images computationally infeasible for the 
indefinite future. A multiscale method is employed in 
( [ 2 ] )  to overcome this difficulty. 

3. OPTICAL FLOW WITH SMOOTHNESS 
CONSTRAINT 

Based on the observation that motion in SST field is 
smooth and slow we choose optical flow method with 
smoothness constraint to determine this motion field. 
If we use f ( x , , x , ; t )  to represent image sequences we 
can write optical flow equation (OFE) as follows, 

where ,,, = dX, / dt and ,,, = dx, 1 dr' (VI ,v, is the expected 
. .  

motion vector. 
There are two unknowns in Om. We can not 

find unique solution of ( v,, v, ) from it. This is usually 

called aperture problem. 
Several different methods have been proposed to 

handle aperture problem. Here we use Horn and 
Schunck's method([ l]).. 

Horn and Schunck seek a motion field that satisfies 
OFE with the minimum pixel-to-pixel variation among 
the flow vectors. Specifically they minimize a weighted 
sum of the error in OFE and a measure of the pixel-to- 
pixel variation of the velocity field 

min arg J (E: (v, , v , )  + (v, , vI ))d.,dx, (4) 
(11 .12 )  1 

to estimate the velocity vector at each point (xl,x2), 
where A denotes the continuous image support. The 
parameter controls the strength of the smoothness 
constraint. In the above expression 

af af af = -v  + -v, + - 
0' ax, ax> . at 

E 

Horn and Schunck used Gauss-Seidel iteration to solve 
the above minimization problem. Readers are referred to 
[I for the detail of their algorithm. Here we just list the 
necessary formula for iteration. 
Motion vector ,v,) is determined by 

where - and - are local averages of estimated velocity. 
VI V? 

(9) 
- 1  v, =-(y(i-I, j , k )+ t . , ( i ,  j + l , k ) + y ( i ,  j - l , k ) + v , ( i + l ,  j , k ) )  

6 

12 
+- I [ v,(i -1, j -1 ,  k )  +v, (i-I, j +I, k )  +y(i  +I, j + 1, k)+v, (i + 1, j -1, k ) ]  

(1 9 
1 

V: =- 6 -  {v.(i-1, j , k )+v , ( i ,  J + l , k ) + v : ( i , j - l ,  k ) + v : ( i - t l , ; , k ) )  

1 +- 12 (v, (i -1, j -1 ,  k )  +v2(i -1, j +1, k)+v.( i+l ,  j +I, k )  +v. (i +l, j -1, k ) ]  

Partial derivatives are estimated by 

( 1  a - af =- I { f ( i ,  j+l ,k ) - f ( i ,  j , k )+f ( i+l ,  j + , , k ) - f ( i + l ,  j , k )  
ax. 4 

+ f ( i ,  j +1, k + l ) - f ( i ,  j ,  k +l)+f(i+l, j +1, k +I) - f ( i  +1, j ,  k +1)) 

(1 3 4 f 1  
at 4 
- = - ( f ( i ,  j . k  +l)-f(i, j ,  k)+f( i+l ,  j , k  +1) - f ( i+ l ,  j , k )  

+ f(i, j + I, k +l) - f ( i ,  j +I, k)+ f ( i  + I, j +I, k + 1) -f(i + 1, j +1, k ) ]  
Usually the initial values of (v, ,v,  j are chosen to be 

zero. And a is selected heuristically. 
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(a) Synthetic Random Field (b) Round Shift Version of (a) (c) Motion Field of (a) & (b) 

Figure 2 Motion Estimation for Ocean Synthetic Data 
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(b) Successive Frame of (a) (c) Motion Field of (a) & (b) (a) One SST Field 

Figure 3 Motion Estimation for Dense SST Estimates 

4. EXPERIMENT RESULTS 

In the following we show 2 experiment results, one for 
synthetic image data and the other for ATSR image. 
First we apply Horn and Schunck algorithm to a 
synthetic stationary random field with round shift 
(Fig.2(a) and Fig. 2(b)). This synthetic data is designed 
to simulate SST field with a correlation length of 30. 
Fig.2(a) is the original data. Fig.2(b) is the round shift 
version of Fig.2(a). The shift is one pixel. Fig.2(c) 
shows the result of motion estimation. For this 
experiment a is set to be 40. The iteration number is 50. 
Please note that to better estimation of partial derivatives 
we use a smoothing filter before estimation. 

Now we try to apply Horn and Schunck 
algotithm([ 11) to ATSR images. Because usually ATSR 
images are sparse we need filter them to get dense fields. 
Fig.3(a) and Fig.3(b) are 2 estimates of dense fields. We 
use the algorithm in [2] for these estimates. Fig.3(c) is 
the corresponding motion estimation results by Horn and 

Schunck algorithm. For this experiment a is set to be 
40. The iteration number is 50. The result is consistent 
to our visual observations. 

5. SUMMARY 

The method for determining optical flow with 
smoothness constraint by Horn and Schunck has been 
used to find motion in SST field. To handle data sparcity 
problem we employed Kalman filter(t2)) to get dense 
field. We hope to use the result of motion estimation to 
refine dynamic model of SST field and thus improve 
performance of Kalman filter. 

Noting that the estimate of dense field is noisy and 
this makes estimated motion field at some points 
unreliable we plan to use information from multiple 
frames to filter noise in motion estimate. This filter can 
be achieved in a dynamic form. 
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