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ABSTRACT

Two major challenges faced in active contours are poor cap-
ture range and high sensitivity towards noise. Recently, the
concept of tensor vector convolution (TVF) was introduced
and shown to be promising in handling these challenges.
However, in the presence of high noise levels, TVF may have
difficulty in converging to the desired object boundary, par-
ticularly if the distance is great between the initial contour
and the object boundary. To tackle this challenge, the concept
of a multi-scale tensor vector field (MTVF) active contour
is introduced to further reduce noise sensitivity. Comparing
the performance of MTVF with multi-scale gradient vector
field and multi-scale vector field convolution demonstrates
that MTVF is more resilient to high noise levels as well as
significantly reducing computation time.

Index Terms— Active Contour, Segmentation, Tensor
Vector Field, Multi-scale tensor vector field, multi-scale ac-
tive contour.

1. INTRODUCTION

First introduced by Kass et.al. [1], parametric active contours
are capable of handling irregular shapes by implicitly han-
dling object shapes using image and structural priors. Active
contours find their application in many computer vision prob-
lems such as medical image analysis, object tracking, and ob-
ject detection.

In active contours, an initial contour is initialized close
to the boundary of object, either automatically or manually.
The contour then changes iteratively via the minimization of
an energy function [1], designed in such a way that in the
ideal case the contour finds its minimum energy around the
boundary of the object. The energy function consists of two
components: i) the internal energy, and ii) the external energy.
The internal energy represents the prior model, penalizing the
contour from taking on an unexpected shape, while the ex-
ternal energy drives the contour towards the boundary of the
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Figure 1: Active contour results, green, for existing methods
on starfish image (PSNR 14.2), given the initialization shown
in red. We observe that high noise levels lead to a poor con-
vergence of the contour.

object.

Being an iterative optimization problem, the main chal-
lenge in selecting an energy function is to design it in such a
way that it

e converges to the object boundary even if the contour is
initialized far from the object boundary, i.e., improving
the capture range), and

e does not get stuck in local minima due to the presence
of noise or other artifacts, i.e., improving noise robust-
ness.

There have been several efforts to tackle these two challenges.
Several previous works were motivated by natural forces such
as gravitation [5] and electrostatics [6]. The gradient vector
field (GVF) [2] was proposed to improve capture range and to
handle concave object boundaries. The active contour driven
by GVF has indeed been found to handle capture range very
effectively and it is able to diffuse the field towards and into
concave boundaries, however the field is easily influenced by
noise.

The vector field convolution (VFC) [7] external field has
similar been shown to provide good results in term of noise
handling properties and capture range into concave surfaces.
Though more effective than GVF, VFC makes only limited
use of structural information of the object boundary, and
therefore has limited success in tackling noise. To address
this issue, the tensor vector field (TVF) [4] was introduced
and showed that a better utilization of structural information
can significantly improve noise robustness.
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Figure 2: Streamline of MTVF for a Gaussian noise contam-
inated starfish image (Fig. 6a) at 14.2 dB for three different
resolution levels (not shown in same proportion). In stream-
line images, a higher consistency and density of dark regions
towards the object boundary promises a better convergence of
the active contour.

Though these methods of active contours have improved
significantly over the traditional approaches, they still face
issues when dealing with high noise levels (Fig. 1). More
than a decade ago [8] had shown that multi-resolution active
contours can help reduce noise sensitivity, as well as improve
capture range and promote faster convergence. More recently,
[3] introduced the concept of multi-scale GVF (MGVF) for
effective mass segmentation in digital mammography. Moti-
vated by these works, in this paper we introduce the concept
of a multi-scale tensor vector field (MTVF) for active con-
tours in order to handle high noise levels. Experiments show
that MTVF can provide significant improvements in segmen-
tation accuracy when compared to multi-scale GVF (MGVF)
and multi-scale VFC (MVFC).

2. MULTI-SCALE TENSOR VECTOR FIELD

In MTVF, a given image [ is downsampled repeatedly for n
iterations based on some constant ratio (0 < r < 1) to con-
struct a set of downsampled images I,V. € Z[0,n] with I,
denoting the image at the lowest scale. A contour ¢ is then
initialized either manually or automatically for given image
Iy and rescaled by r" to construct a contour ¢, for I,,. Start-
ing at scale n, for a scale ¢, the initial contour c, is used to ob-
tain a final contour ¢, by minimizing the energy at that scale.
é, is rescaled by 1/r to obtain ¢,_1, which acts as the ini-
tial contour for scale ¢ — 1. This process is repeated until the
energy is minimized at scale I.

At scale ¢, the initial contour c, is expressed in terms of
its arc length s as ¢,(s) = (z(s),y(s))Vs € [0, 1], where z(s)
and y(s) are the co-ordinates of ¢ in terms of s. The energy
of ¢,, Eac,, is expressed as,

Eac, = /0 1[Ja“l-w(g(s)) +Eem(q(s))}ds (1)

where E;,; , is the internal energy and F.,; , is the external
energy of ¢,. The final contour ¢, is obtained by iteratively
minimizing Eyc,,. Eint,, is usually expressed in terms of first

and second derivatives of the contour to limit discontinuities
and sharp changes along c¢,, and can be expressed as

Eine = g(ale,(5)? + 8l (5)?)
where constants « and 3 control the relative weights of the
first and second derivative constraints. F. , forces ¢, to-
wards the object boundary, and as such capture range and
noise sensitivity are mainly decided by Ez,. Eac,, is min-
imized by iteratively solving Eq. (2), which is obtained by
differentiating Eq. (1) with respect to s,:

ac!(s) — B (s) — AEezt, =0 )
\—F,_/ ——
int,t —Lext,.

The F.,:, at each scale is computed via the tensor vector field
at ¢, and will be described in the next subsection.

2.1. Tensor Vector Field Computation

The tensor vector field at scale ¢ is obtained by convolving the
edge map f, with the adaptive kernel k, of size a x a, where
a decides the capture range of the contour. Let n(7,j) and
m(i, j) denote the unit vector towards the center of the kernel
and the magnitude of those vectors respectively at position
(4,4). m(i,j) is reduced as a function of the distance from
the center of the kernel. The function is given as m(i,j) =
(r+¢€)=¢, where r = /42 + 52, and ( is constant. The adap-
tive kernel k, is computed by utilizing the structural informa-
tion contained in the object boundary at a given scale ¢. A
weighted image tensor I', [9] can be expressed as,

(’“’) 3)

Oy,y

O-ZEI
Fb(x7y) = ( '

Oy,x

where o, 0y, are weighted variance and o, , is weighted
covariance of image gradients u, , and u,, , along x and y
respectively. A Gaussian kernel g of size k X « is used to
compute 0 ;, 0y y, and o, 4 as,

K/2 K/2

Toy = > D 9l Puali, f)uy(i, )

i=—k/2j=—K/2

where ¢(4, j) is an element of the g at (¢, j). 0, and oy,
are computed in similar way. T',(z,y) gives the variation of
gradients at position (z, y) for I,. Eigenvalue decomposition
is done on I', at each pixel. The major eigenvector v ,(z,y)
corresponding to maximum eigenvalue Ay ,(z,y) gives the
direction along maximum gradient at position (z, y).

During convolution of k, with edge-map f,, for each posi-
tion (7, j) of k on f, the kernel is modified based on Ay , (i, 7)
and v , (7, 7). Each kernel vector k(4, j) is adapted to change
its magnitude based on the projection length of v , (7, j) on
k(4,7), so k(4, j) remains unchanged if it is along v , (4, j),
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Figure 3: Intermediate convergence results for noisy starfish
image Fig. 2a for MGVF and MTVF after 5 iterations. Red
curve: initial contour, green curve: final contour.

and k(i, j) sets to zero if it is perpendicular to v (%, 7).
Hence, the adaptive kernel k, at each point (7, j) can be ex-
pressed as,

kL(Z3]) = |1’1(Z,_]) : V+(Z,j)|)\+(l,_])n(’l,]) (4)

Finally, the TVF at scale ¢ is obtained by normalizing the con-
volution result at each pixel.
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Figure 4: A comparison of the Fl-measure for six ac-
tive contour methods for a range of PSNR. The multi-scale
approaches outperform their single-scale counterparts, with
MTVF providing the best results for all cases.

3. RESULTS AND ANALYSIS

We have tested three methods — GVF, VFC, TVF — and
their multiscale counterparts MGVF, MVFC, and MTVF. For

(a) VF (b) MVFC (c) MTVF
Figure 5: Segmentation results for a maple leaf image con-

taminated with Gaussian noise at 12.3 dB.

each case, the same initial contour and same edge maps at
each resolution level ¢ were used. For the single scale meth-
ods we kept their parameters the same as suggested in their
original papers: Kernel size (¢ = 65), mask size (kx = 5),
¢ = 2.8, and the standard deviation of the Gaussian kernel
g = 1. n can effect results in following way,

e Very high n can make objects of interest very small.
For very small objects, in the absence of proper oppos-
ing external field inside object the active contour can
shrink significantly or even collapse to one point.

e At the coarsest level I,,, the contrast across object
boundary can reduce significantly and the presence of
high noise aggravates blurring problem.

Images are downsampled by r = 1/+/2 for two times n = 2
for 100 x 100 images, while n is kept 3 for 300 x 200 samples.
The single scale methods were performed for 30 iterations,
while 5 iterations was performed per scale for the multi-scale
methods. For MVFC and MTVFE, the kernel size (a) is set
to half of the lowest scale resolution and is kept constant for
all finer scales, as the initial contour reaches quite close to
the object boundary at coarser scales and after that we do not
require large a for high capture range.

For quantitative comparison purposes, the Fl-measure
[10] was computed, given its wide use in the active contour
literature. The measure ranges from 0 (worst) to 1 (best).
Gaussian noise at different standard deviations was added
to the test images to simulate high noise conditions. Tests
for each case have been repeated 20 times by independently
adding noise to obtain consistent results.

Figs. 1 compare results for the starfish image at 14.2 dB
for GVF, MGVFEF, and TVE. It can be observed that MTVF
(Fig. 3f) outperforms the other methods in terms of captur-
ing the irregular boundary of the starfish object. In particu-
lar, Fig. 2 shows the streamlines of MTVF at different scales,
which show how a point will move at a given scale under the
influence of the external field. A higher density and a con-
sistency towards the image boundaries ensures better conver-
gence of active contour. At the coarsest level I, the scale
at which we wish to obtain a large capture range, we can
see that MTVF remains un-influenced by noise; for the finest
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Figure 6: Sample test images. Figs. (a-d), approx. size 100 x
100. Figs. (e,f), approx. size 300 x 200.

Image PSNR F; measure

GVF | MGVH VEC | MVFC| TVF | MTVF
Starfish 10.6 0.82 0.92 | 0.89 095 | 090 | 0.96

Brain 10.8 0.90 096 | 0.93 096 | 095 | 0.97
Tank 12.9 0.93 0.96 | 0.93 096 | 094 | 0.97
Snail 12.9 0.92 0.94 | 0.92 095 | 092 | 0.96
Maple 13.3 0.89 0.95 | 0.89 096 | 090 | 0.98
B.fly 14.8 0.92 0.95 | 0.93 097 | 093 | 0.98

Table 1: A comparison of F; measure (mean of 20 repe-
titions) for sample test images (Fig. 6) contaminated with
Gaussian noise.

scale Iy, though there is significant noise influence, MTVF
remains consistent near the object boundaries, which helps
in minimizing distraction for the closely converged contour
from coarser scales. In Fig. 3 we have shown the final posi-
tion of the active contour at each level ¢ after 5 iterations for
MGVF and MVFEC.

In Fig. 4 the performance trend is shown for the compared
methods in terms of the Fl-measure as a function of noise
level. We can see, in all cases, that the multi-scale methods
provide improved segmentation accuracy compared to their
single-scale counterparts. It can also be observed that MTVF
outperforms and remains consistent for very high noise levels
compared to all other methods. Further, Table 1 shows that
MTVF noticeably outperforms all other tested methods for
each tested image at high noise levels, convincingly illustrat-
ing the noise robustness of the proposed MTVF method. An
example segmentation using the tested methods for the noisy
maple leaf image at 12.3 dB is shown in Fig. 5, again show-
ing that MTVF provides noticeably improved segmentation
results compared to the other methods.

4. CONCLUSION

In this paper we have presented a novel multi-scale TVF
(MTVF) based active contour. The results of MTVF have
been compared with multi-scale GVF (MGVF) and multi-
scale VFC (MVFC). Through experiments on standard sam-
ple images under high noise levels, it has been shown that
MTVF consistently performs better compared to other state-
of-the art counterparts. Future work involves investigating
alternative scale decomposition methods as well as incorpo-
rating additional image information into the external energy

function.
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