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Abstract

Human action recognition in video is important in many computer vision applications such as automated surveillance. Human
actions can be compactly encoded using a sparse set of local spatio-temporal salient features at different scales. The existing
bottom-up methods construct a single dictionary of action primitives from the joint features of all scales and hence, a single action
representation. This representation cannot fully exploit the complementary characteristics of the motions across different scales.
To address this problem, we introduce the concept of learning multiple dictionaries of action primitives at different resolutions and
consequently, multiple scale-specific representations for a given video sample. Using a decoupled fusion of multiple representa-
tions, we improved the human classification accuracy of realistic benchmark databases by about 5%, compared with the state-of-the
art methods.

Keywords: Human action recognition, scale-specific representation, concatenated representation, decoupled representation,
spatio-temporal salient features, separability test.

1. Introduction

Humans can easily detect and recognize the type of actions
performed in a video. However, the automatic recognition of
human actions [1, 2, 3, 4] is a challenge in computer vision with
growing applications for automated surveillance [5], content-
based video retrieval [6], video summarization [7], elderly
home monitoring for assisted living [8], and human-computer
interaction [5]. The confusion lies in people performing the
same action in noticeably different ways, leading to errors of
omission. Also, individuals performing different actions that
visually appear to be similar, lead to errors of commission.
In addition, illumination and view/scale changes create further
challenges to automatically interpret the scene.

The discriminative bottom-up approaches become more pop-
ular for human action recognition in an unconstrained setting
such as youtube videos. A widely used approach is a bag-
of-words (BOW) [1, 2, 4, 9] framework (Fig. 1(a)) in which
the video contents are sparsely localized by the salient changes
such as starts/stops of subactions. In this framework, the
salient features are first extracted at multiple spatial and tem-
poral scales. A single dictionary of action primitives (i.e., vi-
sual words) is then learnt from the joint features of all scales
from the training video samples. Conventionally, an action is
represented by a normalized histogram which shows the fre-
quency of the multi-scale features over the action primitives. Fi-
nally, a support vector machine (SVM) classifier with a match-
ing kernel such as linear, χ2, or (Gaussian) radial basis func-
tion [4, 9, 10, 11] categorizes an unknown action representation
according to its distance from the learnt decision boundaries

during training.
There are three main elements in a BOW framework which

directly affect the final action classification accuracy: (1) the
quality of salient features which capture the local video events,
(2) the descriptiveness of the dictionary of action primitives,
and consequently, the discriminant of the actions representa-
tions, and (3) the matching strategy and type of classifier. Dif-
ferent methods use different quality features with different clas-
sifiers [1, 2, 4, 9, 11], but most of these methods use a single
dictionary of action primitives and a single action representa-
tion which cannot fully exploit the complementary character-
istics of the motions at different scales and hence, this single
dictionary is not sufficiently robust to represent accurately all
different motion patterns. Moreover, the intrinsic scale from
which the salient features are extracted is a discriminant infor-
mation which cannot be encoded in the single action represen-
tation.

This paper proposes two alternatives to the single non scale-
specific dictionary learning and hence, the single action repre-
sentation to improve the discrimination of different actions and
consequently, to boost the classification accuracy. To address
the limitations of a single action representation, we propose to
learn a separate dictionary of action primitives for each individ-
ual scale and analyze the features of each scale independently.
A distinct representation of an action is then obtained using the
salient features extracted at a given spatio-temporal scale en-
coded by the corresponding dictionary. We will thus have mul-
tiple representations of the same action at different scales in
which the intrinsic scale of the features are accordingly encoded
by construction. There are two viable approaches to fuse these
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multiple representations: concatenated and decoupled. In the
former approach, the representations are concatenated in scale
order into one long vector. In a decoupled approach, the repre-
sentations are kept separate until their matching at the classifi-
cation stage according to their relative discriminant importance.
Note that the concatenation approach is a typical policy for
combining multiple vectors [12] and the decoupled approach
is our introduced fusion approach. Both approaches are viable
methods and we thus consider both for performance compari-
son in this paper.

The main contribution of this paper is the introduction of
multiple scale-specific dictionaries with a concatenated and de-
coupled action representations which benefit from the comple-
ment and discriminant motion information among multi-scale
salient features. This choice is motivated by the benefit of com-
plementary motions in multi-scale features and multiple dictio-
naries of action primitives, the redundancy in the dense scale
sampling [3], the elimination of heuristics in intrinsic features’
scale selection with inherent artifacts [11], and the usefulness
of multiresolution histograms [13]. We also introduce a quan-
titative measure to evaluate the separability of different action
representations and examine their performance comparison in a
common classification framework on different benchmark hu-
man action recognition datasets.

The rest of this paper is organized as follows. Section 2
reviews the use of local salient features for action representa-
tion in the existing methods. Section 3 explains the concept of
learning multiple dictionaries of action primitives and represen-
tations. Section 4 describes the experimental setting. Section 5
introduces the separability test to compare different represen-
tations. Section 6 presents the action classification accuracy
of using different representations on different datasets. Finally,
Section 7 concludes the paper.

2. Literature Review

Most of existing action recognition methods either use a
top-down approach or a bottom-up approach. A typical top-
down approach requires foreground segmentation by using a
shape or appearance model of a human for detection and track-
ing [14]. In a constrained environment, the top-down meth-
ods have shown promising results [5], but the segmentation
and tracking might not be reliable in the presence of back-
ground/camera motion, clutter, or occlusion in a real-world low
resolution videos. A typical bottom-up approach [1, 2, 4], on
the other hand, can learn a set of action primitives using lo-
cal spatio-temporal salient features without needing to perform
video segmentation and tracking. This paper focuses on this
second methods with a discriminative approach.

A local salient feature [1, 3, 4, 15] is centered at a spatio-
temporal key point whose saliency score such as corner-
ness [15] or motion energy [1, 4] is the highest in its local
spatio-temporal neighbors. The feature is described by the
shape and/or motion characteristic of the pixels in its distinct
volume and has shown to be more robust to clutter and occlu-
sion [5] when compared with the global features. Extracted at

multiple spatial and temporal scales, the local salient features
can provide a sparse and compact representation of the video
contents. In the next subsections, we first explain the existing
salient feature extraction methods and the standard represen-
tation of actions using these features. We then highlight the
limitations of the standard single action representations and in-
troduce our contributions addressing these limitations.

2.1. Spatio-temporal salient feature extraction

The existing local salient spatio-temporal features can be
categorized into two groups: structured-based and motion-
based [9, 16]. By treating a 2D+t image sequence as a 3D
object, structured-based feature detectors use the same type of
filters in the spatial and temporal directions to detect 3D salient
structural features such as 3D Harris corners [2] or 3D Hes-
sian ellipsoids [3]. Motion-based salient feature detectors such
as Cuboids [1] consider different spatial and temporal filtering
such as 2D spatial Gaussian and a temporal Gabor filtering. The
motion-based features have shown to be more effective than the
structured-base features for action recognition [16].

Recently, asymmetric temporal filters such as Poisson, trun-
cated exponential, and asymmetric sinc have shown to be
more effective than the widely used symmetric temporal fil-
ters such as Gaussian or Gabor for salient motion feature detec-
tion [4, 10, 17]. The features detected using a temporal asym-
metric, complex sinc filter has shown the highest robustness un-
der different geometric deformations and provided the highest
classification accuracy [4]. We refer to these features as asym-
metric motion features throughout this paper and use them in
our experiments.

2.2. Standard single action representation

In the standard BOW framework (Fig. 1(a)), the salient
features detected at multiple spatio-temporal scales from all
training samples are combined to learn a single action dictio-
nary/codebook. The elements of this dictionary are referred to
as primitives, attributes, prototypes, or visual words [1, 2, 3, 4,
9] and we will use the term action primitives. Conventionally,
for the dictionary learning using a standard vector quantization
(VQ) [18], the k-means algorithm groups the features with sim-
ilar motion and appearance patterns in the same cluster referred
to as a visual word. The features are assigned to the closest
cluster for encoding their corresponding video contents. An ac-
tion is then described by a single representation xS which is the
L1-normalized term frequency occurrence of the features in the
whole video over the dictionary of action primitives [1].

The standard single action representation provides a global
(without context) representation of the video contents. To add
some contextual information, the multi-channel SVM [11] uses
the relative spatial and temporal localization of the salient fea-
tures by representing the video contents at multiple channels
(i.e., different divisions of the video volume). In this approach,
different SVMs are trained using different combination of the
channels and the best channel combination is chosen by cross

2



validation or using a validation set. The multi-channel SVM ap-
proach still uses a single dictionary of action primitives. More-
over, the spatio-temporal extension of each channel, the num-
ber of channels, and the best channel selection approach are
heuristic, data dependent, and computationally expensive at the
training stage.

2.3. Limitations of a single action representation

There are two problems with learning a single dictionary of
action primitives from the joint features of multiple scales and
consequently, a single action representation. (1) The discrim-
ination power of the multi-scale features is lost due to early
stage fusion of the features before dictionary learning. In fact,
the salient features at different spatio-temporal scales encode
different motion characteristics and might have complemen-
tary and/or redundant motion information. More specifically,
the coarse-scale features are more descriptive of average mo-
tions while the fine-scale features capture the details of the mo-
tions. For example, actions such as running and jogging have a
similar average motion pattern with potentially similar coarse-
scale features. The fine-scale features should thus provide a
better discrimination of these motions (we provide more justi-
fications on this argument in Section 5). (2) The salient fea-
tures are extracted at different spatio-temporal scales. Encod-
ing the intrinsic scale of the features provides a key discrimi-
natory information to differentiate motion patterns of different
actions. This information cannot be incorporated in the single
non-scale-specific action representation. This is due to the fact
that the dictionary of action primitives is general for the fea-
tures of all scales (we provide two approaches in Section 3 to
encode this information).

2.4. Contributions

This paper has two main contributions to improve the repre-
sentation of different actions and consequently, their classifica-
tion.

1. To construct a more discriminant action representation and
to fully benefit from the complementary motion informa-
tion in the set of multi-scale features, we propose to learn
multiple dictionaries of action primitives across differ-
ent spatio-temporal scales and compute the corresponding
scale-specific representations of an action (Section 3.1).
As different dictionaries might provide a complementary
set of action primitives, using multiple action representa-
tions should improve the discrimination power of the ac-
tion representations and hence, the classification accuracy.

2. We propose two improved, novel action representations in
which the intrinsic scale of the features can be encoded in
the representation. We also introduce a specific method
to incorporate the discriminant level of different represen-
tations in the matching of a test video with the training
samples at the classification stage (Sections 3.2 and 3.3).

2.5. Research questions
We highlight three research questions regarding the evalua-

tion of the above-mentioned contributions and investigate the
discrimination of scale-specific representations and action clas-
sification in video.

1. How does the discrimination of action representations
across different scales changes? This question is addressed
using separability test in Section 5.1.

2. How does encoding multi-scale features using scale-
specific dictionaries affect discrimination of action repre-
sentation. Separability tests are performed in Section 5.2
to answer this question.

3. How successful are the multi scale-specific representations
for action classification? And also, between concatenated
and decoupled fusion approach, which one performs bet-
ter. This research question is examined in Section 6.

3. Multiple Scale-specific Action Representations

In this section, we explain our contributions in construct-
ing multiple scale-specific action representations from different
dictionaries of action primitives. We also introduce two differ-
ent strategies in fusion and matching of these representations.

3.1. Scale-specific dictionaries and representations
To fully exploit the multiresolution characteristics of the

motion patterns, we propose to learn a dictionary of action
primitives for each individual spatio-temporal scale and con-
sequently, describe an action at different scales (Fig. 1(b)
and 1(c)). In this treatment, the features at each specific scale
are processed independently and each scale-specific action rep-
resentation is constructed from the corresponding dictionary
and features of that specific scale. Our hypothesis is that
such multiple representations should incorporate more discrim-
inatory information in the action representation which conse-
quently should boost the classification accuracy. Having mul-
tiple representations of an action, an effective fusion strategy
helps the classifier to fully benefit from these complementary
representations.

In the next subsections, we introduce two different strategies
to fuse the multiple scale-specific action representations with
their corresponding scales: concatenation (Section 3.2) and de-
coupled (Section 3.3). Before proceeding further, note that the
standard representation is a single non-scale-specific represen-
tation. Our alternatives are a concatenated or decoupled multi
scale-specific representation. For conciseness, we will refer to
these representations as single, concatenated, and decoupled.

3.2. Concatenated action representation
Assume x1 denotes a representation of an action using the

finest-scale features and their corresponding dictionary of ac-
tion primitives. One way of fusing representations of an ac-
tion at different spatio-temporal scales i = {1, 2, ..., n} is to con-
catenated them in order to form the final representation vector
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(a) Standard approach: a single action representation

(b) New approach: a concatenated action representation

(c) New approach: a decoupled action representation

Figure 1: (a) In standard bottom-up discriminative action recognition [1, 2, 4, 9], the multi-scale features are combined to learn a single dictionary of action primitives
and a single action representation (xS ). To fully exploit the multiresolution characteristics of these features at different spatio-temporal scales, we propose to learn
a separate dictionary and hence, a separate action representation xi at each scale i = {1, 2, .., n}. We can then describe an action as (b) concatenated representation
(xC = [x1, ..., xn]) in which all the representations are concatenated in one large vector or as (c) decoupled representation (xD = {x1, ..., xn}) which keeps all the
representations in a set to incorporate the order of importance of different representations in the matching of a test video with the training samples.
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xC = [x1, x2, ..., xn] to be fed to a classifier (Fig. 1(b)). For the
case in which the action representations of each individual scale
is a d-dimensional vector and we have n spatio-temporal scales,
the concatenated multiple representation is a (n∗d)-dimensional
vector. In a general case, the length of the dictionary at each
scale might be different and hence, the action representations
might have different dimensions.

The concatenation of the action representations in one feature
vector to be fed into a classifier might be problematic due to the
curse of dimensionality [19, 20, 21, 12] with increase in the
dimensionality of each representation or the number of spatio-
temporal scales. In fact, when the dimensionality increases, the
volume of the space increases so fast that all representations
appear to be sparse which prevents the classifier from being ef-
ficient. This problem is more severe when the number of train-
ing samples is small relative to the dimensionality of the action
representation [22].

In the next subsection, we propose matching of the decou-
pled action representation to overcome on the curse of dimen-
sionality problem and also incorporate the prior information on
discriminant level of the representations at different scales.

3.3. Decoupled action representation
Concatenation has two main problems. (1) The curse of di-

mensionality can reduce the efficiency of the classifier. (2) Ac-
tion representations at different scales have different discrimi-
nation power. The concatenation fusion approach cannot uti-
lize this useful prior information at the matching stage. In-
tuitively, a finer-scale representation should better capture the
statistics of the video contents than a coarser-scale representa-
tion. This is due to the fact that the salient features detected
at the finer scales are less dislocated (due to spatial Gaussian
smoothing) [23, 24], more precise, and more robust than those
detected at the coarser scales [4]. The corresponding finer-
scale dictionary of action primitives and representation should
thus be more descriptive and more discriminant (we perform
separability tests in Section 5 to validate this idea). This do-
main knowledge prior information should be explicitly incor-
porated in matching to improve the classification accuracy. To
address the above mentioned problems of a concatenated rep-
resentation, the multiple representations should be kept decou-
pled until the matching at the classification stage (Fig. 1(c)).
To differentiate from the concatenated approach in which the
representations are stacked in order and form a single vector
xC , we represent the decoupled multiple representations as a
set xD = {x1, x2, ..., xn}.

Constructed as a set, a decoupled representation requires a
specific way to be compared with another representation. We
consider the distance between two decoupled action represen-
tations to be the sum of the distances between the best joint
matched representations for each representation in the set. That
is, the action representation xi at a given scale i = {1, 2, ..., n}
is compared with all scale-specific action representations of a
training sample and the one with the least distance is considered
as the best match. This procedure starts with the finest scale
and the best matched representation is excluded from the list

as we proceed to the coarsest scale. This procedure favors the
finer-scale representations as they are more discriminant than
the coarse-scale representations. Algorithm 1 describes this
procedure for computing the distance between two decoupled
representations. Modeling the level of descriptiveness of differ-
ent scale-specific representations in the matching of a decou-
pled representation should improve the matching performance
and hence, the classification accuracy.

Algorithm 1 Pseudo-code for computing the distance between
two decoupled action representations x1

D, x
2
D.

1: Inputs: x1
D = {x

1
1, ..., x

1
n} and x2

D = {x
2
1, ..., x

2
m}.

2: Output: φ(x1
D, x

2
D)

3: Reset the distance value:
φ = 0

4: for i = 1 : n do
5: Find the best matched representation for x1

i :
x2

j∗ = arg minx2
j∈x

2
D
ϕ(x1

i , x
2
j ).

6: Compute the distance:
ϕi = ϕ(x1

i , x
2
j∗ ).

7: Remove the best matched representation x2
j∗ from x2

D:
x2

j∗ * x2
D.

8: φ = φ + ϕi

9: end for

4. Testing setup

This section describes the utilized datasets, the feature ex-
traction method, and the discriminant criterion to evaluate the
separability of different actions in a representation. We also
explain our classification method using a SVM classifier.

4.1. Datasets

Five benchmark human action recognition datasets have been
used for the performance evaluation of different action repre-
sentation methods.

The KTH data set [25] consists of six actions (running, box-
ing, walking, jogging, hand waving, and hand clapping) with
600 choreographed video samples. Twenty-five different sub-
jects perform each action in four different scenarios: indoors,
outdoors, outdoors with scale change (fast zooming in/out) and
outdoors with different clothes. Each clip lasts between 10 to
15 seconds and is sampled at 25Hz with an image frame size
of 160 × 120. According to the initial citation [25], the video
samples are divided into a test set (9 subjects: 2,3,5,6,7,8,9,10,
and 22) and a training set (the remaining 16 subjects). We thus
use the same training/testing protocol for the classification test.

The UCF Sports dataset [26] includes 10 different action
classes such as diving, golf swing, kicking, lifting, riding horse,
run, skate boarding, walk, swing on the pommel horse, and
swing at the high bar with 150 video samples collected from
the Youtube website. This dataset is challenging due to di-
verse ranges of views and scene changes with moving camera,
clutter, and partial occlusion. A horizontally flipped version of
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each video is also used during training to increase the data sam-
ples [9]. We use leave-one-out (without considering the flipped
samples for testing) protocol.

The UCF Youtube dataset [27] contains 11 action cate-
gories: basketball shooting, biking/cycling, diving, golf swing-
ing, horse back riding, soccer juggling, swinging, tennis swing-
ing, trampoline jumping, volleyball spiking, and walking with
a dog. This dataset is very challenging due to large variations in
camera motion, object appearance and pose, object scale, view-
point, cluttered background, illumination conditions, etc. For
each category, the videos are grouped into 25 groups with more
than 4 action clips in each. The video clips in the same group
share some common features, such as the same actor, similar
background, similar viewpoint, and so on. We thus use leave-
one-group-out protocol for the classification test. That is, when
learning the decision boundary of the SVM classifier, action
samples of the same group will be removed all at once.

The HOHA dataset [28] consists of eight human actions
(answer phone, get out car, hand shake, hug a person, kiss, sit
down, sit up, and stand up) from 32 Hollywood movies. The
dataset is divided into a test set obtained from 20 movies and
the (clean) training set obtained from 12 movies different from
the test set. There are 219 sample videos in the training set and
211 samples in the test set. We therefore use a training/testing
protocol for the classification test.

The HOHA2 dataset [11] consists of twelve human actions
from 69 different Hollywood movies. In addition to the eight
action classes from the HOHA dataset, four classes of eating,
fight with a person , get out of car, and hand shake have been
added to the new dataset. The total length of the action sam-
ples is about 600k frames or 7 hours of video. The dataset is
divided into a training set with 823 samples and a test set with
884 samples (in total, 1707 action samples). Training and test
samples are obtained from different movies. We therefore use
a training/testing protocol for the classification test. Note that
HOHA2 dataset is the extension of HOHA dataset with more
training and testing data samples and more classes. Moreover,
the video samples in these datasets have different image reso-
lution and the video clips in HOHA2 last longer with motion
patterns unrelated to the labeled action. This makes HOHA2
much more challenging than HOHA dataset. For completeness,
we use both datasets in our experiments.

4.2. Spatio-temporal salient motion features
To localize the video events of different scales, we generate

the salient asymmetric motion features (i.e., key points) at nine
different spatio-temporal scales (σp, τq) in which σ is in pix-
els and τ in frames. The scales are each generated according to
2 (
√

2)p and 2 (
√

2)q with p, q ∈ {0, 1, 2} [4, 29]. The spatial fil-
ter is a 2D Gaussian filter and the temporal filter is the complex,
asymmetric sinc filtering [4] which has shown to be the best for
robust asymmetric motion feature detection. Each salient fea-
ture has a volumetric extension for its description. We used the
3D SIFT descriptor which has shown good performance in en-
coding motion and appearance [30]. This descriptor computes a
normalized histogram of the spatio-temporal oriented gradients
of the pixels inside the volumetric extension of a salient feature.

Fig. 2 shows the 2D projection of the asymmetric motion
features on different datasets. As can be seen, the features are
mainly from the foreground and capture the relevant moving
limbs on the subjects (see [4] for more results on the precision
and robustness of these features).

4.3. Dictionary learning and action representation

The standard single action representation (Fig. 1(a)) is ob-
tained over just one dictionary of action primitives which is
learnt from the joint features from all spatio-temporal scales,
irrespective to their scales [1, 2, 4]. The action representation is
then the normalized frequency of the multi-scale features over
this dictionary.

For the concatenated and decoupled action representations,
we perform separate vector quantization of the features at each
scale (Fig. 1(b) and 1(c)). That is, the features of each scale
are experimentally quantized into d = 1000 clusters for which
we performed the K-means clustering with random seed initial-
ization ten times and kept the result with the lowest error [9].
The clusters (i.e., visual words) represent the action primitives.
Having nine spatio-temporal scales, we have nine different dic-
tionaries of action primitives for describing an action using the
features of each scale. The action representation at each scale is
the L1-normalized frequency of the occurrences of the features
of that specific scale over the corresponding dictionary of vi-
sual words. The multiple scale-specific action representations
are then fused either by their concatenation in one long repre-
sentation vector xC (Section 3.2) or by keeping them decoupled
xD (Section 3.3) until the matching stage.

4.4. Classification method

For action classification, we use a nonlinear SVM with the χ2

distance metric φ for the matching of the action representation
using the LibSVM toolbox [31].

φ(x1, x2) =
1
2

d∑
m=1

(x1
m − x2

m)2

x1
m + x2

m
(1)

in which x1 and x2 are d−dimensional vectors which represent
two different action representations based on d action primitives
in the dictionary.

In the next section, we perform separability tests to evaluate
the discrimination power of different types of action represen-
tations and motivate the use of multiple scale-specific represen-
tations over a single action representation. In Section 6, we per-
form classification testing to validate the classification accuracy
of different representations on several benchmark datasets.

5. Separability test for action representation comparison

A separability test is performed to compare a single and multi
scale-specific (Fig. 1(b) and 1(c)) representations. We thus use
a discriminant criterion in which a good representation is ob-
tained from a dictionary by which the samples from the same
class will have very similar representations resulting in a low
intra-class distance. In addition, the representation of samples
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Figure 2: 2D projection of multi-scale asymmetric motion features on sample frames of (a) ”diving” action from the UCF sports dataset [26] (b) ”running” action
from the KTH dataset [25], (c) ‘play tennis’ action from the UCF Youtube dataset [26], and (d) ‘stand up’ action from the HOHA [28] and HOHA2 [11] datasets.
In (a), despite the movement of the camera, most of the motion features are detected from the athlete. In all video samples, the features are mainly from the moving
body limbs and there are few false positives from the background.

from different classes should be very dissimilar in a sense that
there is a high inter-class distance.

To implement the discriminant criteria, assume φkl denotes
the average distances between the representations of the video
samples from class k and l and φk denotes the average within-
class distance of the representations of the video samples from
class k. The discrimination score R (2) of a representation
can thus be defined as the division of the sum of between-
class distances for all N samples over the sum of within-class
distances. When two representations are compared, the one
with higher discrimination score is considered more discrimi-
nant as it has higher inter-class distances and lower intra-class
distances. Higher score promises better separability of classes
during classification.

R =
∑N

k=1
∑N

l,k φ
kl∑N

k=1 φ
k

(2)

5.1. Research question 1: separability of representations
across scales

To evaluate the performance of representations across differ-
ent spatio-temporal scales (research question 1), Fig. 3 shows
the ratio of the discrimination scores between action representa-
tions at different scales (Ri/R j) on the KTH and the UCF sports
datasets. In Fig. 3(a), for example, the first row shows that the
action representation of the finest scale x1 has higher discrim-
inant score than any other scale (i.e., R1 > R j, ∀ j > 1 ), and
hence, it is the most discriminant representation. Overall, the
main observation is that a finer-scale representation is more dis-
criminant than a coarser-scale representation.
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One could want to use just the finest scale representation as
it is the most discriminant representation, but there are two fac-
tors that motivate the use of all scales. First, the distance from
the camera and the speed of performance of actions might vary
from one sample to another among the training/testing samples.
More specifically, this spatial and/or temporal variation might
require a representation at a different scale to be best matched
with the finest scale of the training samples. Second, the action
representation at each scale is constructed using a set of dif-
ferent dictionaries and different features. This diversity might
be complementary for action representations and consequently,
using just one representation might not necessarily be the best
choice.

5.2. Research question 2: separability of single and concate-
nated representations

To evaluate the performance of encoding multi-scale spatio-
temporal salient features using multiple scale-specific dictio-
naries versus a single non-scale-specific dictionary (research
question 2), Fig. 4 shows the ratio of the discrimination scores
of the concatenated representation xC over the single action rep-
resentation xS for different actions from the KTH dataset and
UCF sports dataset. For the KTH dataset, the xC is always more
discriminant than the xS as the ratio is always higher than unit.
For the UCF sports dataset, the xC is most of the time more dis-
criminant than the xS . The only exception is in discrimination
of “walk” from “dive”, “kick”, and “run”. The overall observa-
tion is that the concatenated representation xC is more discrimi-
nant than a single action representation xS . The overall ratio for
the KTH dataset is RC/RS = 1.032 and that for the UCF sports
is RC/RS = 1.02 which shows the higher discrimination power
of xC .

6. Action Classification Testing

This section presents the experimental results comparing the
classification accuracy using the standard single representation
and the introduced concentrated and decoupled representations
in a common recognition framework on five benchmark dataset.
We then provide a comparison with the state-of-the-art meth-
ods.

6.1. Research question 3: classification comparing single and
new representations

Table 1 shows the average classification accuracy of single
and two multi scale-specific representations using five bench-
mark datasets. The main observation is that both concatenated
and decoupled representations provide higher classification ac-
curacy than a single action representation. Also, the decoupled
representation performs better than the concatenated fusion ap-
proach. This is due to incorporating the order of importance of
representations in the matching and avoiding the possible curse
of dimensionality problem of a concatenated representation.

Note that both HOHA and HOHA2 datasets have samples
with multiple labels and hence, the action recognition in these

datasets is a multi-label classification problem. To be consistent
with the literature [11, 28, 32], we used the the one-against-
all approach for performance evaluation and report the mean
average precision as the classification accuracy.

6.2. Classification comparing new and existing methods

Even though the pipeline for the BOW framework is stan-
dard, there are several parameters in the implementation such
as the SVM’s similarity kernel, the dictionary length, and the
features’ dimensionality reduction which make direct compari-
son of different publications difficult. However, to show where
our results stand in comparison with other published results, we
provide Table 2 to compare the classification rate of different
published methods which at least use the same training/testing
protocols.

As Table 2 shows, the decoupled action representation with a
single SVM classifier provides the highest classification accu-
racy in all benchmark human action recognition datasets, except
the UCF youtube dataset. More specifically, the improvement
on the choreographed KTH dataset is slightly better (about 1%)
than the state-of-the-art methods, but our improvement is sig-
nificant (about 5%) on realistic datasets of UCF sports, HOHA,
and HOHA2 which are collected from youtube and Hollywood
movies. Compared to the computationally expensive combined
dense sampling and dense trajectory (DSDT) method (Wang et
al. [33]), our approach performs about 0.5% less accurate which
is not a big disadvantage as we used just a sparse set of salient
features without any requirement for tracking. This shows that
an effective discriminative action representation such as decou-
pled representation performs better than a computationally ex-
pensive method such as DSDT method [33].

When designing based on our improved action representa-
tions, the curse of dimensionality problem of the concatenated
representation might be sever with increase in the number of
scales and the length of the dictionaries. In such a scenario,
the matching process of the decoupled approach might take
longer as well. Based on the fact the spatial scale-invariant fea-
tures are useful for object representation [29], but the temporal
scale-invariance of the features might not be useful for motion
content encoding [3], as a future research direction, one might
try to investigate whether one could use scale-specific action
representations of just temporal scales instead of each spatio-
temporal scale. That is, the local salient features are spatially
scale-invariant, but not temporally, and also the dictionaries are
computed just for each temporal scales. As the number of tem-
poral scales is typically fewer than the number of spatial scales,
this policy reduces the number of representations which is very
helpful to avoid or reduce the curse of dimensionality problem
of the concatenated approach and the time complexity of the
decoupled approach.

7. Conclusion

The standard BOW framework for human action recognition
constructs a single dictionary of action primitives and hence,

8



(a) Separability test across scales- KTH (b) Separability test across scales- UCF

Figure 3: The average ratio of the discriminant scores between action representations {x1, x2, ..., x9} on (a) the KTH dataset and (b) the UCF sports dataset. Note that
the matrices are reciprocal. To read this figure, each element of the matrix shows the ratio of the discriminant score of the representations with the corresponding
row and columns index (e.g., the value at first row and fifth column shows R1/R5). Overall, a finer-scale representation is more discriminant than a coarser-scale
representation. The plots are best viewed in color.

(a) Representations comparison- KTH (b) Representations comparison- UCF sports

Figure 4: The average ratio of the discriminant scores of the concatenated multiple action representations xC over the single action representation xS on different
actions from the (a) KTH dataset and (b) UCF sports dataset. As can be seen in these symmetric matrices, the xC is always more discriminant than the xS in the
KTH dataset and most of the tim in the UCF sports dataset (the only exception is the separability of “walk” from “dive”, “kick”, and “run”). The plots are best
viewed in color.

Table 1: Average classification accuracy on different datasets using the features detected by asymmetric motion features [4] and encoded by different action
representation methods. The accuracy variation is in order of 0.01 and is not reported here. Note that both concatenated and decoupled action representations
provide higher classification accuracy than a single action representation, regardless of the datasets. More specifically, the decoupled representation performs the
best in all datasets.

Action representation KTH UCF sports UCF youtube HOHA HOHA2
single 92.3 % 91.5 % 80.2 % 49.3 % 59.5 %

concatenated 94.1 % 92.3 % 81.5 % 52.3 % 61.3 %
decoupled 95.3 % 93.7 % 83.7 % 53.5 % 63.2 %
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Table 2: Comparison of different published methods for the human action classification on different benchmark datasets. Note that our method, the decoupled
representation of asymmetric motion features with a SVM classifier, provides the highest classification accuracy in all datasets, except on UCF youtube in which the
computationally expensive combined dense sampling and dense trajectory [33] performs slightly better than our efficient method which use a set of sparse salient
features with no tracking component.

Method KTH UCF sports UCF Youtube HOHA HOHA2
Wang et al. [33] 94.2 % 88.2 % 84.2 % - 58.3 %

Le et al. [34] 93.9 % 86.5 % 75.8 % - 53.3 %
Wang et al. [9] 92.1 % 85.6 % 71.2 % - 50.9 %

Rapantzikos et al. [35] 88.3 % - - 33.6 % -
Laptev et al. [28] - - - 38.4 % -

Sun et al. [32] - - - 47.1 % -
Zhang et al. [36] - - - 30.5 % -

decoupled representation 95.3 % 93.7 % 83.7 % 53.5 % 63.2 %

a single action representation. We argued that a single repre-
sentation cannot fully exploit the multiresolution characteris-
tics of the different motion patterns. We therefore proposed
the concept of learning multiple dictionaries of action primi-
tives and consequently, multiple scale-specific action represen-
tations with two different fusion approaches of concatenation
and decoupled. Having higher discrimination score, the scale-
specific representations show better separability of different ac-
tions compared to standard single action representation. In a
common recognition framework using multi-scale asymmetric
motion features, both the decoupled and concatenated repre-
sentations have shown superior improvements over the single
representation on several benchmark human action recognition
datasets including the KTH, UCF sports, UCF youtube, HOHA,
and HOHA2 datasets. More specifically, the decoupled action
representation with a single SVM classifier has shown about
5% improvement over the state-of-the-art methods on most of
realistic datasets from youtube and Hollywood movies.
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