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A B S T R A C T  

This paper discusses efficient solutions to large-scale 
two-dimensional estimation problems, using reduced- 
state methods motivated by the multipole method of 
mathematical physics. The work is mainly exploratory, 
building on past efforts in multiscale statistical signal 
modeling and estimation. We will illustrate applica- 
tions to the estimation of Markov random field tex- 
tures, with the motivation and goal the estimation of 
remotely-sensed fields. 

1. I N T R O D U C T I O N  

The statistical estimation of large, global scale, 
two-dimensional remote sensing problems and even 
modestly-sized three-dimensional problems presents 
tremendous and pertinent challenges: heightened en- 
vironmental awareness and concerns have led to an ex- 
plosion in the quantity of remotely-sensed data, much 
of which contains irregular gaps and nonritationary un- 
derlying fields. 

The origin of the difficulty in producing statis- 
tical estimates is simple. Methods such as nested 
dissection[4, 51 or multiscale estimation[l] are all based 
on recursive divide-and-conquer: a subset of the ran- 
dom field is found, such that conditioned on this sub- 
set the remaining portions of the field can be processed 
independently. For example, the four quadrants of a 
first-order Markov random field can be decorrelated by 
conditioning on the boundary pixels, shown in Figure 1. 
So whereas a single pixel can decorrelate i;he two halves 
of a one-dimensional process, a column of pixels is re- 
quired for a 2D field, and a whole plane of pixels in 
three dimensions. Thus for an n x n x ... hypercube 
of voxels in d dimensions, the computational effort to 

~i~~~~ 1: ~~~~~l~ sampled boundaries which condi- 
tionally decorrelate the four quadrants of a first-order 
Markov random field. 
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Figure 2: A reduced-state approximation to Figure ’’ 
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solve the estimation problem is 

which very rapidly becomes infeasible for large n and 
even modest d. 

2. MULTISCALE ESTIMATION 

The multiscale statistical estimation method[l, 71 has, 
at  its core, the following statistical model: 

z(s) = A(s)z(s?) + B(s)w(s)  (31 

where s is an index on a tree with parent s,I, A and B 
are deterministic matrices, and w is a white-noise pro- 
cess. This equation is essentially a restatement of the 
conditional decorrelation discussed in the Introduction: 
the whiteness of w implies that the state z(s7) must 
conditionally decorrelate all states connected to s r .  A 
simple approach[2] to reducing the state dimension is 
to subsample the state boundary (Figure 2), however 
this does not alter the asymptotic computational com- 
plexity, nor does it render three-dimensional problems 
tract able. 

The key problem with the state representation in 
Figure 2 is that it attempts to decorrelate too much: 
in terms of estimating quadrant “2”, keeping details of 
the distant part of quadrant “4” is largely irrelevant; 
that is, the reduced state of Figure 5 will perform very 
nearly as well. Although we now require four such re- 
duced models (one for each quadrant), the state dimen- 
sion needs to be reduced by only a factor of 4lI3 for the 
computational effort of each model to be less than one 
fourth of that for Figure 2, giving an overall perfor- 
mance increase. Figure 7 gives one illustration of the 
approach: we measured a “tree” texture (the Markov 
random field of Figure 6) at OdB SNR and computed 
estimates based on Figure 2 (the specific state assign- 
ments based on [SI), and again based on four multiscale 
trees using Figure 5; the two approaches differ, in this 
example, by only 1% in MSE and are indistinguishable 
visually. 

A second illustration is shown in Figures 3 and 4. 
Figure 3 shows the estimates for the top-left quadrant, 
using a detailed state (sampling every pixel along hor- 
izontal boundaries); the results for the four quadrants 
are patched together in Figure 4. There are no artifacts 
or discontinuities at  the patch boundaries. 

For presentation purposes, we have limited our- 
selves to promoting a four-quadrant decomposition 
which achieves modest reductions in computational 
complexity. However there are two very important con- 
siderations which further motivate this approach: 

Figure 5: A further reduction in state from Figure 2, 
appropriate for estimating the top-left quadrant. 

Figure 6: Original sample path of “tree” random field; 
the whole field is observed at OdB SNR, a portion of 
which is shown in the top of the image. 

Figure 7: Random field estimates based on a reduced- 
order multiscale model based on either Figure 2 or 3 
(both give visually identical results). 
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Figure 3: Estimates from one tree, designed to esti- 
mate the top-left quadrant. 

1. Further subdivision: Figure 5 really illustrates 
only the first step in state reduction; depending 
on the nature of the prior model, further gains 
may be realized by dividing the domain more 
finely. Furthermore, and much more significantly, 
if we design q different sets of states to estimate 
the domain using q trees, then a great part of the 
work done by the q trees is duplicated or redun- 
dant, and opens the possibility for much greater 
reductions in complexity. 

2. Numerical conditioning: A reduction in state di- 
mension can lead to substantial improvements 
in the conditioning of the estimation problem. 
For example, in a related oceanographic surface- 
temperature estimation problem[3], the root- 
node covariance for a 256 x 256 pixel domain has 
a condition number of 5 lo1’, which is rather 
poor, even at  double-precision. If we modify the 
state to concentrate on one sixteenth of the do- 
main, then the root-node covariance for the entire 
domain has condition 3 . lo1’, a substantial im- 
provement. 

3. MULTIPOLE-MOTIVATED 
ESTIMATION 

A philosophically very different approach is suggested 
by the multipole algorithm[6], originally used to solve 
for the potentials of very large gravitational and elec- 
tromagnetic systems. The specific multipole algorithm 
and associated mathematical bounds do not appear to 
apply in the estimation context, however the essence of 
the approach is very appealing. Consider the regions 
shown in Figure 8; the multipole algorithm performs 
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Figure 4: The combined estimates, patched together 
from separate estimates in each quadrant. No seams 
or artifacts are visible along the patch boundaries. 

two separate aggregations: 

1. In determining the potential at point “A”, all of 
the points in “C” act similarly and so their effects 
are grouped. 

2. The effect of “C” on other points near “A” (e.g., 
“B”) is similar to that at  “A”, so its influence can 
be grouped. 

We can begin to exploit this philosophy in the esti- 
mation context as follows. Figure 9 shows a set of 13 
regions, centered about the single element 5 to be esti- 
mated. Each region Ri is designed to satisfy 

(4) 

That is, the rise in estimation uncertainty due to av- 
eraging the elements in a region is constrained by T 
(here set to 1.2). Each pixel in the random field can 
then be estimated by solving a problem of fixed diffi- 
culty - 13-dimensional - regardless of the size of the 
overall field. Figure 10 shows the result of using the 
regions in Figure 9 to estimate the texture in Figure 6. 

This multipole method has appealing features, how- 
ever challenges remain: the definition of the regions 
needs to be made more systematic and rigorous. Sec- 
ondly, and more significantly, although the estimation 
problem to be solved at each pixel is now simple, we 
are now required to set up a problem, possibly involving 
many measurements, for each pixel to be estimated. If 
the measurements are fairly dense, then the brute-force 
averaging of measurements into regions would already 
lead to O(nd) complexity per pixel, so a more insightful 
approach is needed. 
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4. CONCLUSIONS 

This paper has discussed the state reduction princi- 
ples being investigated in our research, specifically to 
weaken the need to keep large state vectors that con- 
ditionally decorrelate a random field, by adopting a 
multipole-like philosophy. The multipole approach of- 
fers the possibility of an algorithm capable of statistical 
estimation at a constant complexity per pixel, even for 
fields possessing long-range correlations. 
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Figure 8: A hierarchical, multipole-like grid. 

Figure 9: The reduced-state decomposition determined 
for the “tree” random field of Fig-6. 

Figure 10: Estimates produced by the hierarchical de- 
composition of Fig-9 based on dense measurements. 
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