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ABSTRACT 
Recently a class of multiscale stochastic models has 

been introduced in which Gaussian random processes are 
described by scale-recursive dynamics that are indexed 
by the nodes of a tree. One of the primary reasons the 
framework is useful is that  it leads to  an extremely fast, 
statistically optimal algorithm for least-squares estima- 
tion in the context of 2-D images. In this paper, we 
refine this approach to  estimation by eliminating the vi- 
sually distracting blockiness that has been observed in 
previous work. We eliminate the blockiness by discard- 
ing the standard assumption that distinct nodes at a 
given level of our tree correspond to disjoint portions 
of the image domain; as a consequence of this simple 
idea, a given image pixel may now correspond to  sev- 
eral tree nodes. We develop tools for systematically 
building overlapping-tree multiscale representations of 
prespecified statistics, and we develop a corresponding 
estimation algorithm for this processes. In this way, 
we achieve nearly optimal estimation results, we gener- 
ate corresponding error covariance information, and we 
eliminate blockiness without sacrificing the resolution of 
fine-scale detail. 

I .  INTRODUCTION 
Recently, a class of multiscale stochastic models has 

been introduced in which Gaussian stochastic processes 
are indexed by the nodes of a tree [l], [a]. These mod- 
els provide a systematic and powerful way to describe 
random processes and fields that evolve in scale. 

The primary reason that the framework is useful is 
that it leads to  extremely efficient, statistically opti- 
mal algorithms for signal and image processing; these 
algorithms exploit the special statistical structure of our 
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models in much the same way that the Kalman filter ex- 
ploits the structure of Gauss-Markov time-series models. 
In fact, a particularly successful example of a multiscale- 
based estimation algorithm is a direct generalization of 
both the Kalman filter and the related Rauch-Tung- 
Striebel smoother[2]. Applications for which this ap- 
proach has met with considerable success include cal- 
culation of optical flow[5] and the smoothing of ocean 
altimetric data[3]. 

In spit,e of the success of the multiscale approach 
with rega,rd to  computational efficiency, mean-square es- 
timation error, and ability to  supply error covariance 
information, the approach arguably suffers two limita- 
tions: 
1. Automatic multiscale model development tools are 

required. 
2. The smoothed estimates produced by the multiscale 

smoother tend to  exhibit a visually distracting block- 
iness. 

Each of these two limitations were researched indepen- 
dently with some success. A recently undertaken merg- 
ing of these two streams of research has yielded re- 
markable results, simultaneously achieving three objec- 
tives: 
1. It yields low-dimensional multiscale models that are 

quite faithful to  prespecified random field covari- 
ance structure to  be realized, and thus admits an 
extremely efficient, optimal (or nearly optimal) esti- 
mation algorithm.; 

2. The resulting estimation algorithm retains one of the 
most important advantages of the multiscale estima- 
tion framework, namely the efficient computation of 
estimation error covariances; 

3. Both the multiscale models and the corresponding 
estinia.tion algorithm eliminate the blockiness asso- 
ciated with previjously developed multiscale models 
and estimates. 

IT. MULTIS C AL E F R A M E  W 0 RK 
The multiscale framework of interest in this paper con- 

sists of scale-recursive models defined on index sets that  
are organized as multilevel trees such as the one shown 
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Fig, 1. Example multiscale tree structure. 

in Figure 1. Here each level of the tree corresponds to 
a different scale of resolution in the representation of 
the random field, with the resolutions proceeding from 
coarse to fine as the tree is traversed from top to bottom. 

Let s denote any node on the tree and sy its parent; 
the state elements at these nodes are related by a coarse- 
to-fine recursion: 

~ ( s )  = A ( s ) z ( s ~ )  + B(s)w(s) (1) 

where w(s) is a white Gaussian noise process with iden- 
tity covariance. The multiscale model also permits mea- 
surements that are arbitrarily distributed in both space 
and scale: 

Y(S) = C ( S ) Z ( S )  + 4 s )  (2) 

where C(s) is a matrix specifying the nature of the pro- 
cess observations and ~ ( s )  is white with covariance R(s) .  

111. MODEL DEVELOPMENT 

By appropriately defining the information which is 
conveyed by x ( s ) ,  and by an appropriate choice of the 
A(s)  and B ( s )  matrices, we can realize any desired corre- 
lation structure for the finest-scale Gaussian process. A 
conceptually simple model-building strategy leads to the 
specification of these quantities. To describe the strat- 
egy, we first note that any given node on a qth order 
tree can be viewed as a boundary between q + 1 subsets 
of nodes, where q of these subsets correspond to p a t h s  
leading towards offspring and one corresponds to a path 
leading towards the parent. With this boundary notion 
in mind, the strategy can be stated as follows: always 
retain just enough information in ~ ( s )  to ensure the con- 
ditional independence of the finest-scale portions of the 
corresponding q + 1 subsets of the process. We select 
a multiscale model such that x ( s )  contains suitable lin- 
ear functionals of the finest-scale process to achieve t,his 
q + 1-way conditional independence. 
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Fig. 2. Simple illustration of an overlapping tree. The point 'cy' 

will have a redundant representation on the finest scale of this 
tree. 

In general, exact realization of desired statistics will 
require a very high order multiscale model. However, 
by suitably generalizing the work in 141, 151, we have de- 
veloped a systematic and broadly applicable procedure 
for building reduced-order, approximate models of any 
desired fidelity. This procedure is based on a novel appli- 
cation of the techniques of canonical correlation analysis, 
and allows us to effectively confront the model complex- 
ity/algorit hm speed tradeoff. 

IV. ARTIFACT ATTENUATION 

The presence of visually distracting artifacts or block- 
iness in the multiscale estimates does not imply an error 
in the estimation psocess, but rather implies the selec- 
tion of a multiscale model which inadequately preserves 
correlations across the boundaries of the multiscale tree. 

In certain applications such blockiness might be elim- 
inated by the simple application of a low pass filter. Un- 
fortunately this approach can ambiguate the interpreta- 
tion of error covariance information; moreover it limits 
the resolution of fine-scale details in the post-processed 
estimate. 

To understand our new approach for eliminating 
blockiness, consider again the multiscale tree of Figure 1. 
At any given node s in the tree process, the state z(s) 
represents an aggregate description of the subset of the 
random field attributed to the node; normally the nodes 
on a given scale each aggregate disjoint portions of the 
random field. In our proposed approach to  multiscale 
estimation we relax this constraint and construct pro- 
cesses in which points in physical space may correspond 
to numerous fine scale tree nodes. We refer to such a 
tree process as an overlapped tree process, because ad- 
jacent multiscale nodes are now permitted to represent 
overlapping regions of the random field. 

For example, consider a dyadic tree representation for 
a 1-D signal as shown in Figure 2. The bracket H at 
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Fig. 3. Original “wood” texture, 64 x 64 samples, simulated using 
Markov Random Field techniques. Measurement.s of this field 
are corrupted to OdB SNR. 

Fig. 5. Estimated texture using a multiscale tree model, but 
without using an overlapping tree. Note the artifacts across 
the boundaries of the image quadrants. 

Fig. 4. Estimated texture using optimal FFT techniques, based 
on noisy measurements of Figure 3. 

each node denotes the region of physical space to which 
is represented by the state vector a t  that node (e.g., the 
physical point cy is present in two of the intervals on the 
bottom level of Figure 2). Clearly this leads to a redun- 
dant representation at the finest scale of the tree, i.e., 
several finest scale nodes may correspond to  the same 
point in physical space. 

It is the redundancy of the overlapping framework 
which allows us to  obtain a smoother set of estimates. 
If we let H represent the projection from the redundant 
finest scale of the overlapped tree into physical space 

(3) 

then with the appropriate choice of H ,  multiscale arti- 
facts present in XOvEnLAPpED can be eliminated. It is 

Fig. 6. Estimated texture using a multiscale tree model applied 
to an overlapped tree. The computational burden of this esti- 
mator is the same as that in Figure 5. 

important to  realize, however, that H has the effect of 
an ensemble average - no spatial averaging of any sort 
is occurring. 

V. EXPElRIMENTAL RESULTS 
We will apply our multiscale estimator to the texture 

shown in Figure 3; it is based on a Markov random field 
model possessing coinsiderable correlation in the vertical 
direction. The image was corrupted to  OdB SNR by 
white Gaussian noise, and estimated in three different 
ways: 
1. Using an optimal FFT technique (Figure 4) 
2. Using a non-overlapped multiscale model of order 40 

(Figure 5 )  
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3. Using an overlapped multiscale model of order 16 

Although the computational burden of the latter two 
techniques is the same, the estimates of Figure 6 are 
clearly superior. 

The advantages of our multiscale technique over the 
FFT method stem from the fact that our approach can 
tolerate irregularly sampled data, spatially varying mea- 
surement noise, and a spatially varying prior model - any 
of which render the FFT approach inapplicable. 

A second estimation example is illustrated in Fig- 
ures 7-9. This example computes the estimates for a 
random field having a nonstationary prior model; i.e., 
FFT techniques are no longer applicable. Figure 7 shows 
a sample path of the nonstationary model. The 64x64 
pixels of the process were divided into groups g1 and 92: 
g1 contains the pixels in the upper left and lower right 
of the image, and g2 contains the pixels in the diago- 
nal band running through the center of the image. The 
prior model for g1 is the “wood” model of before; the 
prior model for g2 is just a rotation of the “wood” tex- 
ture by 90 degrees. The cross correlation between groups 
g1 and 92 is zero. 

Figure 8 shows a noisy version of the original sample 
path, corrupted by white Gaussian noise to OdB; Figure 9 
shows the corresponding multiscale reconstruction based 
on an overlapping multiscale model of order IC = 32. Two 
observations should be made: 

As mentioned in the previous example, the smooth- 
ing operation H, of the overlapping framework has 
not at  all blurred the edge between the two prior 
models - the edge stands out distinctly. 
Essentially no artifacts are visible along the corre- 
lated bands in either orientation. 

(Figure 6) 
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Fig. 7. Inhomogeneous Markov random field sample path. 

Fig. 8. Figure 7 plus OdB white, Gaussian, noise 

Fig. 9. Overlapped-tree estimates based on Figure 8 
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