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ABSTRACT

This work presents a method for segmenting images
based on gradients in the intensity function. Past ap-
proaches have centered on formulating the problem in
the context of variational calculus as the minimiza-
tion of a functional involving the image intensity and
edge functions. Computational methods for finding the
minima of such variational problems are prone to two
shortfalls: they are often computationally intensive and
almost always incapable of computing error statistics
associated with the segmentation. Using a particular
variational formulation as a starting point, this paper
presents a derivation of an associated statistical for-
mulation using multiscale models. The result is an al-
gorithm which is fast and capable of computing error
statistics.

1. INTRODUCTION

Many applications require the segmentation of images.
In disciplines such as medical imaging and remote sens-
ing, this is often done painstakingly by hand. To re-
duce the tedium of this component of image analysis,
one would like to create automatic image segmentation
algorithms. This paper presents a novel segmentation
algorithm which belongs to the class of algorithms that
segment an image by decomposing it into smooth re-
gions bounded by curves on which the image intensity
changes abruptly.

Blake and Zisserman (1], Mumford and Shah [2],
Shah [3], and Pien and Gauch [4] have all written about
aspects of this approach to segmentation and have pro-
posed various complex functionals whose minima cor-
respond to segmented images. Although the sound
reasoning leading to the proposition of the function-
als makes their use appealing, the algorithms that find

This material based upon work supported by a National Sci-
ence Foundation Graduate Research Fellowship, by ARO under
Grant DAAL03-92-G-0115, by AFOSR under Grant F49620-95-
1-0083, and by ARPA through AFOSR Grant F49620-93-1-0604.
W.C.K is a professor in the Department of Electrical, Computer
and Systems Engineering, Boston University.

the minima are often computationally intensive and do
not provide information about the uncertainty in one’s
estimate of the location of an edge. Knowledge of such
uncertainty is useful in many applications as it can help
guide the interpretation of the segmented image.

In this paper, we take an alternative approach
to solving the minimization: we determine the least-
squares estimation equations corresponding to the min-
imization of the functionals proposed in [3, 4], and then
use a fast multiscale technique [5] to solve the estima-
tion problems. The multiscale approach has the ad-
vantage of being not only computationally efficient but
also capable of generating error statistics.

2. GRADIENT SEGMENTATION

The specific functional under consideration is [3, 4]
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where ) is the domain of the image; g represents the
observed image; p, v, and A are scalar constants; and
(f, ) is a pair of functions over which one minimizes E.
For the pair of functions (f, §) which minimize E, f is a
piecewise smooth approximation of the observed image
g, and § is an edge map whose range is the interval
[0,1]. A region boundary is declared at those locations
where § = 1.

The algorithms discussed in (3, 4] perform a coordi-
nate descent in order to minimize (1). They alternate
between fixing s and minimizing

E, = / /ﬂ ((F— g + NV -5?)  (2)

over possible f, and fixing f and minimizing

E;= / /Q (A|Vf|2(1—s)2+g(plvslz+§)) (3)



over possible s. Thus, the problem of minimizing the
complex functional (1) is reduced to repeatedly mini-
mizing the two convex functionals (2) and (3). With
each of these minimization problems, one can associate
a statistical estimation problem. The motivation for
seeking such an equivalent estimation formulation is
that one can then use a fast multiscale estimation al-
gorithm to perform the minimization and to generate
error statistics. First, one-dimensional problems will
be considered in order to simplify the analysis. Two-
dimensional extensions will be presented in Section 4.

3. SEGMENTATION IN ONE DIMENSION

3.1. The Estimation Problem

In one-dimension, (2) becomes

E= [ (-9 +nEra- P)dz @)

The problem of minimizing this functional with respect
to f is equivalent to estimating f given the following
measurements and prior model:

g(z) = f(a)+/(a) (5)
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where v/(r) and w/(z) are independent Gaussian
white-noise processes with unit intensity.
The one-dimensional version of (3) is

d
By = [ (MLPa-sf + JUlgr+ 3 )t
With the substitutions

a@w)=NILp  h=

v(z) = a(x) —V—Z @

a(z) +b ‘T
minimizing (7) is equivalent to minimizing
E;=/ ((a-l—b)(s— 7)? +c| |2> . (9
Q
If one ignores the constraint that s(z) € [0, 1], then the

minimization of (9) can be rewritten as the following
estimation theoretic problem:

1 s
v(z) = s(z)+ —mv (2) (10)
ds(x) 1
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Figure 1: An example of segmenting a step edge with
0.2 standard deviation Gaussian noise added to the
measurements.

where w*(x) and v*(z) are independent Gaussian
white-noise processes with unit intensity. The resulting
estimate of s is truncated after each iteration so that
it lies in [0,1].

3.2. Results

Figure 1 shows the results of a one-dimensional seg-
mentation experiment. The top three panels show re-
spectively the function g, a step with noise added; the
estimated piecewise-smooth function f; and the esti-
mated edge process s, where s = 0 (or 1) represents
the absence (or presence) of an edge in the data. The
results are quite promising, accurately detecting step
edges and exhibiting robustness to additive noise.

In each case, the function pair (f, s) is estimated by
alternately solving the estimation problems (5),(6) and
(10),(11); both estimation problems are solved exactly
on a multiscale tree using a model similar to that of
[5]. The estimation algorithm generates not only es-
timates but also the error standard deviations, which
are displayed in the bottom of figure 1.

The convergence of the iterative scheme 1s quite
fast. The results for figure 1 are taken after seven it-



erations, beyond which point further iterations do not
produce any significant changes. Three iterations bring
one close to the final stopping point. Interestingly, the
different initial estimates we tried yielded the same fi-
nal estimate.

4. EXTENSIONS TO TWO DIMENSIONS

4.1. The Estimation Problem

Motivated by these results, we are in the process of
extending the one-dimensional segmentation algorithm
to two dimensions. The primary challenge is the devel-
opment of two-dimensional estimators: the estimation
problems being solved in one-dimension do not have ex-
act two-dimensional equivalents that can be solved with
the multiscale methods. In order to make use of these
techniques, one must derive multiscale two-dimensional
analogues of (5),(6) and (10),(11). Fieguth develops a
line of approach on how to do this in his Ph.D. the-
sis [6], and the ensuing discussion uses this work as a
starting point.

In order to make use of the multiscale estimation
algorithm, one needs to formulate the problem in terms
of a recursive stochastic model on a tree. The trees used
for image processing are quad trees: each node has four
descendants. An abstract index v is used to specify
a particular node on the tree, and the notation v¥ is
used to refer to the parent of node v (see figure 2). The
process that lives on the tree has a state variable z, at
every node and is defined by the root-to-leaf recursion

z, = Avzus + Bow, (12)

where the w, and the state zo at the root node are a
collection of totally independent zero-mean Gaussian
random variables, the w’s with identity covariance and
xg with some prior covariance. The A and B matrices
are deterministic quantities that define the statistics of
the process on the tree. Observations y, of the state
variables have the form

Y = Cozy, + v, (13)

where the v, are a totally independent collection of
Gaussian random variables, and the matrices C, are
deterministic quantities that specify what is being ob-
served.

Within this framework, one can write down recur-
sive equations, analogous to the one-dimensional esti-
mation problems for segmentation (5), (6) and (10),
(11). First notice that equations (6) and (11) may be
discretized by replacing the derivative with a difference
such as (f(z + 1) — f(z)) and (s(z + 1) — s(x)) respec-
tively. This leads to a recursive description for the

v

Figure 2: On a quad tree, if v i1s the index of some
node, vy denotes the parent of that node.

stochastic process in one-dimension. A natural way to
extend this form to the tree is to replace the first dif-
ferences in one variable with first differences between
scales. Then, the problem of smoothing the image
given the discontinuities becomes:

fo+f (14)
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where d,, are a set of constants that decrease geometri-
cally as the scale becomes finer[6]. Likewise, one could
reformulate the problem of determining the edge field
given a smoothed image as:

g =
(fv = foy) =

Y = su+ﬁvﬁ (16)
(0= 5) = —Zzut (17)
where
6 = Afs— for)? (18)
Y = av“;b. (19)

Notice that the principal novelty of this two-
dimensional formulation is the use of the first difference
between scales in lieu of a local difference operator act-
ing in a plane.

The preceding discussion specifies a pair of mul-
tiscale statistical problems and associated estimation
operators that one can iteratively apply to segment an
image. The operators, though, are not applied directly
to the image. Instead, one projects the image into an
overlapped domain, where one can apply the estima-
tion operators, and then projects the results back to the
original domain[7]. The final algorithm is diagrammed
in figure 3.

4.2. Results

Figure 4 displays the results for employing the preced-
ing procedure to segment a synthetic, noisy image of a
circle. The ratio of discontinuity size to noise standard
deviation is 10. A threshold of 0.9 was used to cre-
ate the thresholded edge field. The images displayed
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Figure 3: Flow Diagram for the multiscale segmentation algorithm.
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Figure 4: An example of segmenting a synthetic circle
image with measurement noise. The ratio of disconti-
nuity size to noise standard deviation is 10

are taken after five iterations, beyond which point fur-
ther iterations do not produce significant changes. The
results indicate that the algorithm can pick out the
boundary of the circle, despite the presence of noise,
and also generate the error variances that are an indi-
cation of the quality of the estimates of the smoothed
and edge fields.

5. CONCLUSIONS AND FURTHER WORK

The multiscale estimation problem derived from the
variational formulation of Shah shows promise for use
as a method for segmenting images. The segmentations
produced by the algorithm are visually meaningful, and
the algorithm is both computationally efficient and ca-
pable of generating error statistics. Although this pa-
per has not explored how the statistics may be used,

such statistics are useful for many applications. One
direction of further research is the investigation into
the meaning and uses of the error statistics obtained
from the multiscale algorithm. The results of such re-
search are liable to show that the multiscale approach
to segmentation is suitable for many problems.
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