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Abstract

Pipeline infrastructure is decaying at an accelerating rate due to reduced funding and insufficient quality control resulting in poor

installation, little or no inspection and maintenance, and a general lack of uniformity and improvement in design, construction and operation

practices. The current practice that is being followed to inspect the conditions of pipes is usually time consuming, tedious and expensive. It may

also lead to diagnostic errors due to lack of concentration of human operators. Buried pipe defect classification is thus a practical and important

pattern classification problem. These defects appear in the form of randomly shaped cracks and holes, broken joints and laterals, and others.

This paper proposes a new neuro-fuzzy classifier that combines neural networks and concepts of fuzzy logic for the classification of defects by

extracting features in segmented buried pipe images. A comparative evaluation of the K-NN, fuzzy K-NN, conventional backpropagation

network, and proposed neuro-fuzzy projection network classifiers is carried out. Among the five neural methods implemented and tested, the

proposed neuro-fuzzy classifier performs the best, with classification accuracies around 90% on real concrete pipe images.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Feature extraction and object classification are important

areas of research and of practical applications in a variety of

fields including pattern recognition, artificial intelligence,

statistics, cognitive psychology, vision analysis, and med-

icine [1–8]. Over the last 25 years, extensive research has

taken place in the development of efficient and reliable

methods for the selection of features in the design of pattern

classifiers, where the features constitute the inputs to the

classifier. The quality of this design depends on the

relevancy, discriminatory power and ease of computation

of various features. Another important issue in object

classification is the choice of an appropriate classifier.

There are at least two types of classifiers: traditional

classifiers (e.g., linear discriminant, maximum likelihood,
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k-nearest neighbor, etc.) [9] and neural based classifiers

(e.g., backpropagation, projection network, self-organizing

map, adaptive resonance theory, etc.) [10].

Given a digitized pipe image containing several objects,

the pattern recognition process consists of three major

phases, as shown in Fig. 1. The goal of this paper is to

apply methods of feature extraction and several classifica-

tions to buried pipes, a problem of considerable practical

and research interest [11]. Chae and Abraham [14]

employed image preprocessing, classification through a

neural network, and defect identification using a fuzzy

estimator. Moselhi and Shehab-Eldeen [12,13] classified

pipe defects through a conventional backpropagation

neural network trained with feature vectors as inputs.

Automated real-time pavement distress detection using

fuzzy logic and neural networks was studied using fuzzy

homogeneity for image enhancement and feature extraction

[15]. A methodology for automated pavement crack

detection [16] demonstrated the potential of using neural

network for classification and quantification of cracking on
on 15 (2006) 73 – 83



Fig. 1. The three phases of pattern recognition.
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pavement, and it requires further improvement of the

image segmentation.

We have previously demonstrated morphological [17]

and statistical [18] approaches to segmenting images of

underground concrete pipes, an important precursor step to

this paper. The proposed morphological approach is

effective at segmenting joints, laterals and pipe background,

as in Fig. 2, and the statistical approach is effective at

segmenting cracks from pipe images, as in Fig. 3.

Although the developed methods were effective at

segmentation, they did not assess the severity or extent of

distress, a more subtle question, but one of crucial

importance in pipe infrastructure assessment. The purpose

of this paper is to propose and develop a neuro-fuzzy

classifier which is able to classify the severity of distress in

cracks, holes, laterals, joints, and pipe collapse. Our

approach combines a fuzzy membership function with a

projection neural network where the former handles feature

variations and the latter leads to good learning efficiency.
2. Feature extraction

Feature extraction is an important stage for any pattern

recognition task, especially for pipe defect classification,
Fig. 2. An illustration of morphological segmentation, from
since pipe defects are highly variable and it is difficult to

find reliable and robust features. Trained operators mainly

rely on five criteria [19] in the visual interpretation of

images: intensity, texture, size, shape, and organization.

Intensity corresponds to spectral features, which can

generally be extracted easily. Textural features are those

characteristics such as smoothness, fineness, or coarseness

associated with an image [20], reflecting local spatial

properties. Other features such as size, shape, and

organization associate with large scale or global spatial

distribution.

Shape and textural features are most commonly used in

the material/pavement classification field [16]. Some of

these common shape features include area, length, round-

ness, and morphology. Textural features distinguish objects

by using statistical measures such as gray-scale co-

occurrence matrices [21] and variants, such as gray-scale

difference vectors, moment invariants, and gray-scale

difference matrices. The salient features of the data can

also be extracted through a mapping, such as Fourier

transform, Hough transform, Karhunen–Loeve transform,

or principal components [22], from a higher dimensional

input space to a lower dimensional representation space.

Because pipe-image texture is largely dominated by pipe

discoloration and background patterning, which are largely
[17], identifying a joint (top) and lateral (bottom).



Fig. 3. An illustration of statistical crack extraction, from [18], showing

different pipe surface crack patterns.
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unrelated to pipe distress, we focus on information of

geometric shape and size for feature extraction. The

advantages of the proposed extraction of geometrical

features from the image are its capability to quantify distress

features in terms of intuitive parameters (area, length,

roundness, etc.) and its ability to classify the segmented

image based on such quantities. Because the objects in the

image are pre-segmented by type [17,18], we can select

features specialized by distress type, discussed in the

following sections.

2.1. Selection of crack and hole features

In the present case for classification of the severity of

cracks and holes, if the attributes are selected to be the

major/minor axis length, and area, then the classifier can be

trained for classifying different objects based on their

geometry. For example, if an object has a width (minor

axis length) of a few millimeters and its length (major axis

length) is much greater than its width, then the object can be

classified as a crack. On the other hand, if the ratio of major

and minor is close to 1 and its minor axis length is a few

centimeters, and then the object can be classified as a hole
rather than a crack. We also compute the mean and variance

of four directional projections, summing the image pixels

horizontally, vertically, and along two diagonals. The image

projections allow crack discrimination based on orientation

(longitudinal vs. transverse vs. mushroom crack). The five

features selected for classification of the type of the crack

and hole in the underground pipe image are:

1. Area

2. Number of objects

3. Major axis length

4. Minor axis length

5. Mean and variance of image projections (0-, 45-, 90-,
and 135-)

Each segmented crack/hole image is to be classified into

one of the following seven classes based on the extracted 12

feature vectors:

1. Transverse crack

2. Longitudinal crack

3. Diagonal crack

4. Multiple crack

5. Mushroom crack

6. Minor hole

7. Major hole

2.2. Selection of joint features

We have selected five features based on the shape and

size of the underground pipe joints. These features are:

1. Area

2. Number of objects

3. Elongation (ratio of major to minor axis length)

4. Extent (ratio of net area to bounding rectangle area)

5. Mean and variance of image projections (0- and 90-)

An image of a segmented joint is to be classified into one

of the following three classes based on the extracted eight

feature vectors:

1. Perfect joint

2. Eroded joint

3. Misaligned joint

2.3. Selection of lateral features

Because underground pipe laterals are more-or-less

circular in shape, having features which recognize devia-

tions from circularity is key to classifying lateral distress.

There are a wide variety of shape descriptors available

[22]. Widely used is the Fform-factor_ 4k Area/Perimeter2,

which is 1.0 for a perfect circle, and larger for any other

shape. A second shape parameter is Froundness_, similar to

form-factor, calculated as 4*Area/k*Length2, which is 1.0
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for a perfect circle. However rather than perimeter, round-

ness uses the length (longest chord) of the feature, making it

more sensitive to shape elongation, rather than how irregular

its outline may be. Another shape parameter measures

convexity; the Faspect ratio_ of an object, the ratio of the

maximum diameter to the minimum diameter, again ignores

local smoothness and provides a second measure of

elongation. We have selected five features to discriminate

and classify pipe laterals:

1. Area

2. Number of objects

3. Roundness

4. Form-factor

5. Aspect ratio

A segmented lateral is to be classified into one of the

following three classes based on the extracted five feature

vectors:

1. Perfect lateral

2. Eroded lateral

3. Collapsed lateral

3. Pattern classification

Pattern recognition can be defined generally as the

allocation of objects to classes so that individual objects

in one class are as similar as possible to each other and as

different as possible from objects in other classes. Clearly,

the more a priori information that is known about the

problem domain, the more the classification algorithm can

be made to reflect the actual situation. For example, if the a

priori probabilities and the state conditional densities of all

classes are known, then Bayes decision theory produces

optimal results in the sense that it minimizes the expected

misclassification rate [2]. However, in many pattern

recognition problems, the classification of an input pattern

is based on data where the respective sample sizes of each

class are small and possibly not representative of the actual
Fig. 4. Architectural layout of back
probability distributions, even if they are known. In these

cases, many techniques rely on some notion of similarity or

distance in feature space, for instance, clustering and

discriminant analysis [23].

3.1. Fuzzy sets

Fuzzy sets were introduced by Zadeh in 1965 [24]. Since

that time, researchers have found numerous ways to utilize

this theory to generalize existing techniques and to develop

new algorithms in pattern recognition and decision analysis

[22,23,25–27]. In [25] Bezdek suggests that interesting and

useful algorithms could result from the allocation of fuzzy

class membership to the input vector, thus affording fuzzy

decisions based on fuzzy labels. Bezdek’s work is con-

cerned with incorporating fuzzy set methods into the

classical K-NN decision rule. In particular, a Ffuzzy K-

NN_ algorithm has been developed utilizing fuzzy member-

ships and thus producing a fuzzy classification rule.

3.2. Artificial neural network

Recently, there has been a great resurgence of research in

neural network classifiers [28–32]. Artificial neural net-

works exhibit analogies to the ways that arrays of neurons

function in biological learning and memory. The funda-

mental building blocks are units (Fnodes_) comparable to

neurons, and weighted connections that can be likened to

synapses in biological systems. The nodes are simple

information processing elements, and their number and

connection patterns can vary. The most widely used

connection pattern is the three-layer backpropagation neural

network [32] (Fig. 4), which has proved to be useful when

modeling input–output relations [31–33] and is also used in

this study. The number of nodes in the input and output

layers coincide with the number of input and output

variables in the data set whereas the ideal number of nodes

in the hidden layer must be found experimentally. By

varying the weights, between nodes, a network may be

trained to reproduce the desired input–output relationship.

The nonlinear transformation between input and output is
propagation neural networks.
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performed by the neurons in the hidden layer, which

transforms the weighted inputs using a transfer function

(activation function) as shown in Fig. 5. The most

commonly used transfer functions are the linear, log-

sigmoid, and the tan-sigmoid functions [32]. Training

consists of (i) calculating outputs from input data, (ii)

comparing the measured and calculated outputs, and (iii)

adjusting the weights for each node to decrease the

difference between the measured and calculated values.

This training procedure uses the back-propagation algorithm

[32,33]. Long training to very low errors can result in over-

training (or over-fitting), where a network gets worse

instead of better after a certain point. Over-training makes

the network memorize the example training patterns

(including all of their peculiarities) to such an extent that

it fails to generalize for new data. Care must be taken to see

that training does not result in over-fitting.

3.3. Neuro-fuzzy classifier

The benefits of the neural network is the generalization

ability about the untrained samples due to the massively

parallel interconnections and the ease of implementation

simply by training with samples for any complicated rule or

mapping problem. The utility of fuzzy sets lies in their

ability to model the uncertain or ambiguous data so often

encountered in real life. Therefore, to enable a system to

take care of real life situations in a manner more like

humans, the concept of fuzzy sets has been incorporated

into the neural network [40].

In general, there are two kinds of combinations between

neural networks and fuzzy systems [40]. In the first

approach neural network and fuzzy system work independ-

ently of each other. The combination lies in the determi-

nation of certain parameters of a fuzzy system by a neural

network, or a neural network-learning algorithm. This can

be done offline, or online during the use of the fuzzy

system. The second kind of combination defines a homo-

genous architecture, usually similar to the structure of a
Fig. 5. Functional representa
neural network. This can be done by interpreting a fuzzy

system as a special kind of neural network, or by

implementing a fuzzy system using neural network. Besides

these models, there are approaches in which a neural

network is used as a pre-processor or as a post-processor

to a fuzzy system. Such combinations do not optimize a

fuzzy system, but only aim to improve the performance of

the combined system. Learning takes place in the neural

network only; the fuzzy remains unchanged [40].

3.4. Projection neural network

The standard backpropagation training algorithm [32,33],

while successful for problems of moderate size, suffers from

slow training times, the potential to get stuck at local

minima, and the need for a large number of hidden nodes

when applied to complicated problems. However, in

problems for which it does converge to a solution, it offers

the advantage of ensuring error minimization. Therefore,

when solving a classification problem, the network outputs

will approach the Bayes conditional probabilities, given a

statistically representative set of training data. On the other

hand, there exist classification algorithms that train quickly

but do not guarantee minimization of the classification error.

Examples of these are the hypersphere classifiers, such as

the restricted Coulomb energy network (RCE) [31], the

models of adaptive resonance theory (ART) [28], and the

Kohonen type networks [29]. In this study, we have used a

projection network that combines the utility of both RCE

[31] and backpropagation [33] approaches.

The classification algorithms that provide fast training do

so by placing prototypes with closed decision boundaries

around training data points and then adjusting their positions

and/or sizes. As an example, a hypersphere classifier such as

RCE places hyperspherical prototypes around training data

points and adjusts their radii. Radial basis function networks

can provide fast training as well as error minimization

[30,34,35]. While several methods of determining the size,

position and amplitude of the radial basis functions have
tion of single neuron.
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been proposed they do not have the simplicity or computa-

tional efficiency of backpropagation training [36]. In

contrast, the projection network [37] provides a means of

implementing radial basis functions with a uniform

approach to learning these parameters: backpropagation

training of the weights and thresholds of a feedforward

network [32]. This effectively leads to optimization of the

prototypes’ locations, size and amplitudes. Furthermore,

both closed decision regions (hyperspheres or hyperellipses)

and open ones (such as hyperplanes) are accommodated in

the same network. Training of the network parameters may

convert closed decisions regions to open ones and vice versa

in the process of minimizing the error.

It is this ability to form closed prototypes with a single

hidden node that allows the projection network to be

initialized rapidly to a good starting point that is already

close to a desirable error minimum. Any of a number of

algorithms can be used for this initialization; Kohonen

learning [29], RCE [31], and ART [28] are examples. Once

the network has been initialized in this manner, modified

backpropagation training is used to adjust the network

weights and thresholds to ensure error minimization. Because

the network begins near a good solution, one avoids the long

training time which standard backpropagation would take to

reach this point as well as the possibility of being stuck in

local minima that might prevent one from reaching this point.

The extension of a standard neural network to produce the

projection network is a very simple one.

The neural network inputs are projected onto a hyper-

sphere in one higher dimension and the input and weight

vectors are confined to lie on this hypersphere. A single

hidden level node is now capable of forming either an open

or a closed region in the original input space. This basic

concept is not new. The need to normalize the input vector

and the weight vector so that their dot product is a measure

of their closeness has been recognized for a long time [29].
Fig. 6. The projection neural network architecture showing the combination of a
Telfer and Casasent [38] have used a projection onto a

cylindrical hyperbola for initialization of a network with no

hidden layers. Saffrey and Thornton [39] have applied

stereographic projection to the Upstart algorithm. By

projecting the input vector onto a hypersphere in one higher

dimension, one can create prototype nodes with closed or

open classification surfaces all within the framework of a

backpropagation trained feedforward neural network. In this

way, one achieves rapid prototype formation through

initialization and subsequent optimization through back-

propagation training. Fig. 6 shows the typical structure of a

projection network.
4. Classification of pipe defects

Given the potential advantages of neural networks over

statistical methods for classification, the research purpose of

this paper is to determine empirically how well these

methods perform as classifiers for the classification of

underground pipe objects. The statistical and neural

classifiers are evaluated by comparing their performance

on the classification of extracted feature vectors by the

severity of distress present in the pipe images. The data set

used for the evaluation of the classifiers is generated from

previously segmented underground pipe images. The actual

classification of each image is determined by human visual

observation (Ontario Pipeline Inspectors). Two data sets are

generated: one is used as a training data set, used to train

each of the classifiers, and the other is used as a test data set,

to evaluate the performance of each classifier on data not

seen during training.

In this study, we propose to apply concepts to fuzzy logic

to a projection neural network. We propose a homogeneous

architecture, illustrated in Fig. 9, in which the fuzzy

concepts appear simply in converting the input feature
reduced Coulomb energy (RCE) network and a backpropagation network.



Fig. 7. Linguistic representation of various membership functions.

Fig. 8. Linguistic representation of feature values by trapezoidal member-

ship function.
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values into fuzzified data, which are input to the projection

neural network. By providing comparatively simple, fuzzy

features as inputs, the performance of the network is

robustified, leading to superior classification results. The

following sections detail the modified natures of inputs and

outputs for the proposed network.

4.1. Proposed neuro-fuzzy projection network

In this study, we apply the fuzzy concept simply in

converting feature values into fuzzified data, which are

input and output to the projection neural network algorithm.

4.2. Input pattern representation in linguistic form

In the proposed neuro-fuzzy algorithm, we use the fuzzy

data as inputs to neural network. Sometimes the variation of

feature values is large, in which case it is difficult to classify

objects correctly based on these feature values. To solve this

problem, we first convert each object feature value into three

fuzzy data [41], and then learning is performed with these

fuzzy data using the projection network. Finally, we classify

objects using the proposed neuro-fuzzy algorithm. There are

several types of membership functions in representing fuzzy

phenomena [24], as shown in Fig. 7. The proposed object

classification algorithms are simulated using triangular,

trapezoidal, and Gaussian membership functions. To convert

normalized features into fuzzy data, we determine the MAX

and MIN values that are the maximum and minimum feature

values for entire data set, respectively. As shown in Fig. 8,

we generate three membership functions denoted by FS_
(small), FM_ (medium), and FL_ (large). In the underground

pipe object classification method using three membership

functions (i.e., triangular, trapezoidal, and Gaussian), the

extracted features are represented by means of linguistic

variables specified by these membership functions.

4.3. Output class representation in linguistic form

In general, a neural network passes through two phases:

training and testing. During the training phase, supervised

learning is used to assign the output membership values

ranging in [0,1] to the training input vectors. Each output
from the network may be assigned with a nonzero member-

ship instead of choosing the single node with the highest

activation. It allows the modeling of fuzzy data when the

feature space involves overlapping pattern classes, such that

a pattern point may belong to more than one class with a

nonzero membership. During training, each error in

membership assignment is fed back and the connection

weights of the network are appropriately updated. The

backpropagated error is computed with respect to each

desired output, which is a membership value denoting the

degree of belongingness of the input vector to a certain

class. The testing phase in a fuzzy network is equivalent to

the conventional network.

In the case of an m-class problem with an n-dimensional

feature space, let the n-dimensional vectors Mkj and ljk

denote the mean and the standard deviation for the jth input

feature of the numerical training data for the kth class. The

weighted distance, Zik, of the ith training pattern vector Fi

from the kth class is defined as

Zik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

Fij �Mkj

lkj

#" 2
vuut for k ¼ 1; N ;m and j ¼ 1; N ; n:

ð1Þ

The weight 1/lkj accounts for the variance of the classes so

that a feature with higher variance has less significance in
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characterizing a class. The membership of the ith pattern to

class Ck is defined as follows:

lk FiÞð ¼ Zik �mink ZikÞð
maxk ZikÞð �mink ZikÞð

�	
for k ¼ 1; N ;m: ð2Þ

Obviously lk(Fi) lies in the interval [0,1]. Except for the

fuzzy membership desired values in the output layer, the

training method and network structure is equivalent to the

conventional neural network classifier.

4.4. Fuzzy input and output module and neural network

module

The organization of the proposed fuzzy input and output

modules and neural network is illustrated in Fig. 9. The

neural network module is a conventional feedforward

artificial neural network; a simple projection network is

used in this study. As usual, the number of nodes in the
Fig. 9. The neuro-fuzzy neural networ
input and output layers equals the number of input and

output variables, and the number of nodes in the hidden

layer is found experimentally. A log-sigmoid transfer

function [31] is used for the hidden layer neurons, and a

tan-sigmoid function is used for the output neuron. To

increase the rate of training convergence, a momentum term

and a modified backpropagation training [34] rule are used.

The input layer of this network consists of 3I nodes

(because of the use of fuzzy sets to screen the I input

feature variables), and the output layer consists of C nodes

(trained with C fuzzy output class values).
5. Performance comparison with other classifiers

To study the performance of the proposed neuro-fuzzy

classifier and to compare its performance with that of other

statistical and neural classifiers, we have used K-NN [23],

fuzzy K-NN [42], and conventional backpropagation net-
k architecture with fuzzy inputs.
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work classifiers. The theoretical background and relative

advantages of these classifiers are discussed below.

5.1. The K-NN algorithm

Many classification methods assume that the form of

class-condition densities is known. The popular maximum

likelihood estimation [2] approach assumes multivariate

normality. The K-nearest neighbor (K-NN) [23] procedure is

a nonparametric classification procedure. This rule classifies

a new feature vector y by assigning it the label most

frequently represented among the K-nearest of all training

samples [23]. The decision is made by determining the

majority class represented in the set of K-nearest neighbors

of a pattern by examining the labels of each of the K

neighbors. Randomization is used for breaking ties. In

practice, one chooses K ¼ c
ffiffiffi
n

p
where c is an appropriate

constant and n is the size of the training set. In the present

study, c=1 is used.

5.2. The fuzzy K-NN algorithm

The fuzzy K-NN algorithm is considered one of the

most accurate algorithms in pattern recognition [42]. The

classical (crisp) K-NN algorithm classification rule assigns

an input sample vector y, which is of unknown classi-

fication, to the class that is represented by a majority

amongst its K-nearest neighbors [2]. The K-nearest

neighbors are chosen from a labeled data sample (data of

known classification). The fuzzy K-NN algorithm assigns

class membership to a sample observation based on the

observation distance from its K-nearest neighbors and their

memberships [42].

IfW={x1,x2,. . .,xn} is the set of n labeled samples and uij
is the membership of the jth labeled data in the ith class,

then the fuzzy K-NN algorithm is described as follows [42].

Begin

Input y, of unknown classification.

Set K, 1�K�n, Initialize i=1

Do Until (K-nearest neighbours found)

Compute distance from y to xi, If (i�K) Then

Include xi in the set of K-nearest neighbors
Table 1

Confusion matrix for the proposed neuro-fuzzy projection network classifier usin

Class Transverse crack Longitudinal crack Diagonal crack

1 2 3

Transverse crack 1 43 0 2

Longitudinal crack 2 0 33 1

Diagonal crack 3 1 1 18

Multiple crack 4 0 0 0

Mushroom crack 5 0 0 0

Minor holes 6 0 0 0

Major holes 7 0 0 0

Total
Else if (xi is closer to y than any previous nearest

neighbour) Then

Delete farthest in the set of K-nearest neighbours

Include xi in the set of K-nearest neighbours

End If, Increment i

End Do Until, Initialize i=1

Do Until (y assigned membership in all classes)

Compute ui yð Þ ¼

XK
j¼1

uij
1

‹y� xj‹
2

m�1ð Þ

1
A

0
@

XK
j¼1

1

‹y� xj‹
2

m�1ð Þ

1
A

0
@

ð3Þ

Increment I, End Do Until, End

As shown in Eq. (3), the assigned memberships of

observations are influenced by the class memberships of

the K-nearest neighbours. The memberships of the labeled

sample can be assigned in several ways such as using fuzzy

cluster analysis or based on expert opinions. The distance

between observations can be represented by any distance

measure such as the Euclidean distance, defined as [25]

dyxi ¼
Xp
v¼1

yv � xivÞð 2 ¼ y� xiÞð V
y� xiÞð ð4Þ

where p=number of variables for observation i. With this

distance, the variables are given equal weights. The variable

m in Eq. (3) defines how heavily the distance is weighted

when calculating each neighbor’s contribution to the

membership value [25].

5.3. The conventional backpropagation network

Several neural network models can be used in pattern

classification (both supervised and unsupervised). For

supervised pattern classification, the most commonly used

ANN is the feedforward network trained using the back-

propagation algorithm [32], which is adopted in the present

study. The backpropagation algorithm can be described in

three equations. First, weight connections are changed in
g a Gaussian membership function for classification of crack/hole defects

Multiple crack Mushroom crack Minor holes Major holes Total

4 5 6 7

0 0 0 0 45

1 0 0 0 35

0 0 0 0 20

58 2 0 0 60

2 13 0 0 15

0 0 53 2 55

0 0 3 22 25

255



Table 2

Confusion matrix for the proposed neuro-fuzzy projection network using a Gaussian membership function for classification of clean pipe and lateral/joint

defects

Class Clean pipe Perfect joint Eroded joint Misaligned joint Perfect lateral Eroded lateral Collapsed pipe Total

1 2 3 4 5 6 7

Clean pipe 1 110 0 0 0 0 0 0 110

Perfect joint 2 0 42 7 1 0 0 0 50

Eroded joint 3 0 3 11 1 0 0 0 15

Misaligned joint 4 0 1 6 18 0 0 0 25

Perfect lateral 5 0 0 0 0 27 3 0 30

Eroded lateral 6 0 0 0 0 2 8 0 10

Collapsed pipe 7 0 0 0 0 0 0 5 5

Total 245
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each learning step (k) with

Dw
s½ �
ij kð Þ ¼ g tð Þd s½ �

pj x
s�1½ �
j þ mDw

s½ �
ij k�1ð Þ ð5Þ

Second, for output nodes it holds that

d o½ �
pj ¼ dj � oj

��
f Vj I

s½ �
j

��
ð6Þ

and third, for the remaining nodes it holds that

d s½ �
pj ¼ f Vj I

s½ �
j

�� X
k

d sþ1½ �
pk w

sþ1½ �
jk ð7Þ

where xj
[s] =actual output of node j in layer s; wij

[s] =weight

of the connection between node I at layer (s�1) and node j

at layer (s); dpj
[s] =measure for the actual error of node j;

Ij(
[s] =weighted sum of the inputs of node j in layer s;

g(t)= time-dependent learning rate; f( )= transfer function;

m =momentum factor (between 0 and 1); and dj, oj=desired

and actual activity of node j (foe output nodes only).

Parameter values (i.e., the learning rate g(t), momentum

factor m, and the number of hidden nodes hj) are selected

experimentally to be those that gave the best classification

accuracy. The input and output nodes are selected according

to the feature vectors and class of objects to be classified.
6. Experimental results and evaluation

We have applied the proposed approaches to 500

underground concrete sewer pipe images. These images

are obtained from SSET inspection of flush cleaned concrete

sewer pipes, 18 in. in diameter, from various municipalities
Table 3

Classification accuracy by proposed neuro-fuzzy projection network

Classifier Fuzzy

input

Membership

function

Fuzzy

output

Classification accuracy (%)

Crack/hole Joint Lateral

1 Yes Triangular No 91 83.2 87.1

2 Yes 91.7 84.5 87.3

3 Trapezoidal No 92.3 86.2 88.2

4 Yes 93.2 87.5 88.7

5 Gaussian No 92.9 87.7 89.9

6 Yes 94.1 88.2 91.8

7 No No Yes 90.3 82.8 86.8
in North America. In this study, 60% of the images are used

for training the classifiers and the remaining 40% are used to

test the classifiers. The training set of 60% images is

randomly selected from each class of defects in the 500

image database. To allow for comparison between the five

classification methods, results are presented to show the

difference in the magnitude of classification accuracy

compared to expert classification (further details can be

found in the doctoral thesis research [43]). The overall

classification accuracy for the proposed neuro-fuzzy algo-

rithm with Gaussian membership function is calculated by

constructing a confusion matrix between the experts’

decisions and classifier results, as shown in Tables 1 and 2.

In Table 3, we show the overall classification results of

the fuzzy approach with different membership functions. We

can observe that the fuzzy network based on Gaussian

membership functions has better classification rates; there-

fore we have selected this network as the basis of

comparison with the other classifiers.

Table 4 compares the classification rates for the five

classification methods. In general, the three neural network

approaches performed better and produced more consistent

results than the K-NN and fuzzy K-NN classifiers. It is

clear, however, that the overall performance of the proposed

neuro-fuzzy model is better than that of the other classifiers.

Although there is only a slight improvement in classification

rate between the projection and backpropagation networks,

the projection network learned much faster and required

fewer nodes in the hidden layer.

One of the most important attributes of the neural

classifiers, in general, is their ability to spot patterns in data

that classical pattern recognition systems may not be able to
Table 4

Comparison of the performance evaluation of the proposed neuro-fuzzy

projection network classifier with that of four other classifiers

Classifier Classification methods Classification accuracy (%)

Crack/hole Joint Lateral

1 K-NN 81 76.8 80.3

2 Fuzzy K-NN 84.6 79.3 82.9

3 Backpropagation network 87.2 81.6 84.5

4 Projection network 89.5 82.1 86

5 Neuro-fuzzy projection network 94.1 88.2 91.8
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detect. Therefore, we see the proposed neuro-fuzzy projec-

tion classifier as an excellent tool for dealing with environ-

ments that are highly unstructured and that may involve

incomplete or noisy data (such as underground pipe images).
7. Conclusions

In this paper, we proposed a neuro-fuzzy classifier that

combines neural networks and fuzzy concepts for the

classification of objects in segmented underground pipe

images. Fuzzy sets are used in the input module as well as in

the output module to Fscreen_ data patterns before network

training. With this technique, the proposed network can be

trained with greater efficiency. In the feature extraction step,

we extract different features of the object present in the

segmented image based on the geometric shape and size.

These features values are then fuzzified and applied to the

neuro-fuzzy network in the classification step. We have

shown simulation results of the proposed neuro-fuzzy

algorithm in comparison to the K-NN method, fuzzy K-

NN method, and conventional backpropagation algorithm.

Simulation results show that the proposed neuro-fuzzy

algorithm using a combination of Gaussian membership

functions and projection neural networks gives better

classification results than the other statistical and neural

network methods. The results show the promise of the

proposed fuzzy-neural network as a tool for classifying

objects in the segmented underground pipe images based on

extracted feature vectors.
References

[1] P. Dodwell, Visual Pattern Recognition, Holt, Rinehart, and Winston,

New York, 1970.

[2] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis,

Wiley Publication, New York, 1970, pp. 271–272.

[3] R. Gnanadesikan, Methods for Statistical Data Analysis of Multi-

variate Observations, Wiley, New York, 1977.

[4] E. Hunt, Artificial Intelligence, Academic Press, New York, 1975.

[5] A. Reynolds, P. Flagg, Cognitive Psychology, Winthrop, MA, 1977.

[6] K.T. Spoehr, S.W. Lehmkuhle, Visual Information Processing, Free-

man, San Francisco, CA, 1982.

[7] P. Winston, Artificial Intelligence, Addison-Wesley, Reading, MA,

1977.

[8] A. Wardle, L. Wardle, Computer aided diagnosis, Methods Inf. Med.

17 (1) (1978) 15–28.

[9] R.J. Schalkoff, Pattern Recognition: Statistical, Structural, and Neural

Approaches, John Wiley and Sons, Inc., New York, NY, 1992.

[10] K. Mehrotra, C.K. Mohan, S. Ranka, Elements of Artificial Neural

Networks, MIT Press, Cambridge, MA, 1997.

[11] S.K. Sinha, F. Karray, Classification of underground pipe scanned

images using feature extraction and neuro-fuzzy algorithms, IEEE

Trans. Neural Netw. 13 (2) (2002) 393–401.

[12] O. Moselhi, T. Shehab-Eldden, Automated detection of defects in

underground sewer and water pipes, Autom. Constr. 8 (5) (1999)

581–588.

[13] O. Moselhi, T. Shehab-Eldden, Classification of defects in sewer pipes

using neural networks, J. Infrastruct. Syst. 6 (3) (2000) 97–104.
[14] M.J. Chae, D.M. Abraham, Neuro-fuzzy approaches for sanitary

sewer pipeline condition assessment, J. Comput. Civ. Eng. 15 (1)

(2001) 4–14.

[15] H.D. Cheng, Automated real-time pavement distress detection using

fuzzy logic and neural networks, SPIE Proc. Nondestr. Eval. Bridges

Highw. (1996) 140–151.

[16] M.S. Kaseko, S.G. Ritchie, A neural network based methodology for

pavement crack detection and classification, Transp. Res., vol. 1 (4),

Transportation Research Board, Washington, DC, 1993, pp. 275–291.

[17] S.K. Sinha, P.W. Fieguth, FSegmentation of buried concrete pipe

images,_ Automation in Construction (in press).

[18] S.K. Sinha, P.W. Fieguth, FAutomated detection of cracks in buried

concrete pipe images,_ Automation in Construction (in press).

[19] M.A. Shaikh, B. Tian, Neural network based cloud detection/classi-

fication using textural and spectral features, Proc. of IGRASS,

Lincoln, NB, 1996, pp. 1105–1107.

[20] R.L. Bankert, Cloud classification of AVHRR imagery in maritime

using a probabilistic neural network, J. Appl. Meterol. 33 (1994)

909–918.

[21] R.M. Haralick, Textural features for image classification, IEEE Trans.

Syst. Man Cybern. 3 (1973) 610–621.

[22] A.K. Jain, Fundamentals of Digital Image Processing, Englewood

Cliffs, New Jersey, 1989.

[23] T.M. Cover, P.E. Hart, Nearest neighbor pattern classification, IEEE

Trans. Inf. Theory 13 (1967) 21–27.

[24] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338–353.

[25] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function

Algorithms, Plenum Press, New York, 1981.

[26] M. Gupta, R. Ragade, P. Yager, Advances in Fuzzy Set Theory and

Applications, North Holland, Amsterdam, 1979.

[27] A. Kandel, Fuzzy Techniques in Pattern Recognition, John Wiley,

New York, 1982.

[28] G.A. Carpenter, S. Grossberg, A massively parallel architecture for a

self organizing neural pattern recognition machine, Comput. Vis.

Graph. Image Process. 37 (1987) 54–115.

[29] T. Kohonen, Self Organizing Maps, Springer Verlag, New York, 1995.

[30] M.J.D. Powell, Radial Basis Functions for Multivariable Interpolation:

A Review, Clarendon Press, Oxford, 1987.

[31] D.L. Reilly, L.N. Cooper, C. Elbaum, A neural model for category

learning, Biol. Cybern. 45 (1982) 35–41.

[32] D.E. Rumelhart, J. McClelland, Parallel Distributed Processing, vol. 1,

MIT Press, Cambridge, MA, 1986.

[33] P. Werbos, Beyond regression: new tools for prediction and analysis in

the behavioral sciences, PhD dissertation, Harvard (1974).

[34] J. Moody, C. Darken, Fast learning in networks of locally tuned

processing units, Neural Comput. 1 (2) (1989) 281–294.

[35] T. Poggio, F. Girosi, Networks for approximation and learning, Proc. of

the IEEE Neural Networks Conf., vol. 78 (9), 1990, pp. 1481–1497.

[36] F.J. Pineda, Recurrent backpropagation and the dynamical approach to

adaptive neural computation, Neural Comput. 1 (1) (1989) 161–172.

[37] G. Wilensky, N. ManuKian, The projection neural network, Proc. of

the Intl. Joint Conf. on Neural Networks, vol. 2, 1992, pp. 358–367.

[38] B. Telfer, D. Casasent, Minimum cost Ho–Kashyap associative

processor for piecewise hyperspherical classification, Proc. of the

Intl. Joint Conf. on Neural Networks, vol. 2, 1991, pp. 89–94.

[39] J. Saffery, C. Thornton, Using stereographic projection as a prepos-

sessing technique for upstart, Proc. of the Intl. Joint Conf. on Neural

Networks, vol. 2, 1991, pp. 441–446.

[40] C.T. Lin, C.S.G. Lee, Neuro-Fuzzy Systems, Prentice-Hall, New

Jersey, 1996.

[41] S.K. Pal, S. Mitra, Multilayer perceptron, fuzzy sets, and classifica-

tion, IEEE Trans. Neural Netw. 3 (5) (1992) 683–696.

[42] J.M. Keller, M.R. Gray, J.A. Givens, A fuzzy K-nearest neighbor

algorithm, IEEE Trans. Syst. Man Cybern. 15 (1985) 580–585.

[43] S.K. Sinha, Automated Underground Pipe Inspection Using a Unified

Image Processing and Artificial Intelligence Methodology, PhD thesis,

University of Waterloo, 2000.


	Neuro-fuzzy network for the classification of buried pipe defects
	Introduction
	Feature extraction
	Selection of crack and hole features
	Selection of joint features
	Selection of lateral features

	Pattern classification
	Fuzzy sets
	Artificial neural network
	Neuro-fuzzy classifier
	Projection neural network

	Classification of pipe defects
	Proposed neuro-fuzzy projection network
	Input pattern representation in linguistic form
	Output class representation in linguistic form
	Fuzzy input and output module and neural network module

	Performance comparison with other classifiers
	The K-NN algorithm
	The fuzzy K-NN algorithm
	The conventional backpropagation network

	Experimental results and evaluation
	Conclusions
	References


