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Abstract—Thousands of spaceborne synthetic aperture
radar (SAR) sea-ice images are systematically processed
every year in support of operational activities such as ship
navigation and environmental monitoring. An automated
approach that generates a pixel-level sea-ice image classi-
fication is required since manual pixel-level classification
is not feasible. Currently, using a standardized approach,
trained ice analysts manually segment full SAR scenes into
smaller polygons to record ice types and concentrations.
Using this data, pixel-level classification can be achieved by
initial unsupervised segmentation of each polygon followed
by automatic sea-ice labeling of the full scene. A fully
automated Markov random field model that is used to
assign labels to all segmented regions in the full scene
has been designed and implemented. This approach is the
first known successful end-to-end process for operational
SAR sea-ice image classification. In addition, a novel
performance evaluation framework has been developed
to validate the segmentation and labeling of SAR sea-ice
images. A trained sea-ice expert has conducted an arms
length evaluation using this framework to generate a set
of full scene reference images used for testing. Testing
demonstrates operational success of the labeling approach.

Index Terms—Synthetic aperture radar, sea-ice, image
classification, unsupervised segmentation, Markov random
field (MRF).

I. Introduction

Recent developments in polar regions and the trend of
global warming provide clear evidence that the interest
in sea-ice monitoring applications will increase. Remote
sensing, particularly satellite SAR imaging, is used to
study behavior and change of sea-ice. Subsequently, fast
processing and interpretation of large volumes of wide
expanse satellite data is required. Operationally, SAR
images are manually interpreted by assigning ice types
and their concentrations to large regions. An automatic
procedure that assigns ice type labels to pixels is prefer-
able to generate pixel-level ice concentration maps.

The authors are with the Vision and Image Processing (VIP) Re-
search Lab, Department of Systems Design Engineering, University
of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada,
N2L 3G1. Tel.: +1 519 888 4567 x32604. Fax: +1 519 746 4791.
E-mail: dclausi@uwaterloo.ca.

The drawback of region-based interpretation is that
the ice concentrations are often inaccurate and such data
can not always be effectively used. For example, a region
may have 30multi-year ice, but the user can not pinpoint
the multi-year ice location. Such information would be
useful for mathematical climate models, route planning
and for ship navigation. Hence, automated interpretation
of SAR sea-ice images would be invaluable for orga-
nizations performing sea-ice interpretation operationally
or conducting research in this field. This paper describes
an end-to-end operational process which provides pixel-
level classification of full SAR sea-ice imagery.

The processing flow of SAR sea-ice imagery and the
depiction of the problem is shown in Fig. 1. The first
step is an image acquisition by a SAR satellite (Fig.
1a). Later, an ice analyst manually divides the image
into large ”polygon” regions (Fig. 1b) and reports the
ice types and their estimated concentrations for each
polygon using an ”egg code”. The egg code, named after
its oval shape, is the World Meteorological Organization
(WMO) [1] standard which lists ice types and their
concentrations without spatially identifying the location
of each ice type in the polygon region. To automatically
interpret images based on egg code data, unsupervised
segmentation can be performed on each polygon inde-
pendently (Fig. 1c). The challenge and focus of this
paper is to automatically assign a sea-ice label to each
segmented region in each polygon across the entire SAR
scene (Fig. 1d).

Other research has considered the classical classi-
fication approach using training test samples [2]-[3].
Here, in a similar starting point as [4], we perform
the classification using the polygon data. Each polygon
is automatically segmented into disjoint regions and
a global approach using all polygons is implemented
to label the regions. This leads to an automatic and
unsupervised algorithm for at-resolution classification of
SAR sea-ice imagery.

The labeling technique uniquely models the spatial
relationship of regions between the poly- gons in the
form of a neighborhood system embedded in a Markov
random field (MRF) [5] framework. The statistical and
spatial relationship models are then combined in a
Bayesian framework where the region labeling is for-
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mulated as a global energy minimization problem. The
mathematical model is described in Section III and its
implementation in Section IV.

A consistent challenge in sea-ice classification re-
search is the lack of validated full scene data. Field
studies can not feasibly be performed for a single scene
where the swath is 500km over hazardous ocean regions.
The most effective validation is performed by trained
ice experts. As such, we have created a user-interactive
performance evaluation framework (Section V) whereby
an expert third party can validate both the segmentation
and labeling algorithmic outcomes. This is used to both
evaluate the herein developed techniques and generate
validated reference images. The reference database con-
sists of three operational full-scene SAR sea-ice images
which have been used to assess the performance of the
proposed technique (Section VI).

II. BACKGROUND

A. SAR sea-ice remote sensing and processing

SAR is an active microwave sensor, which can capture
images day and night irrespective of fog and clouds.
These features makes SAR crucial for sensing po-
lar regions. In the past two decades with the launch
of RADARSAT-1,2, Japanese Earth Resource Satellite
(JERS)-1,2, European Remote Sensing (ERS)-1,2, En-
vironmental Satellite (ENVISAT) and others [6], there
has been a shift from aerial platforms towards the use of
spaceborne platforms for capturing SAR sea-ice imagery
because of reduced costs.

RADARSAT-1,2 are commercial SAR satellites
launched in 1995 and 2007 with the primary goal of
monitoring and managing sea-ice. RADARSAT-1 is op-
erational but its estimated lifespan has been exceeded.
To ensure continuity of service, the more advanced
satellite RADARSAT- 2 was launched. The primary user
of RADARSAT SAR images has been the Canadian
Ice Service (CIS) [7] processing approximately 4000
SAR sea-ice images annually [8]. CIS is an organization
responsible for providing sea-ice conditions of Cana-
dian shores and seas, in a timely manner, to support
safe maritime operations [7]. Both satellites operate in
5.3GHz C-band. RADARSAT-1 images [9] acquired in
ScanSAR mode are the main source of SAR sea-ice
imagery provided by CIS and used in this research.
In ScanSAR mode the swath reaches the 500 km [10]
range at resolution of 50 m. CIS 2x2 block averages
SAR images for archival purposes to the image size of
roughly 5000 by 5000 pixels. Using the RADARSAT-
1,2 SAR sea-ice images and ancillary information from
ships, aircrafts and meteorological sensors, a CIS analyst

Fig. 2. The example of ice map provided by CIS (reduced to
fit). Alphabet letters (A,B,C,...) associate egg code [1] with polygon
regions.

manually produces ice maps with egg codes and poly-
gons similar to the map shown in Fig. 2. The standard
sea-ice symbol representation along with descriptions are
given in Table I.

B. Early Efforts

There is a history of supervised classification. For
example, numerous studies [2],[3] require selection of
training samples to extract class statistics and a priori
knowledge of the class statistics is required for more
recent methods [12],[13]. In this approach, the ice ana-
lyst cumbersomely discerns and selects pure ice samples
from the image to train and test the classification. Such
training data is subject to the bias of the individual
analyst and does not consistently match the ice types
across scenes and not even across a single scene. This
variation is a result of the high inter-class and intra-
class variability of the backscatter. The incidence angle,
natural ice variability and environment are key contrib-
utors to nonstationarity in SAR sea-ice imagery. Hence,
for operational use, techniques that classify based on
thresholds [14], [15], [16] and statistics derived from
training samples will not perform robustly. In reality,
the human ice analyst differentiates ice types within the
scene on a relative basis.

Published research [11], [17], [18] exists that segments
SAR sea-ice scenes using an unsupervised approach.
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Fig. 1. Classification of full scene operational SAR sea-ice images. r, P, l refer to region, polygon and sea-ice label. (a) SAR image
acquired by satellites. (b) Image manually divided into polygons with appropriate egg code data. (c) Image with every polygon automatically
segmented into nr regions using IRGS [11]. (d) Image with every region automatically labeled with sea-ice type. This paper focuses on (d),
the labeling problem.

TABLE I
The description of stage of sea-ice development S 0, S a, S b, S c, S d [1]

Stage of development Thickness(cm) Ice-type code
New ice < 10 1

Young ice 10 − 30 3
Grey ice 10 − 15 4

Grey-white ice 15 − 30 5
First-year ice 30 6

Thin first-year ice 30 − 70 7
Medium first-year ice 70 − 120 1.

Thick first-year ice > 120 4.
Old ice 7.

Second-year ice 8.
Multi-year ice 9.

Fast-ice N•
Undetermined ice X

Among different techniques, IRGS [11] (Iterative Region
Growing with Semantics) has shown robust performance
segmenting both operational SAR sea-ice and general
purpose imagery. IRGS has been successfully tested and
validated by CIS personnel. IRGS has been integrated
into a software system called MAGIC [17] to use CIS
source data and enable consistent testing in an easy-
to-use GUI framework. For these reasons, IRGS has
been used as the segmentation algorithm in this paper.
Briefly, IRGS works by first breaking the scene into
small uniform regions using a watershed segmentation
algorithm. Then, each region is assigned to a class based
on a Markov random field model. Adjacent regions that

have the same assigned class are greedily merged until
the system energy can not be decreased further. These
two steps (class assignment and merging) are iterated
until merging cannot be performed further.

Despite progress in the SAR sea-ice segmentation
field, limited research has been performed in ice type
labeling. Existing classification techniques [15], [19]
make use of unsupervised segmentation as their initial
step but label the segmented images based on training
statistics which makes these approaches potentially not
robust in an operational environment. An initial attempt
to avoid the training step [20] used a logical assignment
of ice labels by cognitive reasoning and class statistics,
but this methods outcome is dependent on the ordering
of the polygons. However, labeling is preferred to be
optimal over the whole SAR scene, and can be performed
automatically by the best fit modeling of information
from all polygons.

III. SEA-ICE LABELING MODEL

A. Graph Model and Definitions

Let S denote a discrete 2D rectangular image space
of M × N pixels. Each pixel s represents a σ◦ [21]
value. Consider representing the image space S as nr

closed regions r = {r1, r2, ..., rnr } having boundaries ∂.
The polygon P = {P1, P2...Pnp} is a higher structure
defined on image space S where each Pq consists of
one or more regions {ri, . . . } ⊆ r (see Fig. 1c). Assuming
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Fig. 3. (a)The boundary is the set of all white sites connecting
two regions ri, r j based on first-order neighborhood system [22].
The bold black line is an edge separating two regions. (b)Graphical
representation of Fig. 1c.

all polygons have been segmented, the segmented result
X = {Xr | r ∈ S } represents the random field defined on
S , where Xr is the random variable representing all pixels
s ∈ ri in that region. Suppose there are nl different sea-
ice classes in X. Let Z = {Zr | r ∈ S } be another random
field defined on S where each discrete valued random
variable Zr , has value in {1, ...nl}, represents the sea-ice
label to which all pixels s ∈ ri in that region belong.
Definitions essential to the proposed labeling model are
given next.
Definition 1: Suppose the realization of Z, X, is z = {zr |

r ∈ S } and x = {xr | r ∈ S }, then the sea-ice labeling
problem can be formulated as an estimation of z from x:

L :
{
{xr | r ∈ S } → {zr | r ∈ S } (1)

with the condition that the labeling realization {zr | r ∈
Pq} of some polygon Pq is constrained to one of the
permutations of sea-ice labels assigned for that polygon.
Definition 2: The boundary ∂ is the set of all neighbor
sites between regions. The neighborhood of sites is de-
termined based on first-order neighborhood system [22]

defined on image space S . If at least one such site exists,
the regions are said to have a boundary between them
as depicted in Fig. 3a.
Definition 3: Two regions ri, r j are neighbors if and only
if the regions do not belong to same polygon ri, r j <
Pq for some polygon Pq and a boundary exists between
them. In Fig. 1c r2 and r4 are neighbors but r1 and r2 are
not. The graphical representation in Fig. 3b also shows
this where the boxes each represent a region and the lines
connecting the boxes define a neighbor relationship. Nri

is the neighborhood of a region ri comprising all regions
r j for which ri, r j are neighbors and has symmetrical
relationship r j ∈ Nri ⇔ ri ∈ Nr j . Neighborhood system
Nr is a set of all neighborhoods.
Definition 4: Clique c is a single region or a subset of
regions for which every pair of regions are neighbors
and the set of all cliques is C = [c | c ⊂ Nr] [22].
Definition 5: The random field S is an MRF with respect
to the neighborhood system Nr if

p(zr | S , r, s < S ) = p(zr ∈ Nr) (2)

stating that the probability of some realization of the
region given the whole graph is equal to probability
given only neighbors. This property is also known as
the Markovianity principle and its main advantage is the
decomposition of large problems into smaller decorre-
lated and conditionally independent ones [23].
Theorem 1: The Hammersley-Clifford theorem states
that if S is an MRF with respect to Nr and p(zr) > 0
then S is a Gibbs random field (GRF) with respect to
Nr where p(zr) can be expressed as [22] pp. 28.

p(zr) =
1
Z

exp
{
−

1
T

∑
c∈C

Vc(xr)
}

(3)

where Z is the partition function that normalizes the
distribution, T is the temperature, Vc(xr) is the clique
potential and the negative of exponential

∑
c∈C Vc(xr) is

called clique energy E. Theorem 1 is the framework for
computing the probability of an MRF [24].

B. Sea-Ice Labeling

Labeling is performed by MAP (maximum a priori)
estimation, derived from Bayesian theory, which maxi-
mizes the a posteriori probability:

p(Z = x | X = x) =
p(X = x | Z = z)p(Z = z)∑
p(X = x | Z = z)p(Z = z)

(4)

which states that a posteriori probability p(Z = x | X = x)
is equal to the product of likelihood p(X = x | Z = z)
and a priori probability p(Z = z), divided by normalizing
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constant [25]. The optimal estimator MAP can be given
as:

arg max
{zr |r∈S }

p(Z = z | X = x) ∝

arg max
{zr |r∈S }

p(X = x | Z = z)p(Z = z) (5)

where the a priori term p(Z = z) is modeled as a Gibbs
distribution (Eq. 3) and the feature model p(X = x |
Z = z) generally uses a Gaussian mixture model (GMM).
If the Gibbs and Gaussian probability density functions
are substituted into (Eq. 5), the maximization can be
converted to a minimization by taking the negative of
the exponentials. The minimization form is also known
as the energy and the whole sea-ice labeling problem can
be solved by energy minimization. Suppose the single
clique and pairwise clique energy contributing from the
feature and a priori models are E f and Ep, respectively,
then sea-ice labeling can be accomplished by solving the
following optimization problem:

arg min
{zr |r∈S }

Etotal (6)

where,
Etotal = αE f + βEp (7)

is the total energy. α and β are weighting parameters
described in Section IV.

1) Feature model E f : The statistical nature of SAR
images indicates that the amplitude of the scattered
signal is gamma distributed, however, in-house
testing and published research [26] indicate that
modeling classes in the feature space as Gaussian
produces acceptable results. Thus, for simplicity,
classes are assumed to be Gaussian and the energy
of a single region is:

E(ri) =
kri

2
ln 2πσ2

lri
+

kri

2σ2
lri

[
(uri − ulri

)2 + σ2
ri

]
(8)

where parameters uri ,σ2
ri

,kri are the mean, co-
variance and the number of pixels of region ri.
In any realization of Y all ri are assigned a sea-
ice label, the ulri

, σ2
lri

are the estimates of all ri

with the same label lri . Equation (8) derived in
Appendix A is computationally important since it
calculates the energy of a region in a closed form
using the region’s statistics without iterating over
the region’s pixels. The total energy E f over all
regions is:

E f =

nr∑
i=1

E(ri) (9)

2) A priori term Ep: The regional representation of
the standard multilevel logistic model (MLL) [22]
can be defined as the energy of the Gibbs dis-
tribution with zero single node clique energy and
pairwise clique energy given as:

Ep =

nr∑
i=1

 ∑
r j∈Nri

δ(lri , lr j)

 (10)

where lri and lr j are the labels assigned to ri, r j.
The term δ(lri , lr j) is the Dirac delta function which
equals 1 when lri = lr j and 0 otherwise. (Eq. 10)
favors the configurations of neighboring regions
having the same label. Such an a priori model is
not suitable to model polygon interactions in full
SAR sea-ice scenes. Polygons can be generated by
an analyst to divide a large geographical region
with the same ice type into smaller regions or to
separate regions with different ice types, therefore
two neighboring regions are not necessarily always
of the same ice type. To accommodate such an
interaction, here an edge penalty term has been
incorporated into (Eq. 10).

Ep =

nr∑
i=1

 ∑
r j∈Nri

g(∇ri,r j)δ(lri , lr j)

 (11)

where

g(∇ri,r j = 1 − ∇ri,r j (12)

is the edge penalty term with edge strength ∇ri,r j

being the first order difference operator [27].Edge
penalty increases if the edge strength is small,
thereby, (Eq. 11) dictates that neighboring regions
with lower edge strength are likely to be the same
ice type.

IV. IMPLEMENTATION SCHEME

A. Optimization Scheme

A standard approach is used to find an optimal so-
lution. Given (Eq. 9) and (Eq. 11) the combination of
simulated annealing (SA) [28] and Metropolis sampling
[29] has been applied using a common temperature
schedule [30].

There are four parameters to be estimated: α, β,
ulri

and σ2
lri
∀i where ri has been assigned the same

label. As an unsupervised algorithm, the expectation-
maximization (EM) [31], [32] algorithm can be used for
estimating the class mean and covariance over a full SAR
sea-ice scene. EM is suitable for maximum likelihood
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estimation of feature parameters of incomplete data [31]
and the convergence of the EM algorithm is known [33].

Here, β is set to one and the parameter α needs to
be estimated accordingly. In conventional MLL mod-
els [22], α is a constant that can lead to solution
divergence in early iterations due to too much weighting
of the a priori model. To deal with this problem, the
weight of the feature model can vary with each iteration
[34] to improve performance. As such, the parameter α
can be a function of iteration θ,

α(θ) = c10.9θ + c2 (13)

where c1, c2 are constants equal to 0.1 [34]. Equation
(13) monotonically decreases the parameter α with each
iteration.

B. Algorithm Flow and Computational Efficiency

The algorithm is presented in seven modules as shown
in Fig. 4 with each step defined below. While dealing
with the typical large SAR sea-ice images the compu-
tational demands should be addressed for operational
requirements.

1) The egg code data, the unsupervised segmenta-
tion result and the original calibrated SAR sea-
ice image are loaded into memory. Therefore, the
memory of the computing platform has to be
sufficient for handling at least two full SAR sea-ice
scenes totalling 800 MBytes.

2) The neighborhood is obtained using the spatial
relationship of regions as specified in Fig. 3b and
can be stored in a region adjacency graph (RAG)
data structure. Also the edge penalty between ev-
ery neighboring region g(ri, r j) is computed. Both
processes require the SAR sea-ice image in raster
format with the computational complexity related
to number of the image pixels O(MN). Hence, in
the proposed technique, edge penalty calculation
in (Eq. 12) is computed once and stored as the
regional edge penalty used for all iterations.

3) Only σ◦ is considered as a feature with associated
mean uri, variance σ2

ri
and number of samples

kri stored for each region. These three values are
sufficient to calculate the energy for ri (Eq. 8).
The computation of feature statistics is the last
intensive processing step and has the complexity
O(MN).

4) The sea-ice labels are randomly assigned to re-
gions as per Definition 1 to obtain the initial
labeling realization Z.

5) Using the ulr and σ2
lri

from the previous step,
(Eq. 7) is computed in E-step, which requires a

Fig. 4. Flowchart of labeling algorithm that performs Fig. 1.
Indicated steps are discussed in text.

pixel-based processing if not optimized. To ac-
commodate this situation, a generic region-based
formula is derived (Appendix A). This can turn
hours of computational processing into a few sec-
onds by reducing complexity from O(θnpMN) to
O(θnrnp + MN). During the minimization of (Eq.
7) with SA and Metropolis sampling the labeling
refinement is accepted or rejected in the E-step
using,

ρ > exp
[E1 − E2

T

]
(14)

where ρ is the random number in the range
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[0, . . . 1] drawn from a uniform distribution. E1 and
E2 are the energies of current and potential labeled
images. The stochastic nature of SA and Metropo-
lis sampling avoids local minima by allowing both
favorable and unfavorable changes to be accepted
based on a temperature schedule [30].

6) Using the labeled image from the previous step,
as part of the M-step, ulri and σ2

lri
∀i are estimated

by iteratively building the statistics from unions of
regions ri j = ri∪ r j having the same sea-ice label.
The formulation to achieve this task can be given
as in [25]:

kri j = kri + kr j

uri j =
urikri + ur jk j

ki j

σri j =
σrikri + σr jkr j

kri j

+

(uri − ur j)(uri − ur j)
tkrikr j

k2
ri j

(15)

where kri j , uri j and σri j are the number of pixels,
mean and variance after two regions are combined.
The same process is followed for all regions ri to
obtain final parameters.

7) After energy oscillation at initial iterations the sys-
tem is cooled down using a temperature schedule
[30] to settle at global minima. The algorithm
always converges well before reaching the set 100
iterations.

V. PERFORMANCE EVALUATION
A. Motivation

One of the main obstacles in developing algorithms
for sea-ice interpretation is the lack of reference data.
Fully validated field ground truth for the operational
SAR sea-ice image is not available. For validation, one
would have to perform field sampling of the sea-ice on
site across 500km by 500km region during the SAR
satellite overpass. Due to the logistical impossibility of
such a validation exercise, we instead rely on the decades
of CIS experience and know-how for interpreting SAR
imagery. To systematically utilize CIS experience, a key
contribution of this paper is a performance evaluation
framework that has been implemented to guide an expert
to generate a reference image. The evaluator (T. Zagon),
a senior ice analyst with years of experience analyzing
SAR sea ice images, has used this framework to generate
reference images used for testing in this paper. To
assess these images, the evaluator used as much time
as necessary and accessed ancillary data to create a high
level of confidence with the validation.

B. Images

The RADARSAT-1 HH images were selected delib-
erately by CIS to represent challenging examples for
automatic classification and these were calibrated to σo.
Table II provides summary information for each image
and the geographical locations of images in the Arctic
map as shown in Fig. 7. All the images are captured
during freeze up which is especially challenging since
the sea-ice properties are in transition.

C. Framework

Fig. 5 shows the flow of the algorithm framework. The
framework is built within MAGIC [17]. Due to opera-
tional time constraints, it is challenging for an analyst
to produce accurate data, and therefore the evaluation
framework gives an opportunity to revisit the maps and
eliminate the following common problems found with
egg code data.

1) The number of classes provided per polygon might
be incorrect. Ice types located near the polygon
boundaries are not easily identifiable and might not
be recognized in the egg code. The segmentation
and labeling processes require the correct number
of classes.

2) Ice analysts are generally biased towards assigning
thicker ice types in polygons and overestimating
thicker ice type concentrations. This is due to
erring on the side of caution with regards to provid-
ing products for ship routing. This practice affects
concentrations and ice typing for each polygon.

If required, the egg code parameters are adjusted by the
evaluator. If the number of classes changes, the poly-
gon is automatically resegmented otherwise the existing
segmentation is used. The evaluator has to decide if
the segmentation of the polygon is successful or if egg
code parameters must be modified. If the segmentation
fails, the evaluator discards the polygon from the ref-
erence image and enters an explanation for the failure.
Eliminating any segmentation issues allows direct focus
on evaluating the sea-ice labeling performance. The
segmentation may fail in some exceptional scenarios
where the discrimination depends on characteristics other
than σ◦. Apart from feature failures, the evaluator can
discard a polygon if a portion of a land is included inside
the polygon. This can happen in regions of no active
ship navigation and such polygons need to be excluded
to avoid erroneous classification.

For these CIS-provided data sets, the segmentation
usually succeeds and then the evaluator assigns a class
label to each region which acts as a ground truth. A
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Fig. 5. This performance evaluation framework is integrated into
MAGIC [17] and is designed for a person to generate full scene
classified pixel-level data. The user can modify egg code parameters,
resegment a polygon with new parameters and discard the polygon
if segmentation fails. For successfully segmented polygons, the user
manually assigns a sea-ice label to each region to create the reference
database.

detailed report is generated which includes polygon in-
formation as well as all the steps the evaluator followed.
Each polygon is evaluated in this manner until the full
reference image is obtained.

D. Results of Performance Evaluation

Table II shows the results of the performance eval-
uation for each image including how many polygon
eggcodes were modified and how many polygons were
resegmented, discarded, and labelled. The evaluator had
to make many changes to the CIS-provided source data
to produce accurate reference data.

Nearly 80% (38 of 48) of the polygons were modified
due to errors in the analyst provided data, including
errors in the the number of ice classes and the ice types.

Changes to the number of ice classes required about half
of the polygons to be resegmented.

Some polygons were discarded. For Image 1, one
polygon (Fig. 6a), according to the evaluator, requires
a fine grey and new ice segmentation. The other Image
1 polygon (Fig. 6b) is a complicated scene that the
evaluator was not able to visually interpret. For Image 2,
the three erroneous polygons each have overly smoothed
segmentations and an example is shown in Fig. 6c. Note
that all polygons are segmented using the same algorith-
mic parameters within IRGS. For Image 3, five polygons
were discarded due to errors in the provided land maps
where land boundaries were not properly provided and
islands were excluded (Fig. 6d). The evaluator excluded
the polygons to remove any ambiguity.

Table III summarizes the remaining successfully seg-
mented polygons with corresponding ice types used in
the next section for comparisons.

VI. CLASSIFICATION RESULTS AND
DISCUSSIONS

A. Evaluation

The images evaluated in Section V have been used as a
basis for performance analysis of the labeling technique.
As a performance metric, accuracy is calculated as a
percentage of correctly classified pixels and regions, and
kappa coefficient (κ) is used as a means of classification
agreement [35]:

κ =
P(A) − P(E)

1 − P(E)
(16)

where P(A) is the probability the model values are equal
to the actual value and P(E) is the expected probability
of random agreement. A value of one for kappa coef-
ficient means a statistically perfect classification while
a 0 means that all values are randomly classified. It is
reasonable to assume that κ ≥ 0.7 indicates accurate
statistical modeling. The accuracy and the kappa metric
are calculated based on both pixel-level and region-level
accuracy. Pixel accuracy is the percentage of pixels prop-
erly classified. As a result, the pixel accuracy involves
the size of the regions, whereas, the region accuracy is
irrespective of the region size.

B. Labeling of operational SAR sea-ice images

As stated in Section II-B, IRGS is the algorithm used
for segmentation. An example of an IRGS segmentation
is shown in Fig. 8b. This polygon is downsized 25 times
to fit so details are lost in the rescaling. This shows a
typical challenging segmentation of grey, grey-white and
new ice types which is not feasible to segment manually



OPERATIONAL SAR SEA-ICE IMAGE CLASSIFICATION 9

TABLE II
Performance Evaluation of SAR sea-ice images.

Image 1 Image 2 Image 3
Image Area Baffin Bay Baffin Bay Gulf of

Boothila
Date Required Oct. 30/05 Oct. 18/05 Oct. 06/04

Modified eddcode 12 13 13
Resegmented polygons 6 7 7

Discarded polygons 2 3 5
Labeled polygons 12 13 13

Total polygons 14 16 18

TABLE III
Final metadata for reference database. Using Table I, labels refer
to open water(W), new ice (1), grey ice (4), grey white ice (5), old
ice (7.), second year ice(8.) and multi-year ice (9.) as perWMO [1]

standard.

Polygon Image 1 Image 2 Image 3
P1 {5, 4, 1} {9, 5, 1} {7,W}
P2 {4, 1} {4, 1} {7,W}
P3 {5, 4, 1} {9, 5, 4, 1} {8, 1}
P4 {9, 5, 4} {9, 1} {8, 1}
P5 {4, 1} {4, 1} {9, 5, 4, 1}
P6 {4, 1} {5, 4} {9, 5, 4,W}
P7 {5, 4, 1} {5, 4, 1} {9, 8, 1,W}
P8 {4, 1} {1,W} {9, 4, 1,W}
P9 {4, 1} {4, 1} {4}
P10 {9, 5, 4} {9, 5, 4, 1,W} {4}
P11 {4, 1} {4, 1} {4}
P12 {4, 1} {9, 5, 4, 1} {5, 4}
P13 N/A {5, 4, 1} {8, 4,W}

given the difficult and time consuming nature of manual
segmentation. IRGS is able to successfully segment this
polygon and shows similar performance for polygons
summarized in Table III.

Table IV shows the performance accuracy of the three
images. Image 1 has 100% accuracy,Image 2 has over
90% accuracy and Image 3 has about 80% accuracy.
Even though these full SAR scenes show a high degree
of intra-class variability, the classification algorithm is
successful since 80% is deemed an acceptable opera-
tional rate by CIS personnel. Fig. 9 shows the original
SAR (left) and classified (right) images. Note that all
three images are classified automatically using exactly
the same algorithm and same algorithm parameters. The
full SAR sea-ice images are too large (5Kx5K) to be
shown at full resolution and therefore the WMO color
coded results are presented to visualize the outputs.
Nevertheless, the continuity of sea-ice labels over the
polygon boundaries is obvious even with such a coarse
resolution. The method produced labeling continuous
over polygon boundaries, using both feature and prior
terms. Image 2 has a misclassification of open water

TABLE IV
Performance of proposed sea-ice labeling technique of

Accuracy/Kappa and ratio of Correctly Labeled/Total regions.

Image 1 Image 2 Image 3
Pixel Accuracy 100%/1 93.56% 77.50%/

/0.9140 0.7012
Region Accuracy 100%/1 94.44%/ 81.25%/

0.9266 0.7752
Accuracy Ratio 29/29 34/36 26/32

with new ice in a polygon on the right side of (Fig.
9c) circled and marked with X. Intuitively, this polygon
could have been perfectly labelled if there had been
another polygon containing open water adjacent to it.
Probably, the evaluator also differentiated the labels in
that polygon based on proximity to open water. To verify,
we have performed an experiment by adding a polygon
with an open water adjacent to the misclassified polygon
and this generates 100% accuracy. SAR data is notorious
for high interand intra-class feature variability, and with
such data spatial proximity is an essential criterion for
labeling success. If some guidance exists for drawing
the polygons the performance of the labeling algorithm
increases.

Image 3 (Fig. 9f) has seven ice labels found in
only 13 polygons. One polygon inside a white circle
on the far left of the image in Fig. 9e is completely
isolated. Some of the polygons are stretched and have
shorter boundaries with each other which makes region
label inferencing difficult. Such a configuration causes
general misclassification of new ice with open water
which is not a significant drawback from an operational
perspective. The rest of the ice types: old, second-year,
multi-year, grey-white, grey, have been labelled success-
fully in Image 3. This again stresses the importance of
spatial interaction between the polygons. Overall, high
classification rates have been achieved labeling the set
of operational SAR sea-ice images.

Generally, if the ice analyst provided information is
accurate (number of ice types, ice type labels, boundaries



10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

(a) (b)

Fig. 8. Example of segmentation using IRGS [11]. This Image 2 polygon is approximately 2K×2K pixels and has been downsized 25 times
to fit page. The polygons egg code indicates presence of grey-white, grey and new ice.(b) The polygon in (a) successfully segmented to three
classes using IRGS [11]. The segmentation performance of such complex imagery demonstrates the capability of IRGS as the segmentation
technique. Note that the image had to be rescaled by 13% which removes scene details.

TABLE V
Computational time of the proposed labeling algorithm.

Image 1 Image 2 Image 3
Iteration θ 100 100 100
Regions nr 29 36 32

Polygons np 12 13 13
Size 5028 × 5387 4994 × 5417 3818 × 4688
Time 31s 26s 77s

between polygons) then the segmentation has a stronger
accuracy and the labeling process produces a more
accurate pixel-level classified map.

C. Role of Prior Model

To demonstrate the role of the prior term, a compar-
ison between using both feature and prior terms (Fig.
9a, duplicated for side-by-side viewing in Fig. 10a) and
just the feature term (Fig. 10b) is performed. Here, the
feature model alone is not sufficient to accurately label
the regions. By removing the spatial prior edge model,
only the Gaussian mixture model (GMM) remains. The
labeling result using GMM alone (Fig. 10b) with ac-
curacy 33.10% and kappa 0.1059 shows more then
half of the regions have been misclassified compared
to using both feature and spatial term (Fig. 10a) with
accuracy/kappa 100%/1. This clearly indicates that the

spatial interaction of polygons is essential in the overall
model to generate accurate labeling.

D. Computational time

The overall complexity of just the labeling algorithm is
O(θnrnp + MN). Table V summarizes the computational
time required to achieve labeling results for every test
image after the segmentation. The segmentation of all
polygons is 10 minutes on average. Labeling was per-
formed using MATLAB with a 2.3 GHz Intel dual core
processor, the benchmarks indicate high computational
feasibility. As such, the minimal computation time sup-
ports the algorithms use in an operational environment.

VII. CONCLUSION

A novel method has been designed and implemented
for operational SAR sea-ice image classification. In the
classification process, the SAR sea-ice images are seg-
mented and labeled utilizing provided polygon data. The
sea-ice classification algorithm is automatic and does
not require training data but more effectively uses the
joint information from all polygons to find the optimal
configuration of labels based on an objective function.
The objective function is defined as a combination of
feature and prior models to better reflect the statistical
and spatial proximity of regions.
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(a)

(b)

(c)

(d)

Fig. 6. Evaluator discarded polygons. (a) Image1 polygon. Requires
fine grey and new ice segmentation. (b) Another Image 1 polygon.
Complicated scene not visually interpretable. (c) One of three Im-
age 3 polygons with overly smoothed segmentations.(d) One of five
Image 3 polygons discarded due to land map errors.

Fig. 7. Location of three reference images on map.

The concept has been demonstrated with operational
SAR images provided by CIS. Using a performance
evaluation framework these images have been evaluated
by the trained ice expert and used as a reference to assess
the sea-ice labeling performance. Consistently high per-
formance has been obtained. The discussed framework
is the only end-to-end process known to us for automatic
classification of SAR sea-ice imagery.

Appendix A

DERIVATION OF REGION BASED ENERGY
EQUATION

Assume the parameters uri ,σ2
ri

, kri are known for the
region ri. Then, compute the feature model energy E(ri)
for region ri for any estimates ulri

and σ2
lri

.

E(ri) =

kri∑
k=1

1
2

ln 2πσ2lri +
1
2

(xsk − ulri
)2

σ2
lri

 (17)

=

kri∑
k=1

1
2

ln 2πσ2lri +
1
2

(xsk − ulri
− uri + uri)

2

σ2
lri


= kri

1
2

ln 2πσ2
lri

+
kri

2σ2
lri

(uri − ulri
)2 +

1
2σ2

lri

kri∑
k=1

(xsk − uri)
2 +

(uri − ulri
)

σ2
lri

kri∑
k=1

(xsk − uri)

= kri

1
2

ln 2πσ2
lri

+
kri

2σ2
lri

(uri − ulri
)2 +

(kri − 1)σ2
ri

2σ2
lri

(18)

for very large kri , kri − 1 ' kri .
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(a) Image 1 (b) Classified Image 1

(c) Image 2 (d) Classified Image 2

(e) Image 3 (f) Classified Image 3

(g) WMO [1] color code

Fig. 9. Classification of SAR sea-ice images with proposed technique. Polygon boundaries are overlaid on the image as white contours.
Images are too large(5K × 5K) to show details but this segmentation and labeling success can be observed.
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(a) (b)

Fig. 10. The effect of spatial term on classification performance. (a) The labeled output using the proposed algorithm with accuracy/kappa
100%//1. (b) The labeled output using just the GMM feature model with accuracy 33.10% and kappa 0:1059. Without the spatial context
model, the labeling process produces poor results.


