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Abstract— The Canadian Ice Service (CIS) is a govern-
ment agency responsible for monitoring ice-infested regions in
Canada’ s jurisdiction. Synthetic aperture radar (SAR) is the
primary tool used for monitoring such vast, inaccessible regions.
Ice maps of different regions are generated each day in support of
navigation operations and environmental assessments. Currently,
operators digitally segment the SAR data manually using primar-
ily tone and texture visual characteristics. Regions containing
multiple ice types are identified, however, it is not feasible to
produce a pixel-based segmentation due to time constraints. In
this research, advanced methods for performing texture feature
extraction, incorporating tonal features, and performing the
segmentation are presented. Examples of the segmentation of a
SAR image that is difficult to segment manually and that requires
the inclusion of both tone and texture features are presented.

I. INTRODUCTION

Computer-assisted spatial information extraction from dig-
ital imagery is a necessity to support the processing of the
volumes of remote sensing imagery now actively captured.
This research focuses on applying computer vision techniques
to the interpretation of synthetic aperture radar (SAR) sea
ice imagery. The ultimate goal of this research is to de-
velop computer-based algorithms to segment SAR sea ice
imagery into salient categories. The primary data source is
RADARSAT-1, a Canadian owned and operated SAR-based
satellite. This research is performed in direct collaboration
with the Canadian Ice Services (CIS), a government agency
that uses about 4000 RADARSAT-1 scenes annually for mon-
itoring all ice-infested regions in Canada’s jurisdiction. This
data is necessary to assist ship navigation through icy waters
(eg. to support Canadian Coast Guard initiatives) and to calcu-
late sea ice volumes for environmental monitoring (eg. to build
scientists’ understanding of global warming). Development of
consistent and reliable computer-assisted algorithms to extract
such information from remotely sensed imagery has been
elusive; however, significant advances have been made in this
field.

II. BACKGROUND

A. Canadian Ice Services (CIS) Operations

Fig. 1(a) depicts a RADARSAT-1 SAR sea ice image
of the Gulf of St. Lawrence on February 12, 1999. These
operational images obtained by CIS originally have 50 meter

pixels, however, they are 2×2 block averaged to generate
100m pixels. This SAR image is used as the dominant source
of information for generating the accompanying ice map
(Fig. 1(b)). The entire ice map generation process is currently
performed manually. The objective of this research is to design
operational computer-assisted methods to generate a pixel-
based segmentation of the region-based ice map. The ice
analyst segments the SAR image into visually distinct regions.
Then, the analyst assigns an “egg code” to each region to
summarize the ice categories identified. These “egg code”
regions typically contain two or more ice classes. The egg
code stores the ice type, concentrations, and floe size and is
a World Meteorological Organization (WMO) standard. Note
that the SAR image is originally 5632 × 8120 pixels, and, as
a result of scaling, the ice distinctions are not noticeable.

B. Need for Computer-Assisted Algorithms for Interpreting
SAR Sea Ice Imagery

The need for automated analysis of SAR sea ice imagery
has been clearly identified in the Canadian GCOS Plan for
the Cryosphere. For example, the Sea Ice - Planning Ele-
ment 3 (Effective Use of Remote Sensing Technology) is the
continuation of the development of automated procedures at
CIS to estimate geophysical parameters from RADARSAT [1].
Also, an NIC Science Plan indicates that one of the primary
activities needed to be addressed is the development of SAR-
based algorithms that can partially automate the generation of
tactical ice products ([2], p. 10). A report prepared by Noetix
Research Inc. for CIS outlines a number of specific tasks that
can be supported with the use of automated procedures [3].
On an ongoing basis, CIS undergoes informal discussions
with upper management with regards to computer-assisted
algorithm development to create operational products (D. Flett,
personal communication, May 2002).

C. Previous Computer-Assisted Efforts in Support of CIS
Operations

The problem of automated sea ice identification in digital
imagery is a difficult one. There exist other projects committed
to developing automated methods for interpreting SAR sea ice
imagery. These include a dynamic thresholding-based multi-
year ice algorithm (University of Colorado), a knowledge-
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(a)

(b)

Fig. 1. (a) RADARSAT-1 SAR sea ice image of the Gulf of St.
Lawrence (capture February 12, 1999). (b) Accompanying ice map,
produced primarily using this SAR image plus ancillary information
sources.

Fig. 2. Flowchart illustrating the proposed overall methodology for pixel-
based segmentation of regions defined by egg codes. Research in this paper
focuses on (A) texture and tonal feature extraction and (D) clustering.

based ice classification algorithm (ARKTOS, University of
Kansas), and an ice/no-ice classifier (Noetix Research Inc.).
Although technical advances, these algorithms have been
deemed by CIS to be not appropriate to satisfy their op-
erational needs. There are no known commercial software
packages that have the necessary features required to interpret
SAR sea ice imagery.

III. DEVELOPMENTS IN COMPUTER-ASSISTED

SEGMENTATION OF SAR SEA ICE IMAGERY

A. Strategy to Implement Computer-Assisted Methods

Fig. 2 depicts an overall methodology for generating pixel-
based segmentations based on operator inputs to egg code re-
gions. Texture feature extraction (A) is required since different
ice categories produce visibly distinct textures in a radar-based
image. Ice boundary detection (B) is important since the shape
of the floe provides ice typing information. Features produced
at ice class boundaries are misleading because they measure
characteristics from multiple classes. By selecting those fea-
tures (C) that are not on a floe boundary, a more robust
feature set is generated as input into the clustering routine (D).
Expert information is required to associate discovered classes
with specific ice types (E). A means of integrating ancillary
information (F) (ship reports, meteorological information, etc.)
is required. The work in this research paper focuses on the use
of texture and tonal features to directly, and in an unsupervised
manner, segment regions when the number of ice categories
is known.

The development of reliable, robust methods for the con-
sistent classification of SAR sea ice types has been elusive,
even though considerable effort has been made (see [4],
[5]). There are two types of features commonly employed
to characterize sea ice using SAR data. The first type is
based on first order statistics such as tone, mean, variance and
skewness. The second type is based on texture features. There
is sufficient evidence to indicate that texture is more suitable
than tonal features for describing SAR sea ice imagery [4], [5],
however, the texture features alone may not be sufficient for
discriminating the SAR sea ice data. Since the SAR image
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classes generally display differences in their intensities, the
tonal features are still helpful for ice classification. Therefore,
a fusion of tonal features and texture features is expected to
achieve better performance.

The authors’ significant research efforts for improving
texture analysis of SAR sea ice imagery have been two-fold:
improving the quality of derived texture features and compar-
ing texture features for both classification and segmentation
requirements. The next two subsections discuss these two
topics.

B. Improved Texture Feature Extraction

There exist numerous texture feature extraction methods and
these can be grouped into one of four categories: statistical,
signal processing, model-based, and structural [6]. Structural
methods have not been applied to the discrimination of SAR
sea ice imagery due to the expectation of a repeating primitive,
unlikely in the presence of speckle noise in natural landscapes
captured by the SAR sensor. The other three categories have
demonstrated potential for the role of characterizing textures
in SAR imagery. The following focuses on three methods
each commonly used in their own realms: Gabor filters
(signal processing based), grey level co-occurrence probabili-
ties (GLCPs) (statistically based), and Markov random fields
(MRFs) (model-based).

1) Gabor Filtered Texture Features: Two-dimensional Ga-
bor filters were original presented by Daugman [7] and the
use of Gabor filters for image segmentation was advanced
by Clausi and Jernigan [8], Bovik et. al. [9], and Jain and
Farrokhnia [10]. Gabor filters are motivated by the fact that
they are recognized to mimic aspects of the human visual
system (HVS). Simple cells found in the visual cortex are
recognized to be sensitive to limited orientation ranges and
limited frequency bandwidths. Gabor filters can be formulated
to also be sensitive to certain ranges of orientation and
frequency.

Various scientists have tried to use Gabor filters for texture
recognition with mixed results. Sometimes, the Gabor filters
are not used properly, restricting their potential (see [11]
for examples). A preferred Gabor filter bank that achieves
classification accuracies that are stronger than those with the
commonly used filter configuration is presented in [8]. In
this paper, various frequency bandwidths, frequency spacings,
orientation bandwidths, and orientation spacings have been
compared. The preferred filter bank configuration required
that the filters in the filter bank have 1 octave frequency
spacing and bandwidth as well as 30 degree orientational
spacing and bandwidth. The filter outputs were processed
using the magnitude response, real component only, full
wave rectification, sigmoidal function, and both geometric and
central spatial-frequency moments. The magnitude response
was identified as the preferred feature extraction method. A
mathematical explanation for superiority of the magnitude
response relative to using the real response is presented in [8].
Not surprisingly, spatially smoothing the filtered outputs (using
the technique recommended by [9] dramatically improved the

classification performance. The filter configuration derived and
demonstrated in this paper is the filter configuration that is
recommended for all texture segmentation work using Gabor
filters.

2) GLCP Texture Features: Many scientists have attempted
using grey level co-occurrence probabilities (GLCPs) [12]
(otherwise known as the grey level co-occurrence matrix) for
texture analysis of SAR sea ice imagery [13], [4], [14], [5],
[15], [16], [17] as well as other remote sensing imagery [18],
[19], [20]. A typical concern for practitioners is the proper
selection of parameters to generate a meaningful texture
feature set. In [4], the effect of grey level quantization on
the ability of co-occurrence probability statistics to classify
natural textures (eg. Brodatz and SAR) has been studied.
As a function of increasing grey levels (excluding extremely
coarse quantization), many of the statistics demonstrate a
decrease in classification ability while a few maintain constant
classification accuracy. Correlation analysis is used to motivate
a preferred subset of statistics. The preferred statistics set
(contrast, correlation, and entropy) is demonstrated to be an
improvement over using single statistics or using the entire set
of statistics. Testing is performed on Brodatz imagery as well
as two separate SAR sea ice data sets.

3) Markov Random Field (MRF) Texture Features: A read-
able discussion of the theory and application of MRFs is
presented by Li [21]. A typical MRF model is the Gaussian
MRF (GMRF) model [22] which has been widely used for
modelling image textures. The GMRF model is also a station-
ary noncausal 2-dimensional autoregressive process which is
described by the following difference equation:

xs =
∑

s+r∈Ns

βrxs+r + νs, (1)

where r is the relative position with respect to the central pixel
s, and {νs} is a stationary Gaussian noise sequence with zero
mean.

βr is the parameter describing directional information be-
tween pixels xs+r and xs. All βr in the neighborhood system
Ns forms the parameter vector β = {βr|s + r ∈ Ns}. The
property of the neighborhood system Ns is determined by its
order and structure. The order of Ns determines the spatial
range of the neighborhood.

This standard technique for generating MRF texture features
creates anisotropic features. That is, features based on MRF
models are usually sensitive to rotation of image textures.
Given that SAR sea ice classes display both anisotropic and
isotropic characteristics, a methodology has been developed
that is able to produce circularly anisotropic MRF texture
features that can be applied to rotationally invariant tex-
tures [23]. This is performed by, instead of sampling on a
rectangular grid, capturing samples on a circular grid given an
fixed orientation spacing. Given that the samples are highly
correlated (due to dense representations on a finite discrete
grid) this forces the least squares solution to produce a singular
matrix. This singularity is handled using a novel approximate
least squares estimate, demonstrated in the paper to produce
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sufficiently accurate estimates. A discrete Fourier transform
(DFT) is applied to the generated MRF parameters to produce
anisotropic texture features that can be applied to rotationally
variant or invariant textures. These texture features have been
demonstrated to be an improvement relative to other published
work when applied to the classification rotated Brodatz image
samples as well as SAR sea ice image classes.

C. Comparing Texture Methods

1) Comparing Texture Features for Classifying Pure Sam-
ples of SAR Sea Ice Imagery: Although many research papers
investigate the use of specific feature extraction methods for
remote sensing data, few papers compare these techniques.
Texture features derived from MRF models have not been
extensively studied for the purposes of characterizing the
textures found in SAR sea ice image classes. A notable
study [14] compares the MRF features to those produced
by GLCPs and Gabor filters for characterizing SAR sea ice
image texture. This work demonstrates that the texture features
produced by Gabor filters and co-occurrence probabilities have
a high correlation and produce classification accuracies that
are not statistically different. MRF texture features, on the
other hand, are uncorrelated with each of Gabor filters and
MRF texture features. The two fused feature sets (Gabor
filters plus MRFs and co-occurrence plus MRFs) demonstrate
a statistically significant improvement compared to individual
feature sets.

2) Comparing Texture Operators for Segmenting SAR Sea
Ice Imagery: Even rarer than texture classification comparison
papers are papers that compare different texture segmentation
methodologies. Texture segmentation papers are rare possibly
due to the higher level of expertise required, the difficulty
associated with achieving operationally suitable segmentations
of remote sensing imagery, and the difficulty of producing
meaningful quantitative conclusions over limited test imagery.
In [13], co-occurrence probabilities and MRFs are compared
in the context of segmentation of SAR sea ice imagery.
The role of window size in texture feature consistency and
separability as well as the role in handling of multiple textures
within a window are investigated. GLCPs are demonstrated to
have improved discrimination ability relative to MRFs with
decreasing window size, which is important when performing
image segmentation. On the other hand, GLCPs are more
sensitive to texture boundary confusion than MRFs given their
respective segmentation procedures.

IV. PERFORMING SEGMENTATION

Four types of segmentation models are considered: finite
gamma mixture model, K-means clustering, binary hierarchi-
cal K-means iterative Fisher (KIF), and Markov random field
(MRF) modelling.

A. Finite Gamma Mixture Model [24]

This model is applicable to segmentation based on tone in
a SAR image. Since each class’ s grey levels can be described
by a gamma distribution, a mixture model can be used to

describe the entire image’ s distribution. An iterative scheme
is employed to estimate the individual class parameters. As-
suming an image consists of a finite number (denoted by n)
of classes and each pixel in the image is a mixture of these
classes, the probability of each pixel can be represented by
the following mixture model:

f(xs) =
n∑

k=1

pkgk(xs, µk), (2)

where xs denotes the intensity of the pixel at site s, µk denotes
the mean of the k-th class, pk is the weight for the k-th class,
and gk(., .) denotes a probability distribution of the k-th class.

As the distribution of speckle noise in SAR image is
normally gamma distributed, the function gk(., .) in Eq. (2)
can be assumed to be a gamma function:

gk(xs, µk) =
ll

µl
k(l − 1)!

xl−1
s exp

(
− l

µk
xs

)
, (3)

where l denotes the number of looks.
If each pixel in the image is independently distributed

according to Eq. (2), the joint distribution function for the
entire image is

F (x) =
N∏

s=1

f(xs), (4)

where N is the size of the image and x is the vector of all
pixels in the image. The log likelihood function for the image
can be written as:

LF (x) =
N∑

s=1

log f(xs). (5)

Given the constraint
∑n

k=1 pk = 1, the parameters pk and
µk can be estimated by maximizing the log likelihood function
LF (x). As a close-form solution cannot be obtained from
the maximum likelihood when gk(., .) is assumed to be a
gamma function in Eq. (3), an iterative method can be used
for parameter estimation:

pt+1
k =

1
N

N∑
s=1

pt
kgk(xs, µ

t
k)

f(xs)
(6)

and

µt+1
k =

1
Npt

k

N∑
s=1

xs
pt

kgk(xs, µ
t
k)

f(xs)
. (7)

The superscripts t and t+1 denote the number of iterations
and t ≥ 1. An initial estimate of p1

k and µ1
k is needed.

The new value of p2
k is then substituted into Eq. (7) to

solve µ2
k. This process is repeated until pt

k and µt
k converge.

After the parameters pk and µk are obtained, the maximum
likelihood classification method can be used to classify all
pixels. Experiments will demonstrate that this mixture model
can well represent the data in SAR ice-water image.
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B. K-means Clustering [25]

The popular K-means clustering method is employed here to
cluster feature vectors to generate a segmented image knowing
the number of classes a priori. This is appropriate, given
that the operator-provided egg code information indicates
the number of classes. The drawback is that K-means does
not explicitly account for the spatial relationship between
neighboring pixels. As the K-means clustering method is
generally implemented according to the criterion of mini-
mizing the Euclidian distance between feature vectors, it is
necessary to normalize the fused features. The normalization
should comply with a rule that each feature component should
be treated equally for its contribution to the distance. The
rationale usually given for this rule is that it prevents certain
features from dominating distance calculations merely because
they have large numerical values. As the feature vectors for
segmentation are spread due to the presence of subclasses,
it can be quite inappropriate to normalize the feature vector
to be of zero mean and unit variance [25]. This paper uses
a linear stretch method to normalize each feature component
over the entire data set to be between zero and one. As the
number of texture features used for fusion is overwhelmingly
larger than the number of tonal features, it is reasonable to
assign different weights to cases where the texture and tonal
features are combined so that the contribution of tonal features
is similar to that of texture features. A 50 − to − 50 strategy
is used to assign different weights to the texture features and
tonal features after both are normalized.

C. Binary Hierarchical K-means Iterative Fisher (KIF) Algo-
rithm [26]

The binary hierarchical K-means iterative Fisher (KIF)
algorithm is a robust, unsupervised clustering technique that
can be applied to the problem of image texture segmentation.
The KIF component of the algorithm involves two steps. First,
K-means is applied to a feature set. Second, the K-means
class assignments are used to estimate parameters (mean and
covariance) required for a Fisher linear discriminant (FLD).
The FLD is then applied iteratively to improve the solution.
This combined K-means and iterative FLD is referred to as the
KIF algorithm. The binary hierarchical implementation of KIF
operates by trying to separate a given set of feature vectors
into two (by setting the number of classes in K-means to two).
The process starts by considering the entire feature set. If this
set can be broken into two distinct clusters, then an attempt
is made to split those clusters into two clusters. This process
follows a binary hierarchical tree until each of the clusters
can not be split and, as such, the classes are identified. The
Fisher criterion is used as a threshold to indicate whether
or not a cluster should be split. The binary hierarchical KIF
algorithm is used to properly segment images even though
the number of classes, the class spatial boundaries, and the
number of samples per class vary. The binary hierarchical
KIF algorithm is fully unsupervised, requires no a priori
knowledge of the number of classes, is a non-parametric
solution, and is computationally efficient compared to other

methods used for clustering in image texture segmentation
solutions. This unsupervised methodology is demonstrated to
be an improvement over other published texture segmentation
results using a wide variety of test imagery and is well-suited
to the case where there are many feature vectors per class.

D. Markov Random Field (MRF) Labelling

Not only can MRF methods be used to capture texture
features, the same mathematical basis can be used to create
segmentation models. A disadvantage of the gamma mixture
model, K-means clustering method, and the binary hierarchical
KIF for segmentation is that they do not account for the spatial
relationships between neighboring pixels. Markov random
field (MRF) models represent the probability distribution of
image pixels depending on their neighbors and can be used as a
labelling model to identify segmented regions. As a result, the
MRF model-based method provides a means of incorporating
spatial information into the segmentation process.

As the gamma mixture model (Section IV-A takes into
consideration only the histogram of pixel gray levels, it is
sensitive to speckle noise existing in the image and the final
segmented image is not suitable for further applications such
as ice boundary detection and ice concentration estimation.
The refinement of such results can be achieved by taking local
spatial relationship into consideration during segmentation.
The MLL (multi-level logistic) model [21] has been proven to
appropriately describe the spatial relationship. The integration
of the gamma distribution of image intensity into the MLL
model can form an MRF based labelling model which is then
used to refine the results obtained by the gamma mixture
model.

Most MRF based segmentation models use the multi-level
logistical (MLL) model [21], [27] for modelling the label
distribution. It is common for a segmentation task to choose
the second order pairwise MLL model and define the potentials
of all non-pairwise cliques to be zeros. The energy of the
pairwise MLL model can then be written as:

ER =
∑

s

β
∑

x′∈Ns

δ(xs, x
′), (8)

where δ(xs, x
′) = −1 if xs = x′, δ(xs, x

′) = 1 if xs �= x′,
and β is a constant which can be specified a priori [22].

The segmentation problem can be expressed in a Bayesian
framework. Denote a random image by X and its segmented
result by Y . The practical problem for segmenting a known
image x is to maximize the probability of Y conditioned on
X = x, denoted by P (Y |X = x). According to the Bayes’
rule,

P (Y |X = x) =
p(X = x|Y )P (Y )

p(X = x)
, (9)

where p(X = x|Y ) denotes the probability distribution of
the known image x conditioned on a segmented result Y ,
P (Y ) denotes the prior probability of Y , and p(X = x) is
the probability distribution of the known image x.

As x is known, p(X = x) does not vary with respect to any
solution Y = y and hence can be disregarded since only the
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relative probability is of concern when maximizing P (Y |X =
x). P (Y ) can be assumed to be the probability of the MLL
model with the energy function indicated in Eq. (8). Given that
the number of classes and their means are known, p(X = x|Y )
can be assumed to be a Gamma distribution in Eq. (3). The
energy of P (Y |X = x) is then derived:

E = ER + (10)∑
s

[
l

µ
xs − (l − 1) log xs − l log l + l log µ + log(l − 1)!

]

The Metropolis sampling method [28] is used to implement
this label model. To make the Metropolis sampling converge to
the global minimum (energy), an annealing scheme should be
used [29], [22]. The logarithmic annealing scheme proposed
by Geman and Geman [22] is adopted here.

V. EXAMPLES OF SAR SEA ICE SEGMENTATION

A. Ice-Water Segmentation

Ice analysts often need to estimate the ice concentration of a
particular region in a SAR image, regardless of the specific ice
types. The segmentation problem is to then segment the SAR
image based only on ice and water classes. The associated
histograms for these images are generally bimodal so a mixture
model can be used to approximate such a histogram and obtain
the individual components. As mentioned earlier, a Gamma
distribution is used as a model in SAR image recognition. It
is therefore reasonable to assume that an ice-water image is a
mixture of two Gamma distributions.

Fig. 3(a) is part of RADARSAT-1 SAR image of Baffin
Bay and the Davis Strait captured on June 24, 1998. This
image consists of ice floes (bright regions) and open water
(relatively darker regions). Fig. 3(b) shows the result following
application of the gamma mixture model given the number of
classes. As the gamma mixture model is sensitive to noise
in an image for segmentation, the result shows non-uniform
labelling of ice floes. A MRF model consisting of MLL model
and a gamma distribution takes both the gamma distribution
and local spatial relationship into consideration. As it may take
a very long time for a Gibbs sampling method to converge,
the result obtained by the gamma mixture model is used as
an initial guess for the MRF based labelling model. Fig. 3(c)
shows an improved segmentation result in comparison with
Fig. 3(b). Using the results in Fig. 3(c), improved estimates
of the true ice concentrations have been obtained.

B. Multiple Ice Classes

Consider the RADARSAT-1 SAR image of Baffin Bay and
the Davis Strait captured on February 7, 1998 (Fig. 4(a)).
Three different ice classes are apparent: multiyear floes
(bright) are embedded in grey and grey-white ice. This image
is difficult to segment using either computer vision or manual
techniques. Fig. 4(b) represents the histogram of Fig. 4(a).
Given that the histogram depicts a unimodal distribution, con-
sidering only tone will not achieve proper image segmentation.

(a)

(b)

(c)

Fig. 3. Ice-water image consists of ice floes and open water.

273



(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1000

2000

3000

4000

5000

(b)

(c) (d)

(e) (f)

Fig. 4. (a) RADARSAT-1 SAR sea ice image of Baffin Bay and the
Davis Strait captured on February 7, 1998. (b) Histogram of image
in (a). Note the unimodal distribution. (c) Segmentation based on
gamma mixture model. Poor segmentation since only tone used. (d)
Segmentation based on GLCPs and K-means clustering. Poor seg-
mentation since only texture used. (e) Segmentation based on fused
texture and tone with K-means clustering. Improved segmentation. (f)
Application of gamma MRF model applied to result in (e). Accurate
segmentation performed in (f).

Fig. 4(c) represents a segmentation based on only absolute
grey tones using a gamma mixture model. Only two of the
three classes are identified due to multiyear and grey-white
ice having similar tonal features and not being discriminated.
Fig. 4(d) represents a segmentation based on using only
GLCP texture features followed by K-means clustering. In
this case, grey and grey-white ice are erroneously grouped
together and multi-year ice is identified as a separate class.
Fig. 4(e) represents a segmentation based on a fused feature
set (GLCP texture + tone) followed by K-means clustering.
Using the combination of tone and texture, all three classes are
recognized, but not accurately. Fig. 4(f) represents an accurate
segmentation resulting from applying a MRF label model to
the result in Fig. 4(e). This figure displays a highly successful
segmentation of the original SAR image. A combination
of features (tone + texture) coupled with K-means (which
acts an an initial guess) and MRF labelling (for refinement
purposes) is used to produce this accurate segmentation found
in Fig. 4(f).

VI. FUTURE DIRECTION

A number of future objectives are listed here.

1) The different components identified in Fig. 2 will be
addressed through related efforts.

• Ice boundary detection is an important part of
the feature selection process, however, due to the
nuances in the detection of edges in SAR sea ice
imagery, this is a difficult task. We are actively
developing dedicated means to uniquely identify sea
ice boundaries.

• Markov random fields as a basis for performing
segmentation is an active research area. We continue
to develop improved models for the inclusion of
appropriate features to generate improved segmen-
tations.

• The MRF model provides a basis for inclusion
of ancillary information. Future work will involve
the incorporation of ancillary information in the
underlying MRF segmentation model.

• A means of associating the segmented regions with
the known ice type names will require a means
to implement expert, dedicated information into the
classification framework.

2) To improve the existing feature set, a means of fusing
Gabor and GLCP texture features has been initiated.
This feature set shows tremendous promise to improve
the texture analysis component of the overall process.

3) Segmentation using anisotropic, rotationally invariant
MRF texture features is a topic that is unexplored in
the research literature. The potential of this methodology
will be explored.

4) A means of overlaying the ice map with the SAR sea
ice image and removing and discrepancies will have to
be implemented. The human operator is not perfect with
respect to identifying the boundaries between egg codes
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and these vague regions will have to be identified and
handled properly.

VII. CONCLUSION

Reliable and consistent SAR sea ice image segmentation
using computer vision is a very difficult problem. Manual gen-
eration of operational ice maps at the Canadian Ice Services is
time consuming and the products potentially subject to human
interpretation bias. Automated methods to segment the SAR
sea ice images are expected to alleviate these problems. This
paper illustrates methods to segment ice from open water and,
subsequently, to classify the ice into its constituent categories.
The gamma mixture model followed by a MRF label model
is able to demarcate ice from open water regions. In the case
of multiple ice types in the ice regions, both texture and tonal
features are necessary to properly perform the segmentation.
Here, the fusion of texture and tonal features leads to a
more robust SAR sea ice image segmentation. Subsequent
processing using an MRF label model dramatically improves
the image segmentation so that operational information can be
derived.
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