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Abstract

The aim of this research is to investigate the possibility of
using medical image information to extract unique features
and classify different patients’ organ tissues, such as the
prostate, based on concepts related to what is already done
in iris recognition. This paper therefore presents a new ap-
proach in medical imaging, an organ recognition system,
tested on a standard database of grey scale prostate images
in order to validate its performance.

In this research, features of the prostate image were en-
coded by convolving the normalized organ region with a 2D
Gabor filter and then quantizing its phase in order to pro-
duce a bit-wise biometric template. Our experiments prove
that prostate patterns have a low degree of freedom to be
used in organ recognition systems and inter-class and intra-
class distributions are highly correlated. However, there are
still open issues that need to be addressed for future work
on organ recognition, including precise segmentation and
intensive computation cost.

1 Introduction

Biometrics is a branch of biology that studies biological
phenomena - like various physiological, physical, or behav-
ioral characteristics - and observations by means of statisti-
cal analysis. It usually refers to recognizing and identifying
individuals using these biological metrics. This emerging
science has recently become popular with the increasing
need for higher authentication and identification systems
and various applications. Among many biometric methods,
iris recognition is very well known because of reliability
and an easy acquisition of biometric data. It has a com-
plex structure that is unique for each eye. The randomness
of the human iris texture is stable over the life-span and the
process of identification is easy and quick. We can use other
biological metrics or organs for identification and especially
for classification if uniqueness is not a concern. The main
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Figure 1. Sample prostate image from MIC-
CAI09 database [MICCAI-2915]

tasks of any organ recognition system are to provide a com-
pact representation of the organ image (i.e., to encode the
captured image) and to allow for a reliable pairwise com-
parison of the encoded images.

In general, any organ recognition system consists of
three phases: (a) image acquisition and organ region local-
ization; (b) feature extraction and encoding; and (c) feature
comparison. Many researchers address the second phase (b)
as the most challenging part of the system [11, 8]. The fea-
ture extraction usually can be performed in frequency and
spatial domains. For frequency features, a transform (like
Fourier or wavelet) must be performed on the image, while
spatial features typically require image segmentation. Im-
age retrieval algorithms are based on visual features and vi-
sual queries [7]. Query by image example, query by sketch
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and by region are some types of visual queries, and colour
histograms, shape and texture descriptors are some types of
visual features. However query formulation is difficult, so
most algorithms focus on features. Exactly how these fea-
tures are used will be application-dependent. If the aim is
working on a biomedical computer-vision problem, the end
goal may be the generation of a classification rule to assist
with diagnosis. Feature-based algorithms try to match fea-
tures and semantics to recognize the object. Most of the
biometric recognition systems use feature extraction to de-
termine a person’s identity. They examine the unique phys-
ical or behavioral features to retrieve the specific person.
These days, the variety of medical images, including diag-
nostic, treatment planning and so on is increasing and with-
out medical image retrieval, it is hard to process everything
very well. Currently, images are accessed by patient ID, but
much information stored in images and connected text and
only little of this knowledge is exploited.

In this paper, the possibility of extracting a biometric fea-
tures from specific organ such as the prostate will be inves-
tigated to categorize patients based on these features. The
goal of the proposed system is encoding the available fea-
tures in medical image to classify different patients’ organ
tissues based on the same organ code. These organ codes
can be used later to develop diagnosis system. The rest of
this paper is organized as follows. First we review some
basic concepts on retrieval systems in Section 2. In Section
3 the proposed method is explained and then evaluated in
Section 4.

2 Retrieval system

One of the primary tools used by physicians is the com-
parison of previous and current medical images associated
with pathologic conditions. As the amount of pictorial in-
formation stored in both local and public medical databases
is growing, efficient image indexing and retrieval becomes a
necessity. During the last decade, the advances in informa-
tion technology allowed the development of content-based
image retrieval (CBIR) systems, capable of retrieving im-
ages based on their similarity with one or more query im-
ages [9]. It is interesting that more than 50 CBIR systems
are surveyed in [12]. Common ground for most image re-
trieval systems is that they are based on similarity measures
estimated directly from low-level image features.

Each retrieval system has two parts: enrolment and ver-
ification. Each part consists of pre-processing and feature
processing. In pre-processing, for example, an interesting
area of the image is selected to pass through feature process-
ing, where valuable features are extracted which are passed
to a template to encode these features as a pattern. At the
enrolment side the database is updated by this new pattern.
When new data arrive to the system, the calculated pattern
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Figure 2. Gabor filter real and imaginary parts
with absolute and phase information

is compared with other patterns in the database to make a
decision about identification.

Iris recognition is the best biometric example for image
retrieval, where the iris has the great mathematical advan-
tage that its pattern variability among different persons is
enormous [4]. In addition, as an internal organ of the eye, it
is stable over time. Given an image of the eye, the iris po-
sition is found and extracted,each isolated iris pattern is de-
modulated to extract its phase information using a quadrate
2-D Gabor wavelets [2, 5]. Altogether, 2048 such phase bits
are computed for each iris. Finally a fractional Hamming
Distance is computed as a measure of the dissimilarity be-
tween two phase code bit vectors (iris codes) of any two
irises [4].

The aim of this research is the possibility of using the in-
formation in medical images to extract unique features and
classify different patients’ organ tissues based on the same
organ code like what has been done in iris recognition.

3 Proposed method

Feature encoding has been implemented by convolving
the normalized organ pattern with the 2D Gabor filter pre-
sented in (1). A 2D Gabor filter over an image domain (X,y)
is represented as

G — e*ﬂ'[(w;#Jr(y;%)z]e—27ri[u0(x—m0)+110(y—y0)] (1)
where (xo,yo) specify position in the image, («, 3) spec-
ify the effective width and length, and (ug,vg) specify
modulation, which has spatial frequency wo = /22 + y3.
Sometimes the polar coordination instead of Cartesian is
used, therefore in polar form the filters are given as

) (r—rg)? _;(0-60)2
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where (v, 3) are the same as in (1) and (rg, 8) specify the
centre frequency of the filter. The demodulation and phase
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Figure 3. Prostate image with selected region
on segmented area [MICCAI09-2915]

Quantization process can be represented as
pdpdg
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where h{Re, Im} is a vector of 2-bit elements whose real
and imaginary components are dependent on the sign of the
2D integral, and I(p, ¢) is the raw organ image in a dimen-
sionless polar coordinate system [6].

The output of convolving is then phase quantized to four
levels using the Daugman method [10]- which was used in
the iris recognition system - with each filter producing two
bits of data for each phasor in gray mode to prevent high
mismatch if two intra-class patterns are slightly misaligned.
The encoding process produces a bitwise template contain-
ing a number of bits of information (codes), and a corre-
sponding noise mask which corresponds to corrupt areas
within the pattern. Since the phase information is poor in
regions where the amplitude is near zero, these regions are
also marked in the noise mask. The total number of bits in
the template will be the angular resolution times the radial
resolution, multiplied by two. For matching, the Hamming
distance (HD) is used as a metric for recognition (4), since
bit-wise comparisons were necessary.

N
1
HD(X,Y) = D (wieX@yeY)
i=1

“)

The HD algorithm uses noise masking, so only non-masked
bits are being used in HD calculation between two organ
templates. Although, in theory, two templates generated
from the same organ must have a HD equal to zero, in prac-
tice it doesn’t happen. In order to consider the rotational in-
consistencies, when the HD of two templates is calculated,
one template is shifted left and right bit-wise and a number
of HD values are calculated from successive shifts. This bit-
wise shifting in the horizontal direction corresponds to rota-
tion of the original organ region. Figures 3 and 4 show two
samples of prostate images of two different patients. Fig-
ures 5a and 5b show the feature extraction for two prostate
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Figure 4. Prostate image with selected region
oh segmented area [MICCAI09-8815].

images. First, the template is extracted from the segmented
organ area, convolved with a Gabor filter, quantized, and
converted to an organ code.

4 Evaluation

In this section, the performance of the organ recognition
system as a whole is examined. Tests have been carried out
to find minimum false match and false acceptance rates, and
to confirm that organ recognition can or can’t perform ac-
curately as a biometric with accurate recognition, as well as
to confirm the uniqueness of human prostate patterns by de-
ducing the degrees of freedom present in the prostate tem-
plate representation. There are a number of parameters -
such as template resolutions, filter parameters and number
of shifts required to consider rotational inconsistencies - in
the recognition system, and optimum values for these pa-
rameters were required in order to provide the best recogni-
tion rate.

4.1 Data set

For evaluation, the MICCAIO9 (Training Data Prostate
Segmentation Challenge) image database is used that con-
tains data sets of grey scale prostate images with 15 unique
prostates (classes) and around 33 different images for ev-
ery patient [1]. Each data set has anonymous prostate pa-
tient data corresponding to T1-weighted axial images, T2-
weighted axial images and the T2-weighted segmented im-
ages. All images have been taken in a 1.5T MRI scanner.
Figures 5a and 5b show the encoded outputs of samples
from this data set that belong to the two different patients.
In these figures the real and imaginary parts of the filtered
image as well as template codes and corresponding masks
have been shown. These images have different sizes and
prostate shapes, so we need to extract features in an adap-
tive way to prevent resolution effects.
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Figure 5. Organ code extraction: Gabor filter
output real and imaginary parts for selected
organ area and extracted organ code and cor-
responding mask for two images.

4.2 Uniqueness of prostate patterns

The first test was to investigate the uniqueness of prostate
patterns, as recognition relies on the independence of
prostate patterns from patient to patient. Uniqueness was
determined by comparing templates generated from differ-
ent patients, and examining the distribution of HD values,
known as the inter-class distribution. According to statis-
tical theory, the mean HD for comparisons between inter-
class prostate templates must be 0.5, if samples are truly
independent. As we mentioned, the templates are shifted
left and right to account for inconsistencies in the prostate
image, and the lowest HD is taken as the actual HD. Due
to this, the mean HD for inter-class template comparisons
will be slightly lower than 0.5. As the number of shifts
increases, the mean HD for inter-class comparisons will de-
crease accordingly. Uniqueness can also be determined by
measuring the number of degrees of freedom represented
by the templates. This gives a measure of the complexity
of organ patterns, and can be calculated by approximating
the collection of inter-class HD values as a binomial distri-
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bution. The value of degrees of freedom (DOF) is usually
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Figure 6. Inter-class Hamming distance dis-
tribution based on two prostate images of the
same patient and its corresponding PDF.

computed by the following equation, where x is the mean,
and o is the standard deviation of the distribution.

DOF = “(17?") 5)

o
As Figure 6a shows, the inter-class HD distributions and its
corresponding Probability Density Function (PDF) doesn’t
show statistical independency, since the mean of the distri-
bution equals 0.14. Therefore it can be stated that in MIC-
CAI09 data set, generated prostate templates are not highly
unique. Also, the distribution shows the simplicity of the
prostate structure with only 78 degrees of freedom.
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4.3 Displacement of organ image

The second test sought to find the effect of organ selected
region displace on the Intra-class HD distribution. Figure
6b shows the HD distribution on the same image with dis-
placements up to 2x N(1,0) pixels. The results show that
HD increases by increasing the displacement in the same
patient image for prostate region, thus the generated organ
code is location dependent.

4.4 Recognition

The key objective of any biometric system is its capabil-
ity to achieve a distinct separation of intra-class and inter-
class HD distributions. With a clear separation, a separating
HD value can be defined for decision making in the compar-
ison of two templates. If the HD between two templates is
less than the separation point, the templates were generated
from the same prostate and a match is found. Otherwise,
they have been generated from different prostates. The dis-
tance between the minimum HD value for inter-class com-
parisons and the maximum HD value for intra-class com-
parisons could be used as a metric to measure separability;
however, this is not a very accurate measure since outliers
will corrupt the calculated value, and measuring is depen-
dent on the number of prostates templates compared. A
better metric is decidability [4], which takes into account
the mean and standard deviation of the intra-class and inter-
class distributions.

s — ppl

Ué-‘ra%
V 2

Decidability is a distance measured in standard deviations

Decidability = (6)
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Figure 8. Intra-class distribution for 6 = 7/70.

and is a function of the magnitude of difference between the
mean of the intra-class distribution pg, and the mean of the
inter-class distribution pp, and also the standard deviation
of the intra-class and inter-class distributions.

The higher the decidability, the greater the separation
of intra-class and inter-class distributions, which allows for
more accurate recognition. With a pre-determined separa-
tion, a decision can be made as to whether two templates
were created from the same organ (a match), or whether
they were created from different organs. However, the intra-
class and inter-class distributions may have some overlap,
which would result in a number of incorrect matches or false
accepts, and a number of mismatches or false rejects. The
False Reject Rate (FRR) measures the probability of an en-
rolled patient not being identified by the system. The False
Accept Rate (FAR) measures the probability of an patient
being wrongly identified as another patient [3]. The decid-
ability metric will determine the optimum parameters. Once
optimum parameters have been found, the performance of
this optimal configuration will be measured by calculating
the false accept and false reject rates.

4.5 Filter parameters

For the encoding process the outputs of each filter should
be independent, so that there are no correlations in the en-
coded template, otherwise the filters would be redundant.
For maximum independence, the bandwidths of each filter
must not overlap in the frequency domain, and also the cen-
tre frequencies must be spread out. Figure 7 shows that
the optimum 6 value for encoding prostate image is 7/70,
where Figure 8 shows the corresponding HD distribution.
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Figure 9. HD distribution vs. template radial
and angular resolution.

.6 Template resolution

Template radial and angular resolution significantly in-
fluences the system performance, since this resolution de-
termines the size of organ code. Figure 9 shows HD values
generated from encoding templates with various radial and
angular resolution dimensions. The optimum template size
for our data set was found to be five pixels for radial resolu-
tion and one hundred pixels as angular resolution.

4.7 Number of shifts

The optimum number of template shifts to account for
rotational inconsistencies can be determined by examining
the mean and standard deviation of the intra-class distribu-
tion. Without template shifting the intra-class HD distri-
bution will be more randomly distributed, since templates,
which are not properly aligned, will produce HD values
equivalent to comparing inter-class templates. As the num-
ber of shifts increases, the mean of the intra-class distribu-
tion will converge to a constant value. It is noted that two
shifts are enough to be able to account for most of the rota-
tional inconsistencies in our data set.

4.8 Evaluation summary

In summary, the optimum encoding of prostate features
was with one 2D Gabor filter with § = 7/70. An opti-
mum template size with radial resolution of five pixels, and
angular resolution of one hundred pixels was chosen for ex-
periments. These parameters generate a biometric template
that contains five hundred bits of information. In order to
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Figure 10. Decidability between inter-class
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correct for rotational inconsistencies two shifts to the left
and right were required for each template comparison. Af-
ter determining these optimum parameters, Figure 10 shows
a weak separation of intra-class and inter-class HD values.
A HD value of 0.115 can be chosen as a separation point.
The decidability value for our data set is 1.3452 which is
very low for a standard recognition system.

5 Conclusion

This paper has looked into the problem of organ recogni-
tion using an approach developed for a quite different appli-
cation (biometric identification). The goal of this research
is to investigate the possibility of using the state-of-the-art
in Iris research, used for identification and security, as a
method to assess the variability of a particular organ. In
particular, what degree of variability is exhibited by a sin-
gle organ in one patient, as opposed to between patients,
and furthermore as opposed to outliers (such as cancerous
organs).

This research has presented an organ recognition system,
tested using standard databases of grey-scale prostate im-
ages to validate its performance. In this research, features
of the prostate were encoded by convolving the normalized
organ region with a 2D Gabor filter, quantizing its phase to
produce a bit-wise biometric template, and finally using a
Hamming Distance as matching metric.

The analysis of the developed organ recognition system
clearly reveals the importance of accurate segmentation,
since areas that are wrongly identified as organ will corrupt
the biometric templates, leading to poor recognition. Fur-



ther,

the encoding process required only one 2D Gabor fil-

ter to provide recognition. Although the prostate can clearly
not function as an accurate biomarker, as can the Iris, this
could hardly be expected. However the results show a posi-
tive level of discriminability between prostate images from
a single patient, as opposed to across patients, suggesting
that biometric methods may offer approaches for organ seg-
mentation and classification.
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