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Texture Classification using Compressed
Sensing
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Abstract—This paper presents a simple, novel, yet very powerful approach for texture classification based on compressed
sensing, suitable for large texture database applications. At the feature extraction stage, a small set of random features
is extracted from local image patches. The random features are embedded into a bag of words model to perform texture
classification, thus learning and classification are carried out in the compressed sensing domain. The proposed unconventional
random feature extraction is simple, yet by leveraging the sparse nature of texture images, our approach outperforms traditional
feature extraction methods which involve careful design and complex steps. We have conducted extensive experiments on both
the CUReT and the Brodatz databases, comparing the proposed approach to three state-of-the-art texture classification methods:
Patch, MR8, and LBP. We show that our approach leads to significant improvements in classification accuracy and reductions in
feature dimensionality.
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1 INTRODUCTION
Texture is ubiquitous in natural images and consti-
tutes an important visual cue for a variety of image
analysis applications like image segmentation, image
retrieval and shape from texture. Texture classification
is a fundamental issue in computer vision and image
processing, playing a significant role in a wide range
of applications that includes medical image analysis,
remote sensing, object recognition, content-based im-
age retrieval and many more. Due to its importance,
texture classification has been an active research topic
over several decades, dating back at least to Julesz’s
initial research in 1962 [1] [2].

The design of a texture classification system essen-
tially involves two major steps: 1) feature extraction,
and 2) classification. The literature on texture feature
extraction is substantial, with extensive surveys [3]–
[7]. Well known representative methods include Grey
Level Cooccurrence Histograms [8], Markov Random
Fields [9] [10], Gray Level Aura Histograms [11] [12],
Local Binary Patterns [13] [14], Gabor filter banks [15]
[16] [17], Wavelets [18], and Fractal Models [19]. All of
these choose a limited subset of texture features from
local image patches, where the number of features
is usually less than the dimensionality of the source
image patch. However, as Randen and Husøy [6]
concluded in their recent excellent comparative study
involving dozens of different filtering methods: “No
single approach did perform best or very close to the
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best for all images, thus no single approach may be
selected as the clear winner of this study.”

By extracting features from a local patch, most
feature extraction methods focus on local texture in-
formation, characterized by the gray level patterns
surrounding a given pixel; however texture is also
characterized by its global appearance, representing
the repetition of and the relationship among local
patterns. Recently, a “Bag of Words” (BoW) model,
borrowed from the text literature, opens up new
prospects for texture classification [20]–[25]. The BoW
model encodes both the local texture information, by
using features from local patches to form textons,
and the global texture appearance, by statistically
computing an orderless histogram representing the
frequency of the repetition of the textons.

There are two main ways to construct the textons: 1)
detecting a sparse set of points in a given image using
Local Interest Point (LIP) detectors and then using
local descriptors to extract features from a local patch
centered at the LIPs [24] [25], 2) densely extracting
local features pixel by pixel over the input image.
The sparse approach largely depends on the texture
images, some of which might not produce enough
regions for a robust representation of the texture.
As a result, the dense approach is more common
and widely studied. Among the most popular dense
descriptors are the use of large support filter banks to
extract texture features at multiple scales and orienta-
tions [20] [21] [22]. However, more recently, in [23] the
authors challenge the dominant role that filter banks
have been playing in texture classification, claiming
that classification based on textons directly learned
from the raw image patches outperforms textons
based on filter bank responses.

The key parameter in patch-based classification is
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Fig. 1. Compressed sensing measurements of local patches form good shape clusters and can
distinguish texture classes. Three textures are shown at left from the Brodatz database. Compare the spatial
distribution and separability of (a) (b) raw pixel values, (c) two linear filter responses (computed from a 49 × 49
support region), and CS random projections (RP1, RP2) extracted from patches of size (d) 9× 9, (e) 15× 15, (f)
25× 25.

the size of the patch. Small patch sizes cannot cap-
ture large-scale structures that may be the dominant
features of some textures, are not very robust against
local changes in textures, and are highly sensitive to
noise and missing pixel values caused by illumination
variations. However, the disadvantage of the patch
representation is the quadratic increase in the dimen-
sion of the patch space with the size of patch, with
the high dimensionality posing two challenges to the
clustering algorithms used to learn textons. First, the
present of irrelevant and noisy features can mislead
the clustering algorithm. Second, in high dimensions
data may be very sparse (the curse of dimensionality),
making it difficult to represent the structure in the
data.

Therefore, it is natural to ask whether high dimen-
sional patch vectors can be projected into a lower
dimensional subspace without suffering great infor-
mation loss. There are many potential benefits of a
low dimensional feature space: reduced storage re-
quirements, reduced computational complexity, and
defying the curse of dimensionality to improve clas-
sification performance. A small salient feature set
would simplify both the pattern representation and
the subsequent classifiers, however frequently-used

dimensionality reduction techniques result in a loss
of information when projecting. This brings us into
the realm of compressive sensing.

The compressed sensing (CS) approach [26] [27]
[28] [29], which has been the motivation for this
research, is appealing because of its surprising result
that high-dimensional sparse data can be accurately
reconstructed from just a few nonadaptive linear
random projections. When applying CS to texture
classification, the key question is therefore how much
information about high-dimensional sparse texture
signals in local image patches can be preserved by
random projections, and whether this leads to any
advantages in classification.

The abilities of CS for perfect signal reconstruction
have been proved [27] [28], however the application of
CS to texture classification has received only minimal
treatment to date. Limited work has been reported
[30] [31] [32] [33], exploiting the specific structure of
sparse coding for texture patches, depending on the
recovery process and careful design of the sparsifying
redundant dictionary. In contrast, our work performs
classification in the compressed domain, not relying
on any reconstruction. In this paper we present a
comprehensive series of experiments to illustrate the
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Fig. 2. Compressed Sensing measurement process

benefits of this novel theory for texture classification.
The proposed method is computationally simple,

yet very powerful. Instead of performing texture clas-
sification in the original high-dimensional patch space
or making efforts to figure out a suitable feature ex-
traction method, by using random projections of local
patches, we perform texture classification in a much
lower-dimensional compressed patch space. The the-
ory of CS implies that the precise choice of the number
of features is no longer critical: a small number of
random features, more than some threshold, contains
enough information to preserve the underlying local
texture structure and hence to correctly classify any
test image. Fig. 1 is a preliminary exploration of this
claim, contrasting the distribution of raw pixels, filter
responses and random CS features.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the CS background and some related
work. In Section 3, we first discuss the theoretical
reasons for the proposed approach, then present the
details of the proposed features and the texture classi-
fication framework, and at last provide analysis of the
benefits and advantages of the proposed approach.
In Section 4, we verify the proposed method with
extensive experiments on popular texture datasets
and present comparisons with three state-of-the-art
methods: the Patch method, the MR8 filter bank, and
the LBP method.

2 BACKGROUND AND RELATED WORK
The theory of compressed sensing has recently been
brought to the forefront by the work of Candès
and Tao [27] and Donoho [28], who have shown
the advantages of random projections for capturing
information about sparse or compressible signals. The
premise of CS is that a small number of nonadap-
tive linear measurements of a compressible signal or
image contain enough information for near perfect
reconstruction and processing. This emerging theory
has generated enormous amounts of research with
applications to high-dimensional geometry [34] [35],
image reconstruction [31] [37], and machine learning
[36] [38] etc.

CS exploits the fact that many signal classes
have a low-dimensional structure compared to the

high-dimensional ambient space. Compressed sensing
refers to the idea that, for certain types of signals, a
small number of nonadaptive measurements in the
form of randomized projections can capture most of
the salient information in a signal and can approx-
imate the signal well. The beauty of the CS theory
is that if a signal may be sparsely represented in
some basis, it may be perfectly recovered based on
a relatively small set of random projections:

¨ The key assumption in CS is that of sparsity or
compressibility. Let y ∈ Rn×1 be an unknown
signal of length n and Ψ = [ψ

1
... ψ

n
] an

orthnormal basis, where ψ
i
∈ Rn×1, such that

y =
n∑

i=1

θiψi
= Ψθ (1)

where θ = [θ1 ... θn]T denotes the vector of
coefficients that represents y in the basis Ψ, as
illustrated in Fig. 2. Signal y is said to be sparse
if most of the coefficients in θ are zero or can
be discarded without much loss of information.
Sparse signals are an idealization that we do
not encounter in practice, but real signals are
usually compressible, which means that the entries
in θ decay rapidly when sorted by magnitude in
decreasing order.

¨ Let Φ be an m×n sampling matrix, with m ¿ n,
such that

x = Φy = ΦΨθ (2)

where x is an m × 1 vector of linear measure-
ments. The sampling matrix Φ must allow the
reconstruction of length-n signal y from length-m
measurement vector x. Since the transformation
from y to x is a dimensionality reduction, in general
there is an information loss, however the mea-
surement matrix Φ can be shown to preserve the
information in sparse and compressible signals if
it satisfies the so-called restricted isometry property
(RIP) [26]. Intriguingly, a large class of random
matrices have the RIP with high probability [26]
[27] [28]. The measurement process (illustrated in
Fig. 2) is non-adaptive in that Φ does not depend
in any way on the signal y.

¨ The signal reconstruction algorithm must take the
m measurements in x, the random measurement
matrix Φ, and the basis Ψ to reconstruct θ. A
large number of approaches have been proposed
in the literature to solve the reconstruction prob-
lem [39], however the reconstruction algorithms
tend to be computationally burdensome.

Research in CS has focused primarily on reducing the
number of measurements m, increasing robustness,
and reducing the computational complexity of the
recovery algorithm [39]. The success of CS for signal
reconstruction motivates the study of its potential for
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signal classification [30] [38] [40]. One of the most suc-
cessful applications of CS theory in computer vision
and pattern recognition has been the SRC algorithm
for face recognition [38]. The SRC algorithm uses the
whole set of training samples as the basis dictionary
and assumes that all of the samples from a class
lie on a linear subspace, such that the recognition
problem is cast as one of discriminatively finding a
sparse representation of the test image as a linear
combination of training images. It is important to
note, however, that the SRC algorithm is based on
global features, whereas texture classification almost
certainly depends on the relationship between a pixel
and its neighborhood. Secondly, SRC is reconstruction
based, explicitly reconstructing the sparse θ, a compu-
tationally intensive step which we avoid.

3 TEXTURE CLASSIFICATION USING COM-
PRESSED SENSING

3.1 Texture images are sparse

The premise underlying CS is one of signal sparsity
or compressibility, and the compressibility of textures
is certainly well established. Certainly most natural
images are compressible, as extensive experience with
the wavelet transform has demonstrated [50]. Tex-
tures, being roughly stationary/periodic, are all the
more sparse. Furthermore from the large literature on
texture classification on the basis of feature extraction
from small image patches, the degrees of freedom
underlying a texture are quite few in number.

For example in [41], the author first uses a filter
bank to reduce the patch space and then further
reduces the dimension of texture filter responses by
projecting filter marginals onto low-dimensional man-
ifolds by a Locally Linear Embedding algorithm [42],
showing that classification accuracy can be increased
by projecting onto a manifold of some suitable dimen-
sion. Cula and Dana [21] first learn the histogram
of textons for a texture and then project all of the
models into a low-dimensional space using principle
components analysis. A manifold was fitted to these
projected points, and then reduced by systematically
discarding those points which least affected the shape
of the manifold.

3.2 Dimensionality Reduction and Information
Preservation

In this paper we intend to use linear projections to em-
bed a local patch p ∈ Rn×1 into a lower-dimensional
space x ∈ Rm×1:

x = Φp (3)

ideally where m ¿ n. Clearly Φ ∈ Rm×n, m < n
loses information in general, since Φ has a null space,
implying the indistinguishability between p and p+z,
for z ∈ N (Φ). The challenge in identifying an effective

(a) (c)(b) (d)

130 CS MeasurementsOriginal 17x17 Texture 100 CS Measurements40 CS Measurements

Fig. 3. Reconstruction of ideal sparse texture signals
from CS measurements.

feature extractor Φ is to have the null-space of Φ
orthogonal to the low-dimensional subspace of sparse
signal p.

Ideally, we wish to ensure that Φ is information-
preserving, by which we mean that Φ provides a
stable embedding that approximately preserves dis-
tances between all pairs of signals. That is, for any
two patches, p

1
and p

2
, the distance between them is

approximately preserved:

1− ε ≤
‖Φ(p

1
− p

2
)‖2

‖p
1
− p

2
‖2 ≤ 1 + ε (4)

for small ε > 0. One of the key results in [26] from
CS theory is the Restricted Isometry Property, which
states that (4) is indeed satisfied by certain random
matrices, including a Gaussian random matrix Φ. It
is on this basis that we propose to use the emerging
theory of compressed sensing to rethink texture clas-
sification.

Example 1: CS and Texture
A simple example, illustrated in Fig. 3, reconstructs a
texture patch based on CS measurements. The recon-
struction results, from different numbers of measure-
ments, are shown in panels (b), (c) and (d). The recon-
struction algorithm CoSaMP [39] is used here. For this
setting, where the texture signal is highly sparse, with
sufficiently large number of random measurements
the original texture is perfectly reconstructed.

Example 2: CS and Classification
Real data are noisy, so (3) should be modified to
explicitly account for noise:

x = Φp + v (5)

where v ∈ Rm×1 is a noise term, independent of p.
We wish to classify p based on the noise-corrupted
compressed measurements x, using a single nearest
neighbor classifier with a Euclidean distance measure.

Suppose we have a set of 100 sinusoids, as plotted
in Fig. 4 (a):

{p
k
(t)}100k=1 = {cos(ωkt)}100k=1 (6)

We collect m random measurements, and we evaluate
the probability of classification accuracy by averaging
over 100,000 trials where, for each trial, independent
realizations of compressed sensing measurements and
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Fig. 4. Signal classification based on CS: (a) A set of
100 synthetic similar periodic signals, each of length
n = 400. (b) Classification accuracy as a function of
the number of CS measurements for both noisy and
noise-free cases.

noise were generated. The results are shown in Fig. 4
(b). We can see that CS measurements can effectively
be used in classification, both in noisy and noise-free
cases. Note that classification was performed directly
in the compressed domain, and without any explicit
sparse reconstruction.

3.3 CS measurements vs. Original Patches
As mentioned before, we wish to preserve both local
texture information, contained in a local image patch,
and global texture appearance, representing the repe-
tition of the local textures and the relationship among
them. It has been shown that a texton-based approach
is an effective local-global representation [20] [23].

The textons are trained by adaptively partitioning
the feature space into clusters using K-means. For
an input data set X = {x1, ..., x|X |}, xi ∈ Rd×1, and
an output texton set W = {w1, ..., wK}, wi ∈ Rd×1,
the quality of a clustering solution is measured by
the average quantization error [53] [54], denoted as
Q(X ,W):

Q(X ,W) =
1
|X |

|X |∑

j=1

min
1≤k≤K

‖xj −wk‖22 (7)

measuring the average squared distance from each
point to the centroid of the cluster where it belongs.
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Clustering

Textons

,{ }
c j j

w

Training Samples 

From Class c

,{ }
c s s

I

Patch Vectors

, ,{{ } }
c s i i s

p

Compressed Sensing

Measurement Matrix
m n

m n

Compressed Vectors

, ,{{ } }c s i i s
x

Fig. 5. Texton dictionary learning in the compressed
patch domain.

However, Q(X ,W) goes as K−2/d for large K [53],
a problem when d is large, since K is then required
to be extremely large to obtain satisfactory cluster
centers, with computational and storage complexity
consequences.

On the other hand, Varma and Zisserman [23] have
shown that image patches contain sufficient informa-
tion for texture classification, arguing that the inherent
loss of information in the dimensionality reduction
of feature extraction leads to inferior classification
performance.

CS addresses the dilemma between these two per-
spectives very neatly. The high-dimensional texture
patch space has an intrinsic dimensionality that is
much lower, therefore CS is able to perform texture
feature extraction without information loss (Example
1), and classification is possible in the CS compressed
domain (Example 2). On the basis of the above analy-
sis, we claim that the CS and BoW approaches are
complementary, and will together lead to superior
performance for texture classification.

3.4 Proposed Approach
We have C distinct texture classes, with each class
having S samples. Let the samples of class c be
represented by an ensemble {Ic,s}S

s=1 and let D =
{{Ic,s}S

s=1}C
c=1 denote the whole texture dataset. A set

of
√

n × √n image patches P = {p
c,s,i

}i is extracted
from image Ic,s. We shall assume hereafter that such
an extraction does not include pixels on the image
boundary.

Our proposed classifier is identical to the Patch
method [23] except that instead of using p, the com-
pressed sensing measurements x = Φp derived from
p are used as features. In this paper, we choose Φ
to be a Gaussian random matrix, i.e., the entries of
Φ are independent zero-mean, unit-variance normal.
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The compressed domain

X = {x = Φp | p ∈ P} (8)

is thus a compressed representation of patch domain

P = {p | p ∈ Rn×1} (9)

Our texture classification system is illustrated in Fig.
5 and Fig. 6, consisting of the following stages:

1) Compressed texton dictionary learning stage,
illustrated in 5, in which a universal compressed
texton dictionary W is learned directly in the
compressed domain X , as opposed to from the
patch domain P .

2) Histogram of textons learning stage, illustrated
in Fig. 6 (left), a histogram hc,s of compressed
textons is learnt for each particular training sam-
ple Ic,s by labeling each of its pixels with the
closest texton in W . Each texture class then is
represented by a set of models Hc = {hc,s}s

corresponding to the training samples of that
class.

3) The classification stage, shown in Fig. 6 (right),
where the process to compute the normalized
histogram of compressed textons hnew for a
novel image is the same as computing the model
for each training sample. The calculated model
hnew is classified into one of the known classes
using nearest neighbor classifier, where the dis-
tance between two histograms is measured us-
ing the χ2 statistic:

χ2(h1, h2) =
1
2

CK∑

k=1

[h1(k)− h2(k)]2

h1(k) + h2(k)
(10)

4 EXPERIMENTAL EVALUATION
4.1 Methods in Comparison Study
Our specific experimental goal is to compare the
proposed CS approach with the following four state-
of-the-art methods:

Fig. 7. The original filter bank for obtaining the MR8
filter responses: edge and bar filters at 3 scales and 6
orientations, plus a Gaussian and Laplacian of Gaus-
sian.

Patch [23]: Each local patch of size
√

n × √
n is

reordered into an n-dimensional patch vector. Both
training and testing are performed in the patch do-
main.

Patch-MRF [23] [43]: A texture image is represented
using a two-dimensional histogram: one dimension
the quantized bins of the patch’s center pixel, the
other dimension the learned textons from the patch
vector with the center pixel excluded. The number
of bins for the center pixel used in [23] is as large
as 200 and the size of texton dictionary is 61 × 40 =
2440, resulting in an extremely high dimensionality of
2440× 200 = 488, 000.

MR8 [22] [23]: The MR8 consists of 8 filter responses
derived from the original responses of 38 filters (see
Fig. 7). A complicated anisotropic Gaussian filtering
method [44] was used to calculate the MR8 responses.

LBP [14] [45]: The rotationally invariant, uniform
LBP texton dictionary at different scales, LBPriu2

8,1 ,
LBPriu2

8,1+16,2, LBPriu2
8,1+16,2+24,3, LBPriu2

8,1+16,2+24,3+24,4,
LBPriu2

8,1+16,2+24,3+24,4+24,5 advocated in [46] [47],
will be used for comparison with the proposed
approach. For simplicity, in the remainder of this
paper these LBP textons are denoted as 1-scale, ...,
5-scale respectively.

4.2 Texture Datasets and Experimental Setup
For our experimental evaluation we have used four
texture datasets, summarized in Table 1, derived from
the two most commonly used texture sources: the
Brodatz album [48] and the CUReT database [49]. The
Brodatz database is perhaps the best known bench-
mark for evaluating texture classification algorithms.
Performing classification on the entire database is
challenging due to the relatively large number of
texture classes, the small number of examples for each
class, and the lack of intra-class variation.

The Brodatz small dataset Db (24 classes) was
chosen to allow a direct comparison with the state-of-
the-art results from [45]. There are 24 homogeneous
texture images selected from the Brodatz album (see
Fig. 8), each of which was partitioned into 25 nonover-
lapping sub-images of size of 128 × 128 pixels, of
which 13 samples for training and the remaining 12
for testing.
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TABLE 1
Summary of texture datasets used in the experiments

Texture
Dataset

Rotation
In plane

Rotation
Off plane

Controlled
Illumination

Texture
Classes

Sample
Size

Samples
per Class

Training Samples
per Class

Testing Samples
per Class

Db 24 128× 128 25 13 12
DB 90 128× 128 25 13 12
Dc

√
61 106× 106 9 5 4

DC √ √ √
61 200× 200 92 46 46

The Brodatz large dataset DB (90 classes) is a
very challenging platform for classification perfor-
mance analysis due to the impressive diversity and
perceptual similarity of some textures, some of which
essentially belong to the same class but at different
scales (D1 and D6, D25 and D26), while others are
so inhomogeneous that a human observer would
arguably be unable to group their samples correctly
(D43, D44 and D97). Based on these considerations,
we selected 90 texture classes from the Brodatz album
by visual inspection, excluding textures D13, D14,
D16, D21, D22, D25, D30, D32, D35, D36, D38, D43-
45, D55, D58, D59, D61, D79, D91, D96 and D97. The
partitioning of images in DB is the same as in Db.

Fig. 8. Brodatz Small: The 24 texture used in [45] from
the Brodatz database

The Brodatz database has been criticized because
of the lack of intra-class variation, leading to the
development of the CUReT database [49] which has
now become a benchmark and is widely used to
assess classification performance.

For the CUReT large dataset DC (61 classes), we
use the same subset of images as Varma and Zisser-
man [22] [23] [43], containing 61 texture classes shown
in Fig. 9 with 92 images for each class, resulting in
a total of 61 × 92 = 5612 images. These images are
captured under different illuminations with seven dif-
ferent viewing directions, a few of which are plotted
in Fig. 10. In the experiments on this dataset, half of
the samples are chosen for training and the remaining
half for testing.

The CUReT small dataset Dc (61 classes) preserves
all texture classes of DC , however each kind of tex-
tures is represented by only a single texture image
taken from the original CUReT database [49], where
all of the textures have the same illumination and
imaging conditions. We partitioned each 320 × 320
texture image into nine 106×106 nonoverlapping sub-

Fig. 9. CUReT: The 61 textures in the CUReT
database [49].

Fig. 10. Image examples from three different texture
classes of CUReT textures under different illuminations
and viewpoints.

images, consistent with [45]. Out of the nine samples
in each class, five samples are used for training, the
other four for testing.

Finally, in terms of the extracted CS vector, we
consider three kinds of normalizations:

1) Weber’s law [23]:

x ← x
[

log(1 + ‖x‖2/0.03)
‖x‖2

]
(11)

2) Unit norm:
x ← x

‖x‖2 (12)

3) No normalization.

4.3 Experimental Tests

Variability Analysis
Because CS performs random feature extraction,
clearly one of the first questions is the extent to which
this randomness is manifested in classifier variability.
There are three sources of variability present:

1) Variation in learned textons from K-means;
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TABLE 2
Classifier variability: Standard deviations are reported

from 20 runs on DC using 10 textons per class, a
patch size of 11× 11, Weber’s law normalization.

Varied Varied Varied CS Dimensionality
Training/Tesing CS Matrix K-means 40 6√

0.09% 0.16%√ √
0.15% 0.33%√ √ √
0.20% 0.69%

2) Variation in the random CS matrix;
3) Variation in training/testing data.

The contribution of all three variations is presented in
Table 2. Although there is clearly variability present
due to the randomness of the CS matrix, it is a modest
fraction of the total variability, and therefore in no
way compromises the CS method as a classifier.

CS Parameter Choices
There are three key parameters in the CS classifier:

1) The number of textons K per class;
2) The patch size n;
3) The CS dimensionality m (m ≤ n).

We first examine the effect of the choice of m on the
classification performance, shown in Fig. 12. We can
see from the results that the classification accuracy
increases rapidly, is level for a wide range of m,
and ultimately decreasing for sufficiently large m. The
decreased accuracy at large m is almost certainly the
increased difficulty of clustering in high dimensions,
consistent with our claim arguing against the high
dimensionality of the Patch method.

Fig. 11 plots the classification accuracy for a variety
of patch sizes n where, motivated by the results of Fig.
12 and by our underlying premise of dimensionality
reduction, only modest values of m are tested. The
results are consistent with the preliminary test in Fig.
12: for each value of n, the performance improves
rapidly for small m, then leveling off for m ≈ n/3.
For dataset Dc (Fig. 11 (a)), the performance decreases
with patch size n, due to the small size (limited train-
ing samples) of Dc, insufficient to train the classifier
on large patches. In contrast, for DC (Fig. 11 (b))
the larger training set allows for sufficient classifier
learning.

Finally consider the choice of K, the number of
textons per class. Because of the dimensionality reduc-
tion of the CS method, it is computationally feasible
to consider greater numbers of textons. Since a set of
textons can be thought of as adaptively partitioning
the compressed patch space into bins, K should be
sufficiently large to allow the partitioning to mean-
ingfully represent the space. Fig. 14 demonstrates the
impact of K on the classification accuracy for a patch
size of 11× 11 and a CS dimension of 40. The figure
shows performance increasing with K, though for
K > 30 the benefits are limited. In our comprehensive
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Fig. 12. Classification accuracy as a function of CS
dimensionality on an 11× 11 patch for dataset DC with
K = 10.

tests, reported in the next section, we will present
results for both K = 10 and K = 40.

4.4 Comparative Evaluation

In this section, we compare the proposed ap-
proach specifically to the current state-of-the-art Patch
method [22] [23] on the CUReT database. To make
the comparison as meaningful as possible, we use the
same experimental settings as Varma and Zisserman
[23]. Moreover, we further show results comparing
our method with the LBP method and the MR8 filter
bank, described in Section 4.1.

In their comprehensive study, Varma and Zisser-
man [22] presented six filter banks for texton-based
texture classification on DC . They concluded that
the rotationally invariant, multi-scale, Maximum Re-
sponse MR8 filter bank yielded better results than any
other filter bank. However, in their more recent study
[23], they challenged the dominant role that filter
banks have come to play in the texture classification
field and claim that their Patch method outperforms
even the MR8 filter bank.

Fig. 13 and Table 3 present a comparison of the
CS classifier, the Patch classifier, the MR8 filter bank
and LBP. Patch-VZ and MR8-VZ are results reported
by Varma and Zisserman [23], all other results are
computed by us, with the results averaged over tens
of random partitions of training and testing sets.

The CS method significantly outperforms all other
methods, a clear indication that the CS matrix pre-
serves the salient information contained in the local
patch (as predicted by CS theory) and that performing
classification in the compressed patch space is not
a disadvantage. In contrast to the Patch method,
not only does CS offer higher classification accuracy,
but also at a much lower-dimensional feature space,
reducing storage requirements and computation time.

In terms of the feature vector normalizations, Fig. 13
presents results of all three normalizations. Similarly,
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Fig. 11. Classification results as a function of patch size and CS dimensionality on dataset (a) Dc and (b) DC

.

TABLE 3
Weber’s law normalization on DC : The mean and standard deviation of the classification accuracy as a function
of patch size. Results are reported over tens of runs. The bracketed values denote the number of textons used
per class. Clearly, the performance of the CS method is better than the Patch method, but at much lower feature

dimensionality.

3× 3 (%) 5× 5 (%) 7× 7 (%) 9× 9 (%) 11× 11 (%) 13× 13 (%) 15× 15 (%) 17× 17 (%) 19× 19 (%)

Dim 9 15 25 30 40 50 60 80 90
CS (10) 95.07± 0.24 96.70± 0.18 96.80± 0.14 96.91± 0.67 97.19± 0.20 97.37± 0.28 97.41± 0.21 97.49± 0.21 97.40± 0.34

Dim 5 10 15 30 40 50 60 80 90
CS (40) 96.37± 0.54 97.00± 0.48 97.49± 0.49 97.95± 0.23 98.19± 0.23 98.07± 0.28 98.24± 0.21 98.37± 0.27 98.43 ± 0.22

Dim 9 25 49 81 121 169 225 289 361
Patch (10) 95.16± 0.34 96.33± 0.36 96.53± 0.23 96.74± 0.24 96.84± 0.32 96.87± 0.30 97.18± 0.33 97.04± 0.22 97.30± 0.33

Patch-VZ (10) 95.33 95.62 96.19 96.38± 0.35 96.58± 0.35 96.63± 0.35 96.89± 0.33 97.11± 0.32 97.17± 0.32

MR8-VZ (10) N/A N/A N/A 95.06± 0.41 95.57± 0.38 95.92± 0.37 96.16± 0.37 96.30± 0.37 96.37± 0.36

Scale 1-scale 2-scale 3-scale 4-scale 5-scale N/A N/A N/A N/A
LBP 81.46± 0.97 91.65± 0.70 94.06± 1.10 94.61± 0.66 95.72± 0.68 N/A N/A N/A N/A

TABLE 4
As in Table 3, but with no normalization.

3× 3 (%) 5× 5 (%) 7× 7 (%) 9× 9 (%) 11× 11 (%) 13× 13 (%) 15× 15 (%) 17× 17 (%) 19× 19 (%)

Dim 5 13 15 20 40 50 60 80 90
CS (10) 95.00± 0.45 96.72± 0.65 96.90± 0.26 97.08± 0.20 97.17± 0.22 97.23± 0.20 97.41± 0.28 97.47± 0.27 97.66 ± 0.20

Dim 9 10 17 30 40 50 60 70 80
CS (40) 95.57± 0.83 96.91± 0.78 97.18± 0.40 97.88± 0.27 98.17± 0.32 98.00± 0.33 98.20± 0.31 98.25± 0.31 98.29 ± 0.45

Dim 9 25 49 81 121 169 225 289 361
Patch (10) 95.35± 0.35 96.63± 0.29 96.87± 0.35 96.96± 0.51 96.78± 0.37 N/A N/A N/A N/A

Scale 1-scale 2-scale 3-scale 4-scale 5-scale N/A N/A N/A N/A
LBP 81.46± 0.97 91.65± 0.70 94.06± 1.10 94.61± 0.66 95.72± 0.68 N/A N/A N/A N/A



10

0 50 100 150 200 250 300 350 400
95

95.5

96

96.5

97

97.5

98

98.5

99
Weber's Law Normalization

Feature Dimension

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
rr

a
c
y

3x3

5x5

7x7
9x9

11x11 13x13

15x15

17x17
19x19

0 20 40 60 80 100 120 140
95

95.5

96

96.5

97

97.5

98

98.5
No Normalization

Feature Dimension

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
rr

a
c
y

3x3

5x5

7x7
9x9

11x11

13x13

15x15

17x17

19x19

0 20 40 60 80 100 120 140
95

95.5

96

96.5

97

97.5

98
Unit Norm Normalization

Feature Dimension

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
rr

a
c
y

3x3

5x5

7x7
9x9 11x11

13x13

15x15
17x17

19x19

Fig. 13. Classification results on dataset DC as a
function of feature dimensionality. The bracketed val-
ues denote the number of textons K per class. “Patch-
VZ” and “MR8-VZ” results are quoted directly from
the paper of Varma and Zisserman [23]. Classification
rates obtained based on the same patch size are
shown in the same color.
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Fig. 14. Classification results on DC as a function of
the number of compressed textons K per class, for a
patch size n = 11× 11 and CS dimensionality m = 40.

TABLE 5
Comparison of highest classification performance on

DC with a common experimental setup.

Method LBP MR8 Patch Patch-MRF CS

Accuracy (%) 95.72 97.43 97.17 98.03 98.43

Tables 3 and 4 compare the classification accuracies
for Weber’s law and No-normalization. The results
indicate that the proposed approach outperforms the
Patch method in all three normalizations, and that the
classification accuracy differences caused by normal-
ization are only marginally significant.

To summarize the preceding figures and tables,
Table 5 presents the overall best classification perfor-
mance achieved by each method for any parameter
setting. The proposed CS method gives the highest
classification accuracy of 98.43%, even higher than the
best of Patch-MRF in [23], despite the fact that the
model dimensionality of the Patch-MRF method is far
larger than that of the proposed CS method.

Results on other datasets
The proposed method also performs well on other
benchmark datasets (described in Section 4.2). The
same detailed sets of experiments for these datasets
were performed as for DC , however since DC is the
definitive test for texture classification the following
discussion is kept brief.

CUReT small Dc: Fig. 15 shows the classification
accuracy of the CS and the Patch methods on dataset
Dc. We can observe that the proposed method per-
forms similarly to the Patch method but at a much
lower dimensionality. As was seen in Fig. 11, it is clear
that the classification performance goes down as the
patch size is increased, quite different from the CUReT
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large dataset DC . Nevertheless, this test shows that
the proposed CS approach can be well applied in this
situation without loss of performance. By comparison,
from a recent LBP paper [45], the best performance
for this dataset is 86.84% for LBP, and 92.77% for the
combination of LBP and NGF with a SVM classifier,
in contrast to our CS classification accuracy of 95.85%.

Brodatz large DB : Table 6 shows the classification
accuracy of the three different normalizations on the
DB dataset. Similar to the results of the previous
section, the proposed method performs better than
the patch method, for all normalizations, although
by a relatively small margin. We achieve a peak
classification accuracy of 96.8% in the Unit-Norm
normalization case. The example demonstrates that
the proposed CS method can successfully classify 90
texture classes from the Brodatz dataset, despite the
large number of classes contained in DB which can
cause a high risk of mis-classification.

Brodatz small Db: Table 7 shows the results on
dataset Db, where both methods achieve near per-
fect classification performance, clearly because of the
smaller number of texture classes. The highest classi-
fication accuracy of 99.95% is achieved by the pro-
posed CS method from a 3 × 3 patch, results so
good that there is hardly room for improvement. By
comparison, from a recent LBP paper [45], the best
performance for this dataset is 98.49% for LBP alone,
and 99.54% for the combination of LBP and NGF with
a SVM classifier.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have described a classification
method based on representing textures as a small
set of compressed sensing measurements of local tex-
ture patches. We have shown that CS measurements
of local patches can be effectively used in texture
classification. The proposed method has been shown
to match or surpass the state-of-the-art in texture
classification, but with significant reductions in time
and storage complexity. Approximately one third the
dimensionality of the original patch space is needed
to preserve the salient information contained in the
original local patch; any further increase in the num-
ber of features yields only marginal improvements in
classification performance.

There are significant distinctions between the pro-
posed CS approach and previous studies in texture
classification:

¨ We demonstrated the effectiveness of random fea-
tures for texture classification, and the effective-
ness of texture classification in the compressed
patch domain;

¨ The proposed CS approach enjoys the advantage
of the Patch method in achieving high classifi-
cation performance, and that of the pre-selected
filter banks in its low dimensional feature space.

Moreover, the proposed CS method facilitates a
very straightforward and efficient implementa-
tion;

¨ We collected the features for texture classification
without assuming any prior information about
the texture image, except the assumption of spar-
sity in some (unknown) basis. This is in contrast
to conventional texture feature extraction meth-
ods which make strong assumptions about the
texture being studied.

The promising results of this paper motivate a further
examining of CS-based texture classification. First,
the use of a more sophisticated classifier, like SVM,
may, in some cases, provide enhanced classification
performance over the nearest neighbor classifier used
in the current study, as in [51] [52]. Furthermore,
the proposed approach can also be embedded into
the signature/EMD framework as is currently be-
ing investigated in the texture analysis community,
which is considered to offer some advantages over
the histograms/χ2 distance framework [24] [25]. An-
other issue requiring further study is to extend the
proposed framework to the pixel-level classification
or texture segmentation problem, which is somewhat
different from the image-level classification problem
considered in this paper. We believe that significant
performance gains are still to be realized.
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