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Abstract. The accurate synthesis of binary porous media is a difficult problem.
Initial applications of simulated annealing in this context with small data sets and
simple energy functions have met with limited success. Simulated annealing has
been applied to a wide variety of problems in image processing. Particularly in
scientific applications such as discussed here, the computational complexity of
this approach may constrain its effectiveness; complex, non-local models on large
2D and 3D domains may be desired, but do not lend themselves to traditional
simulated annealing due to computational cost. These considerations naturally
lead to a wish for hierarchical/multiscale methods. However, existing methods are
few and limited. In this paper a method of hierarchical simulated annealing is dis-
cussed, and a simple parameterization proposed to address the problem of moving
through the hierarchy. This approach shows significant gains in convergence and
computational complexity when compared to the simulated annealing algorithm.

1 Introduction

We are interested in the problem of computational practicality of simulated annealing in
large phase spaces. As is often the case, a constrained problem domain allows concentra-
tion on particular issues of interest. Hence, we choose as a motivational application the
synthesis of binary porous media images. Figure 1 gives two examples, binary images
representing density (white) and pore structures in a physical media (hence the name).
Images such as these are important in the study of porous media [11]. The above exam-
ples, however, are physically imaged; researchers in the area are interested in ways to
accurately synthesize such data. Resulting data sets can be used to perform many useful
calculations [10].

The simulated annealing algorithm has been used to perform this sort of synthesis
with some success [11]. Ultimately the computational complexity has limited the vi-
ability of this approach. Simulated annealing [6] has been used successfully in many
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(a) (b)

Fig. 1. Examples of binary porous media a) sintered glass spheres, b) sandstone

imaging applications, particularly in estimation problems. However, the computational
cost of slow annealing schedules has limited its applicability, especially where large
phase spaces are involved. In this work, we are interested in extending the discussion of
hierarchical methods, primarily as a way to reduce the computational complexity.

Simulated annealing is controlled by a cooling schedule — a decreasing (although
perhaps not strictly so) temperature parameter which affects the likelihood of non-
energetically-favourable events. Theoretical results only exist for impractically slow
cooling, or special cases [5]. Our work is motivated by a wish to leverage multiscale
characteristics of a model to reduce the amount of computation needed.

The general approach of hierarchical annealing [3,1,2] is inspired in part, by renor-
malization group approaches in Markov random fields (e.g., [7]). A key realization is
that while the scaling behavior of local-interaction models may be very difficult to ana-
lyze (hence renormalization difficult), other models may be proposed based on non-local
quantities which are inherently renormalizable.

After briefly describing annealing approaches and how this example problem fits
in, hierarchical annealing will be outlined. In this paper, we concentrate on the issue
of parameterizing the hierarchical approach, and discuss the application to a particular
model with comparison to ‘flat’ annealing methods. Empirical results are presented,
along with a discussion of generalizations and future work.

2 Simulated Annealing and Hierarchical Approaches

Since its introduction to image processing by Geman & Geman [6], simulated annealing
has been used for a large range of applications to image estimation and synthesis. The
flexibility of this model is its main strength. If a problem can be stated in terms of
minimum energy states of a Gibbs type density (1), or equivalently a Markov random
field, simulated annealing will give a correct solution given a long enough cooling
schedule. The usual way of describing such a density is

πβ(x) =
e−βE(x)

Zβ
, (1)

where β = 1/T is the inverse temperature parameter. The partition function Zβ is not
evaluated in simulated annealing.
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However, the primary drawback is that while in theory this approach will work,
this result relies on an intractably slow logarithmic cooling schedule in temperature T :
Tn+1 ∼ 1/ log Tn.

Even computationally tractable cooling schedules (which are not proven to converge,
in general) are expensive — especially for complex models and large domains. The ma-
jority of annealing implementations use a single (‘flat’) lattice at a particular resolution,
annealed by brute force. For many interesting applications, this approach is simply too
computationally expensive to be practical.

The fundamental reason for the slow convergence of such models is that local MRF
models are inherently subject to a phenomena known as critical slowing down. Essen-
tially what happens is the following: since all structure in the model is created by local
interactions, all longer scale (i.e., non-local) structure must be created by many local
interactions. Recall that we are obeying a cooling schedule which reduces the ‘tempera-
ture’ of the simulation over time. At phase-transition points (i.e. critical temperatures),
non-local structure will appear. Once this temperature is reached, significant changes in
the energy become more expensive, since the non-local structure must change through
the cumulative effect of many local interactions. In order to address the cost of sampling
such a model, attacking this critical slowing down is vital.

The method we are describing here, hierarchical annealing is an approach to do just
this. Hierarchical approaches have been proposed in the literature. Primarily, they are of
two types:

1. Hierarchical estimation (assuming a dense first scale), and
2. Region-based sampling methods.

Methods for region-based sampling have been applied successfully to the computation
of local models in very particular cases – for example clustering methods for Ising or
Ising-like models at or near the critical temperature. (Here Ising exhibits the interesting
phase-change behaviour; studying this and the structures created near this temperature
has driven much of the interest in these sorts of methods). Our models are in general
quite different than this class, especially in that they exhibit complex structure at very
low temperatures or, equivalently, for long temperature scales as we anneal.

There are several authors who have discussed hierarchical approaches to the related
problem of accelerating image estimation. In particular, a ‘label’ pyramid may be built
above the (full resolution, finest scale) image [9, 4, 8]. This is, however, quite different
than our situation. Given a dense image at finest scale, this estimation problem tends to
be well-conditioned, and converges well with very little information from coarser scales.
In fact, often the coarse scale state is not annealed at all.

2.1 Hierarchical Annealing

The question then is: At any given level in this multiscale hierarchy, what image features
are represented? In particular, we wish to work ‘down’ a hierarchy, from coarsest to
finest resolution. How may we anneal in such a way that features are represented at the
current level, and can be meaningfully projected to the the next finest level? Figure 2
illustrates this point.
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(a) 512 × 512 (b) 128 × 128 (c) 64 × 64

Fig. 2. A porous media image viewed at several resolutions: How do local and non-local features
scale?

Our approach to hierarchical annealing [1] is outlined as follows. Consider a hier-
archy {Xn}M

n=0 of coarse-grainings of the configuration space where each increase in
level represents decimation by a factor of two (X0 is finest resolution). At each higher
level in the hierarchy, the energy function for that level is Es. We denote projection
(coarse to fine) from level s to level s − 1 as Ps−1. Annealing is performed as shown in
Algorithm 1.

Algorithm 1 Hierarchical Annealing
k ⇐ 0
for scale s from coarsest to finest do

while Es(Xs) not converged do
β ⇐ 1/Tk

Xs ⇐ apply Gibbs sampler to Xs

k ⇐ k + 1
end while
Xs−1 ⇐ Ps−1(Xs) {map to next finer resolution}

end for

There are two sources of computational benefit in this approach. First, the size of the
coarse domains is small, allowing rapid iterations of the sampler. Second, as suggested
in the previous section, at an intermediate scale the algorithm needs to iterate only
long enough to allow relatively local structure to converge, since the larger structures
converged at coarser scales. So we work in a decimated configuration space (at less
computational cost) until some appropriate condition is reached, and then project onto
the next larger space and continue annealing.

Annealing with too low an initial temperature (not enough energy) approaches a
greedy algorithm, that is, it will be prone to getting stuck in local minima. On the other
hand, too high an energy may destroy larger structures (all such structure may be taken
apart if you anneal for long enough). Since this holds true at any level in the hierarchy,
clearly there is a delicate balance in achieving computational gains while retaining good
optimization performance (i.e., low temperatures).
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Analysis of the interactions between the annealing (cooling) schedule, the scale-to-
scale projection, and the convergence of the stochastic sampler is not straightforward.
In this work, we present a discussion of a simple parameterization of the process, which
is in no way presumed to be optimal. Empirical results will show this approach to be
beneficial when applied to our example. Further work will refine these methods; from
the preceding it should be clear that there are several related avenues for improvement.

2.2 Parameterization for H-A

Due to the aforementioned difficulties, choosing a ‘best’ way to parameterize the hi-
erarchical annealing is not straightforward. In this work, we have explored a simple
parameterization and present the benefits when compared to ‘flat’ annealing.

Parameterization is made more difficult by the fact that it is difficult to distinguish
the effect of varying the cooling schedule and the number of iterations of the system. To
simplify things, in the following we have taken a fixed, geometric cooling schedule:

Tn+1 = αnT0, 0 < α < 1 . (2)

In this approach, the process is broken into three steps. There is an initialization step,
which is flat annealing, at the coarsest scale, from an initial temperature tinit to some
t0 according to a particular cooling schedule. At this point, the second step, begins: The
hierarchical stepping of the system is begun. This process is controlled by two parameters
θ0, the number of iterations per step, and θ1, the ‘iteration offset’ upon projection. For
each scale, until the final, high-resolution scale is reached, the system is iterated under
the given cooling schedule for θ0 steps. At this point, the system is projected to the next
highest scale, but the temperature is adjusted by θ1 steps (i.e. as if n has changed in
2). The process is repeated until the final scale is reached. Finally, the system may be
iterated at the finest scale until it has converged. Algorithm 2 describes this process:

Algorithm 2 Parametrized Hierarchical Annealing

{Initialize system at coarsest scale}
{Anneal until temperature t0 is reached}
for scale s from coarsest to finest do

for θ0 iterations do
β ⇐ 1/t
Xs ⇐ apply Gibbs sampler to Xs

t ⇐ αnT0
n ⇐ n + 1

end for
Xs−1 ⇐ Ps−1(Xs) {map to next scale}
n ⇐ n + θ1

end for
{Final iterations done at highest resolution scale}
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2.3 Models/Energy Functions

The statistical sampling methods discussed here are characterized in terms of an energy
function E in (1) . When considering a hierarchical approach, the key problem is how
to define it at coarser scales. We are considering binary dense/pore structures [12] in
an image. We can denote Is(x) for the index function for our binary image at scale s,
(yielding 0 for pore, and 1 for density). If we let < · > denote a spatial average over the
image, then the average density φ (or ‘one-point’ correlation can be denoted as

Ss(r) = <Is(x + r)> = φs . (3)

Similarly, two-point correlation:

Ss(r1, r2) = <Is(x + r1)Is(x + r2) > . (4)

Quantities of particular interest in the study of porous media are the above mentioned
correlation functions, and the distribution of chordlengths [12]. Notationally, let us take
·̂ to denote trained/target values. Furthermore, denote the lattice size of the image at

a particular scale s as O(s) (then for initial lattice of N ×N O(s) = N/2s). When
considering chordlength distributions, if we restrict ourselves to the horizontal and ver-
tical directions again, this is essentially the distribution of length of contiguous ‘runs’ of
density pixels in these directions. Denoting these probability mass functions as ph

C and
pv

C for the horizontal and vertical directions, respectively, we may construct an energy
function at scale s:

Es =
O(s)∑

n=1

‖p̂h
C(n) − ph

C(n)‖ + ‖p̂v
C(n) − pv

C(n)‖ . (5)

Here the sample pmf’s are estimated by histograms from the image data. Taken alone,
this puts no constraint on the amount of pore or density in the image. Hence a constraint
based on (3) must be added; either explicitly in the energy function, or implicitly by
using a sampling algorithm that conserves density by exchanging pixels rather than
flipping single sites. Other energy functions are of interest for this application [3], in
particular two-point correlation (4) [12]. However, in the results following this section,
we concentrate on chordlength distribution to construct energy functions like (5).

3 Results and Conclusions

In order to demonstrate the efficacy of the ideas introduced in this work, we present
some empirical results for a particular model, comparing the behaviour of ‘flat’ and
(parameterized) ‘hierarchical’annealing methods. The energy function used here is based
on (5) with l2 distance between histograms for both horizontal and vertical chordlength
distributions (i.e., mean squared error). The chordlength distribution is important in the
study of porous media, and has been used in annealing methods in the porous media
literature [12, 11].

This model demonstrates how critical slowing down affects the flat annealing process.
Figure 3 shows three plots: 3(a) gives energy vs. calculations results for a large number
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Fig. 3. Flat and hierarchical sampling. Energy vs. Computations for (a) many hierarchical param-
eters, (b) flat annealing for several values of α, and (c) several ‘good’ hierarchical parameters for
comparison to flat annealing results. Note similar low-temperatures are reached in (c) with much
less computation than (b).

(a) α = 0.95,E = 5.8 · 10−5 (b) α = 0.95, E = 6.1 · 10−4

Fig. 4. Synthetic images from hierarchical (a), and flat (b) annealing. Energy E, and coefficient
of geometric cooling (2), α, is given. Note the clear morphological differences between the right
(flat) and left (hierarchical) images. Blockiness and line segments on the right are due to annealing
too quickly.

of parameterizations of a chordlength model (without periodic boundaries) demonstrat-
ing a range of results; unsurprisingly a poor choice of parameterization leads to poor
convergence. Figures 3(b) and 3(c) show for a similar model (with periodic boundaries)
collection of good parameterizations (low final energy) to a number of flat annealing
sessions with different cooling schedule parameters α,respectively.

Note that all energies are calculated at the finest scale, and results are shown on a
log-log plot. Hierarchical annealing was done with the cooling parameter α = 0.95. For
flat annealing, α ranged from 0.9 to 0.999. Computations are normalized to the cost of
a full ‘sweep’ of the Gibbs sampler on a 32 × 32 image. The longest flat annealing run
takes approximately 2 days on a 3 Ghz. Pentium 4 class machine.

These plots show that hierarchical annealing may reach much lower temperatures
for the same computational cost. Conversely, we may reach the same temperatures with
far fewer computations. It should be noted that none of the above results are particularly
good, morphologically speaking, when compared to the class of images they are trying
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to reconstruct. Training images were taken from a set of glass sphere images (see Fig
1-a). However, Figure 4 shows that the lower energy images have significantly different
characteristics from those resulting from ‘flat’annealing. The problem of critical slowing
down is illustrated in the right images (flat annealing). In particular, note that breaking
a ‘bad’ long chord into two smaller chords need not be energetically favourable, hence
such chord can be difficult to get rid of. Flat annealing images (right hand side) exhibit
thin vertical and horizontal chords which are not seen in the (lower energy) hierarchical
results.

In conclusion, we have discussed the need for hierarchical or multiscale methods in
annealing, and related our proposed method to the literature. We have demonstrated the
efficacy of a simple parameterized approach to hierarchical annealing when compared
to standard, ‘flat’ annealing. Our method is shown to exhibit significant improvements
to a practical application. It is, however, not in any way considered optimal and further
analysis of the process is needed.
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