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ABSTRACT 
Virtually all implementations of simulated annealing 
are simplified by assuming discrete unknowns, however 
continuous-parameter annealing has many potential appli- 
cations to image processing. Widely-scattered problems 
such as formant tracking, boundary estimation and phase- 
unwrapping can all be approached as the annealed mini- 
mizations of continuous B-spline parameters. 

The benefits of simulated annealing are well-known, in- 
cluding an insensitivity to initial conditions and the abil- 
ity to solve problems with many local minima. Discrete- 
variable annealing has seen broad application, however 
continuous-variable annealing is limited by the computa- 
tional challenge of Gibbs sampling. In this paper we de- 
velop efficient approaches to sampling, illustrated in the 
context of contour tracking in noisy images. 

1. INTRODUCTION 

The essential task in a wide variety of image-processing 
problems is estimating the shape and location of ordered 
irregular curves, or contours. Figure 1 presents three well- 
known examples of this type: the estimation of ordered for- 
mants from speech spectrograms, determining concentric 
classification boundaries in medical MRI images, and track- 
ing phase-jumps in interferometric SAR images. Though 
the measurements and the underlying physics or mathemat- 
ics for these examples are totally unrelated, in all three cases 
the image processing problem can be characterized simi- 
larly as the estimation of smooth, ordered (non-crossing) 
contours. 

To be sure, there is a large literature of specialized meth- 
ods for formant tracking, medical image segmentation, and 
phase unwrapping, however the mathematical characteriza- 
tions of these problems, and others, share many features in 
common, so it is interesting to consider a unified approach. 

Solving a contour estimation problem requires a pa- 
rameterization of the contours and a performance metric 
which recognizes good solutions. B-splines [ I ]  are a popu- 
lar framework for representing smooth, continuous contours 
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B-spline tracking of speech spectrogram formants 

MRI thigh cross-section segmentation 

Interferometric SAR image phase contour unwrapping. 

Fig. 1. Three examples from speech, medical imaging, 
and SAR interferometry which share a common underlying 
ordered-contour structure. 
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with relatively few parameters. Finding the 'best' set of or- 
dered contours then implies solving an optimization prob- 
lem in the B-spline parameters, the major obstacle to such 
optimization being the presence of local minima in the per- 
formance metric. Simulated annealing (SA) [2] is widely 
used to solve image-related optimization problems, due to 
its initialization insensitivity, avoidance of local minima, 
and accommodation of a wide variety of energy functions. 

However R-spline parameters are continuous, whereas 
simulated annealing is nearly universally employed for 
discrete-valued parameters. A continuous-variable basis re- 
quires significant and fundamental changes to SA, in par- 
ticular the efficient sampling from continuous conditional 
distributions, which is the key contribution of this paper. 
A discretization of the continous variable is, of course, a 
straightforward solution, however we shall see that much 
more efficient approaches exist. 

We begin by developing continuous-parameter models 
for image processing, followed by an overview of simulated 
annealing in Section 3. Section 4 describes the main contri- 
bution, the continuous-parameter conditional sampling, fol- 
lowed by experimental results. 

2. CONTOUR MODELS 

Let us start by briefly describing the R-spline optimiza- 
tion problem for contour estimation, unifying the disparate 
image-processing problems of Figure I and formulating 
them as a continuous-parameter optimization problem, suit- 
able for solving via simulated annealing in Section 3. 

We require a performance metric ('energy' function) 
having two additive components: a prior model, capturing 
the intrinsic properties of the contours themselves, and a 
measurement model, defining the relationship between the 
contours and the image. 

Consider the format tracking problem 131; formant tra- 
jectories are ordered continuous functions of time 

where B3 is the cubic B-spline generator [l], c,,(j) is the 
j t h  control point for the nth formant, T is the point spacing, 
and fn is the nth interpolated trajectory. 

We want the contours to follow the dark spectrogram 
bands, so the external energy He,, rewards "darkness" 
along the contour trajectories: 

N T  

n=l t=1 

He,, alone corresponds to a model-free approach to seg- 
mentation or edge detection, and is inadequate because of 
poor image quality and the multiplicity of possible tracks. 

The internal energy function H,,, specifies the prior or 
contextual preferences of trajectory shape, to guide prefer- 
ence away from unreasonable contours: 

a smoothness constraint, an expected frequency range, and a 
non-crossing condition: together these terms assert a model 
of formant behavior. Figure 2 illustrates the relationship be- 
tween contour parameters and energy: the external energy 
identifies multiple favourable trajectories, however the in- 
temal energy constrains the choice to the correct path. 

In the MRI application, the concentric classification 
boundaries can be expressed as closed I-D radial splines. 
External energy can be calculated based on edges and the 
expected gray levels; the internal energy can assert smooth- 
ness and an expected thickness range for each tissue layer. 

Phase-discontinuity lines in interferometric SAR im- 
ages result from wrapped phase measurements. The exter- 
nal energy measures local phase continuity after correction; 
the internal energy function reflects preferences for smooth- 
ness and local parallelism. 

3. SIMULATED ANNEALING 

We wish to find the optimal contour configuration: the 
global minimum of the overall R-spline energy function. 
Though the use of SA is well established in hard opti- 
mization problems with discrete (or discretized) unknowns, 
the potential applications of continuous-parameter anneal- 
ing are relatively unexplored. Unlike existing continuous- 
parameter annealing methods [4]. our approach is devel- 
oped from the discrete Gibbs Sampler [5]. The set of un- 
knowns (spline control points) has a Gibbs distribution, 

(4) 

At the limit T t 0, the distribution becomes impulsive at 
the global energy minimum. In principle then, global op- 
timization reduces to drawing a sample directly from the 
huge joint distribution p(cl0) at zero-temperature, a compu- 
tationally impossible operation. 

The key to SA is that it is much easier to sample from the 
conditional distribution of a single parameter x = e", as in 
Figure 2(c). SA then proceeds by selecting T large, so that 
the parameters are only loosely constrained, then lowering 
T and more tightly constraining the contours. If the temper- 
ature reduction occurs slowly enough the process converges 
in probability lo the global energy minimum [ 5 ] .  

The key challenge, and the contribution of this paper, is 
how to perform this conditional sampling. 
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Fig. 3. The central portion of a PDF (filled) is more closely 
modelled by a 16-sample adaptive estimate (solid) thana 16 
uniform sample estimate (dashed). 

(C) 

Fig. 2. (a) B-spline curves from three values for the cen- 
tral control point. (b) Energy as a.function of the control 
point value. (c) The resulting conditional PDF at different 
temperatures; at low temperatures the distribution narrows. 

4. CONDITIONAL SAMPLING 

For conditional sampling in the discrete domain, it is simple 
to find the energy associated with each possible value of a 
single parameter x and to choose a new setting according 
to (4). However when z is continuous and the analytical 
form ofp(x) unknown, the only recourse is to make a finite 
number of h(z) evaluations, form an estimated PDF e(%), 
and sample from it. Since each energy measurement has 
an associated computational cost, possibly involving a wide 
variety of image processing operations through He,,, an ac- 
curate e(.) must be constructed from the smallest possible 
set of measurements (h(z , )} .  

Uniformly-spaced q is hy no means optimal: at low 

temperatures the distribution is extremely narrow, and most 
measurements will be wasted at points wherep(z) is vanish- 
ingly small. By using past h(z)  measurements as a guide, 
an adaptive strategy can achieve a much higher accuracy. 

We begin with a heuristic 'Max-Bracketing' (MB) algo- 
rithm for choosing the x i ,  If we assume the zt to be sorted, 
the block with the largest area, 

( 5 )  ) -H(xi)/T 1 
argi m,c  ~(xi+l - x i - ]  e 

representing the greatest integrated uncertainty, is broken 
by placing new measurements at its left and right edges. 
Figure 3 illustrates the improvement offered by MB. 

While MB is an effective heuristic, more principled ap- 
proaches are possible. Asserting a prior model for h(+) 
variation defines the distribution of possible PDFs given 
(h(zi)} (Figure 4). That is, p(zI{h(z,)}) is a random 
function, the statistics of which can be invaluable in adap- 
tively selecting the next sampling location 5. For instance, 
j: might subdivide the inter-measurement segment, 

Z<+L 

arg, m,S,; is(.~{h(si)~) (6)  

with the greatest mean contribution to the PDF (MPC). Al- 
ternatively,? could be placed on the location of greatest un- 
certainty V ~ T  [P(%l(h(zi)})]. Such adaptive sampling tech- 
niques outperform the regular gnd approach at low temper- 
atures, as shown in Figure 5 .  

Although the computational cost of evaluating the ran- 
dom function statistics is prohibitive for all but the most 
computationally demanding He,,, the excellent perfor- 
mance motivates a search for equivalent heuristic or ana- 
lytical approaches. Certainly efficient and robust adaptive 
sampling techniques are critical to the utility of any contin- 
uous Gihhs annealing algorithm. 



Fig. 4. Given measurements of energy at z = 
0,2.5,5.0, F.2,8 the ensemble of probable PDFs. Deter- 
mining the energy at zi does not uniquely determine p(z i )  

Fig. 5. Closeness to the ideal PDF as a function of the 
number of energy measurements. The adaptive approaches 
vastly outperform regular uniform sampling (black). 

5. RESULTS & DISCUSSION 

Both MB-adaptive and regular-grid versions ofthe proposed 
contour-estimation method were implemented for the for- 
mant tracking problem. Figure 6 illustrates the convergence 
of the estimated formant trajectories between intermedi- 
ate and low temperatures, respectively. Using the regular 
grid, there was an average distance of 156 Hz between the 
annealed estimates and hand-labelled formant trajectories. 
The adaptive approach achieved an average error of 141 Hz 
in less than a quarter of the time. In both cases, most of the 
discrepancy occurs in low-confidence regions of the hand- 
labelled solution. 

We see a growing interest in continuous-parameter 
Gibbs annealing for tackling a variety of image analysis 

Fig. 6. Formant estimates (dark blue) at medium (top) and 
low (bottom) temperatures converge toward hand-labelled 
trajectories (light contours). 

problems not amenable to other optimization techniques, 
where efficient and robust adaptive sampling techniques 
will clearly play a critical role. 
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