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Phase-Adaptive Superresolution of Mammographic
Images using Complex Wavelets

Alexander Wong, Member, IEEE, and Jacob Scharcanski, Senior Member, IEEE

Abstract— This paper describes a new superresolution ap-
proach for enhancing the resolution of mammographic images
using complex wavelet frequency information. This method allows
regions of interest of a mammographic image to be viewed
in enhanced resolution while reducing the patient exposure to
radiation. The proposed method exploits the structural char-
acteristics of breast tissues being imaged, and produces higher
resolution mammographic images with sufficient visual fidelity
that fine image details can be discriminated more easily. In our
approach, the superresolution problem is formulated as a con-
strained optimization problem using a third-order Markov prior
model, and adapts the priors based on the phase variations of
the low-resolution mammographic images. Experimental results
indicate the proposed method is more effective at preserving
the visual information when compared with existing resolution
enhancement methods.

Index Terms— superresolution; mammography; phase; adap-
tive.

I. INTRODUCTION

Breast cancer is one of the most common types of cancer
and is one of the leading causes of cancer death worldwide.
To reduce the risk of death due to breast cancer, it is important
to detect and treat breast cancer in its early stages. One
of the most effective methods for detecting breast cancer is
through the use of mammography, where a breast radiograph
is acquired and analyzed for possible signs of abnormality,
such as the presence of masses and microcalcifications.

Some important factors to consider in digital mammography
are radiation dosage and image quality. It is important to mini-
mize the patient exposure to radiation. However, low radiation
dosage can lead to low signal-to-noise ratios (SNR), which
affects image quality. To improve SNR, larger detector pixel
dimensions can be used but at the expense of image resolution.
Fortunately, the image resolution can be enhanced by multi-
frame registration techniques. In particular, Robinson et. al [7]
showed that mammographic images with similar quality as a
single image acquired at a normal dosage of 226 mAs, can
be produced using multiple images at a reduced combined
dosage of 169.5 mAs. In this case, a set of spatially shifted low
radiation images are acquired, and a higher resolution image
is composed representing the registered image set. In practice,
the image shifts can be obtained by X-ray tube rotations, or
by moving the imaged object with respect to the X-ray source.
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Also, in some cases, the shifted images are acquired by a set
of sensors spatially displaced [8]. The key advantage to this
approach is that high resolution mammographic images can
be obtained by combining lower radiation images. As such,
multi-source superresolution reconstruction is a promising
algorithmic solution for obtaining mammographic images with
resolutions higher than can be achieved by the physical radio-
graphic hardware in a single image at a given dosage, thereby
improving the visibility of suspicious structures. Multi-source
superresolution reconstruction techniques also can help avoid-
ing patient discomfort, and additional x-rays exposure, when
suspicious breast structures are re-examined in higher detail,
providing higher quality image scaling than other available
methods, as discussed later in this paper.

Given the benefits of image superresolution, several meth-
ods have been proposed for the purpose of enhancing medical
images. Greenspan et al. [1] and Kennedy et al. [2], [3] utilized
the iterative back-projection (IBP) method proposed by Irani
et. al [4] to construct high resolution magnetic resonance (MR)
and positron emission tomography (PET) images, respectively,
from spatially-shifted images. In the IBP approach, an estimate
of the high resolution image is compare with low resolution
image estimates. The differences between the estimated low
resolution images and the actual low resolution images are
then used to refine the high resolution image in an iterative
manner. Hsu et al. [5] proposed to create high resolution
cardiovascular images using a superresolution method based
on Projection on Convex Sets (POCS) [6]. In the POCS
approach, a convex constraint set is set up to maintain con-
sistency with the low resolution images. The estimated high-
resolution image is projected onto each constraint within the
convex constraint set until the desired condition is satisfied.
Other super-resolution methods include Maximum a Posteriori
methods [7], [9], Bayesian methods [10], neural network
methods [11], and wavelet-based methods [12]. One major
drawback to existing methods is that they treat all image
content equally from a structural perspective. This leaves
enhancing the visual fidelity of the high-resolution medical
images based on the structural characteristics of the underlying
image content largely unexplored. This is particularly impor-
tant in enhancing mammographic images, where the structural
detail of the breast region being imaged is critical to the early
clinical diagnosis of cancer, improving the chances of success
of breast cancer treatments.

The main contribution of this paper is a novel superreso-
lution method for producing high resolution mammographic
images. The proposed method is based on complex wavelet
phase information, and tunes the high resolution image for
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improved detail visibility. In this paper, the superresolution
problem is described in the context of mammographic im-
ages in Section II. The proposed method is described in
Section III. Experimental results are presented and discussed
in Section IV. Finally, conclusions are drawn in Section V.

II. PROBLEM FORMULATION

The multi-source image superresolution problem can be
formulated in the context of mammographic images as fol-
lows. Consider n 2-D low resolution mammographic images
f1, f2, ..., fn of size M ×N . Each low resolution image can
be viewed as being acquired from a single high resolution
source image g of size RM ×RN (where R is the resolution
enhancement factor), under various forms of signal degrada-
tion such as decreased sampling, warping, and blurring. Low
resolution images can undergo different degradations, and a
low resolution image fi is represented in the following matrix-
vector form: (
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i
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is a [MN ×1] vector representing a low resolu-

tion image fi lexicographically ordered,
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is a [R2MN×1]
vector representing the high resolution image g lexicograph-
ically ordered, Hi is a [MN × R2MN ] matrix representing
the degradation function for a low resolution image, and ni is
a [MN × 1] noise vector added to a low resolution image.
The degradation function typically is composed of multi-
ple degradation functions, modeling different types of image
degradation and can be derived based on the characteristics of
the imaging device.
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For the sake of simplicity, Equation (2) can be expressed in
the following form:

f = H
(
g
)
:
+ n, (3)

where, f indicates a vector composed of vectors f
1
, f

2
, ..., f

n

stacked on top of each other, and H indicates a matrix
composed of matrices H1,H2, ...,Hn stacked on top of each
other. Using the above relationship between the low resolu-
tion image and the source high resolution image, the multi-
source image superresolution problem can be formulated as
an inverse problem, where a model of the high resolution
source image g is derived from the observed low resolution
images f1, f2, ..., fn. This multi-source image superresolution
problem is underdetermined, and no unique solution exists.

III. PROPOSED METHOD

The proposed method can be briefly described as follows.
First, complex wavelet phase information is extracted from the
low resolution mammographic images. Second, the superres-
olution problem is formulated as a constrained optimization
problem, using a third-order Markov prior model that is
adapted based on phase coherence moments derived from
the complex wavelet phase information. This optimization
problem can then be solved using an iterative solver.

A. Complex Wavelet Phase Information Extraction

The proposed method has been designed to reconstruct high-
resolution mammographic images, while preserving structural
details of these images so that a better visualization of the
patient conditions can be achieved. Therefore, it is necessary
to use a method for measuring the structural significance of
breast features in the individual low resolution images, so
more the relevant details are better preserved in the image
reconstruction. A recent approach that has been shown to be
particularly effective in measuring structural significance of
image characteristics is the use of complex wavelet phase in-
formation [13], [14], [15], [16], [17]. A particularly important
complex wavelet phase characteristic with respect to structural
significance is phase coherence. Such techniques are based on
the postulate that structurally significant signal characteristics
occur at points in a signal, where there is maximal phase order
in a frequency domain representation of the signal. Further-
more, local phase coherence is insensitive to local contrast and
intensity variations in an image, which can be important in the
case of mammographic images. Considering these benefits,
local phase coherence is utilized by the proposed method
to measure the significance of features in a mammographic
image.

In the proposed method, complex-valued Log-Gabor
wavelets [18] are used to obtain localized frequency informa-
tion from a low resolution mammographic image at different
scales c and orientations θ. Given an image I , the local
amplitude A and phase φ at a particular scale c and orientation
θ can be determined as follows:

Ac(x, θ) =
√

(I(x) ∗ F e
c (θ))2 + (I(x) ∗ F o

c (θ))2, (4)

φc(x, θ) = tan−1

(
(I(x) ∗ F e

c (θ))
(I(x) ∗ F o

c (θ))

)
, (5)

where F e
c (θ) and F o

c (θ) are the pair of even-symmetric and
odd-symmetric Log-Gabor wavelets at scale c and orientation
θ, and x denotes the image point (x, y). Given amplitude A
and phase φ, a measure of local phase coherence at a particular
orientation θ was proposed by Morrone et al. [13] as the
amplitude-weighted sum of local phase deviations ∆Φc(x, θ)
across multiple scales relative to the weighted mean phase φ̄
across multiple scales:

P (x, θ) =

∑
c
Ac (x, θ) ∆Φc(x, θ)∑

c
Ac (x, θ)

, (6)
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where,

∆Φc(x, θ) = cos
(
φc (x, θ)− φ̄ (x, θ)

)
. (7)

From Eq. (6), it can be observed that as the individual wavelet
components approach maximal phase order, representing max-
imal structural significance, the local phase deviation terms
∆Φc(x, θ) approach one across scales, the amplitude-weighted
sum of local phase deviations approaches the sum of individual
amplitudes and the local phase coherence measure P (x, θ) ap-
proaches one. As the wavelet components become maximally
out of phase, representing minimal structural significance, the
local phase deviation terms ∆Φc(x, θ) approach zero and
the local phase coherence measure P (x, θ) approaches zero.
The main advantage of the aforementioned measure is that
it depends primarily on phase information, thereby largely
invariant to the local contrast and intensity variations found
in mammographic images.

Two important issues with the formulation of local phase
coherence proposed by Morrone et al. [13] is that it is sensitive
to noise and provides poor structural feature sensitivity and
localization [15]. To address these issues, the proposed method
utilizes a modified measure of local phase coherence proposed
by Kovesi [15], which improves phase coherence sensitivity as
well as reduces noise sensitivity. To improve phase coherence
sensitivity, it was proposed that the phase deviation term
∆Φc(x, θ) can instead be formulated based on the fact that
when maximal phase order occurs, the cosine of the phase
deviation is large, and the absolute value of the sine of the
phase deviation is small:

∆Φc(x, θ) = cos
(
φc (x, θ)− φ̄ (x, θ)

)
−
∣∣sin (φc (x, θ)− φ̄ (x, θ)

)∣∣ .
(8)

To further improve phase coherence localization, it was pro-
posed that a phase coherence weighting function W be in-
troduced across wider frequency spreads. The higher W , the
higher the phase coherence across wider frequency spreads,
and the greater is the local structural significance [15]. To
reduce noise sensitivity, it was proposed by Kovesi [16] that a
noise threshold T be applied to the product of the amplitude
Ac and the phase deviation term ∆Φc(x, θ), for each scale c,
to reduce the effect of noise prior to normalization by the sum
of individual amplitudes:

P (x, θ) =

∑
c
W (x, θ) bAc (x, θ) ∆Φc(x, θ)− T c∑

c
Ac (x, θ) + ε

, (9)

where ε is a small constant to prevent division by zero. The
values of W , c, and T used during testing are the same as
those outlined in [16].

Since we wish to obtain a single measure of structural
significance for low resolution mammographic image features,
it is necessary to combine the local phase coherence infor-
mation, computed for the different wavelet orientations, in
such a way that takes advantage of the variations in local
phase coherence due to orientation. In the proposed method,
a moment analysis approach was used to combine local

phase coherence information. This approach is based on that
proposed by Kovesi et al. [16], as it was shown to provide
improved structural feature localization over existing methods.
The second order moments of phase coherence are computed
to determine a phase coherence covariance matrix Λ in each
image point x:

Λ(x) =

 ∑
θ

(
P (x, θ) cos(θ)

)2 ∑
θ

(
P (x, θ) sin(θ)

)(
P (x, θ) cos(θ)

)
∑
θ

(
P (x, θ) sin(θ)

)(
P (x, θ) cos(θ)

) ∑
θ

(
P (x, θ) sin(θ)

)2

 .

(10)

The eigenvalues of Λ(x) can then be obtained by eigen-
decomposition, and corresponds to the squared length of the
major and minor axes of local phase coherence. The maximum
complex wavelet phase coherence moment µ(x) corresponds
to the largest eigenvalue of Λ(x), and was shown to be a good
indication of structural significance [16]. Given that Λ(x) is a
2×2 matrix, the maximum moment µ(x) can be expressed as
follows:

µ(x) =

1
2



∑
θ

[
(P (x, θ) sin(θ))2 + (P (x, θ) cos(θ))2

]
+√√√√√√√ 4

(∑
θ

(P (x, θ) sin(θ)) (P (x, θ) cos(θ))

)2

+(∑
θ

[
(P (x, θ) cos(θ))2 − (P (x, θ) sin(θ))2

])2


.

(11)
A high value of µ(x) implies strong structural significance

of the local feature at x, in the low resolution mammographic
image, and should be well preserved in the reconstructed high
resolution mammographic image.

B. Constrained Optimization with Phase-adaptive Prior
Model

With the phase-based measure of structural significance of
mammographic image features in place, it is necessary to
determine how this information can be used to enhance the
visual fidelity of the high resolution mammographic image.
The superresolution problem posed in (3), can be formulated
as an optimization problem as follows:

(ĝ): = arg min
(∥∥H(g): − f̄

∥∥) , (12)

where, (ĝ): is a vector representing the estimated high reso-
lution image ĝ lexicographically ordered.

In real-world situations, we often have only a few mammo-
graphic image acquisitions made to limit patient discomfort
and radiation exposure. Therefore, the problem described in
Equation (12) is under-determined, and therefore ill-posed.
One method of regularizing this ill-posed problem is to impose
a prior model onto the system, such that a unique solution
can be found. This regularized superresolution problem can
be expressed as follows:

(ĝ): = arg min
(∥∥H(g): − f̄

∥∥+
∥∥Γ(g):

∥∥) , (13)

where, Γ represents the prior constraints. Given this formu-
lation, we wish to impose a set of prior constraints on the
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superresolution problem that provides a smooth, unbiased
estimation of the high resolution mammographic image, using
the low resolution mammographic images without unexpected
variations. Using a third-order Markov model [19], the pro-
posed method imposes second-order thin plate spline [20]
constraints on each point x = (x, y), which minimizes an
approximate curvature and can be expressed as follows:

‖Γ(g)‖ =
∫ ∫ [(

∂2g

∂2x

)2

+ 2
(
∂2g

∂x∂y

)2

+
(
∂2g

∂2y

)2
]
dxdy.

(14)
Based on the aforementioned third-order Markov prior con-
straints and discrete approximations of partial derivatives, the
prior constraints term Γ can be expressed for each point x in
matrix form, as follows:

Γ(x) =


0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0

 . (15)

The central element of the matrix Γ(x) represents x. One
effective approach to enhancing the visual fidelity of the high
resolution mammographic image is to adapt the prior con-
straints based on phase coherence characteristics, preserving
important structural characteristics of the breast tissues.

In the proposed method, the third-order Markov prior con-
straints imposed at each mammographic image location are
adaptively scaled, based on phase coherence characteristics.
This form of scaling allows fine-grained control over the
level of approximation at each point in the image. As the
scaling increases, system conditioning is improved, while the
level of approximation is reduced. As such, the scaling of
prior constraints can be adjusted to either preserve image
characteristics by using smaller scalars, or provide a smoother
estimate of image characteristics by using larger scalars. In
clinical diagnosis of breast cancer, we are motivated to reduce
scaling to avoid over-smoothing at image points with high
phase coherence. At the same time, it is important to suppress
image degradation and noise in areas of low phase coherence,
avoiding misdiagnosis due to imaging anomalies. As such,
we are motivated to increase scaling to provide a smoother
approximation, and reduce such degradation and noise.

The aforementioned conflicting motivations are accommo-
dated as follows. At each point of the mammographic image x,
the scalar applied to the third-order Markov prior constraints
is determined using a square root scaling function, which
is based on the maximum complex wavelet phase coherence
moments :

α(x) =
√
αmin + (1− µ(x)) (αmax − αmin), (16)

where, αmax and αmin are the maximum and minimum scalars,
and µ(x) is the maximum phase coherence moment. It can be
observed from Eq. (16) that as the maximum phase coherence
moment increases, the scalar α decreases. This formulation
agrees with our motivations as mammographic features with
high structural significance (indicated by high phase coherence

moments) are preserved (by reducing scaling), and mammo-
graphic features with weak structural significance (indicated
by low phase coherence moments) are smoothed (by increas-
ing scaling) to reduce degradation and noise. The square
root term in Eq. (16) is designed to decrease the rate of
influence of lower magnitudes of maximum phase coherence
moments (representing mammographic features with weak
structural significance), and increase the rate of influence of
higher magnitudes of phase coherence moments (representing
mammographic features with high structural significance). For
testing purposes, αmax and αmin are set to 1.0 and 0.3,
respectively.

What this accomplishes is to adaptively adjust the contri-
bution of information from the low resolution mammographic
images to the reconstruction of the high resolution mammo-
graphic image. In this way, important structural characteristics
of breast tissues are emphasized for improved visualization.
The maximum phase coherence moment used is extracted
from the low resolution mammographic images used in the
reconstruction process, averaged, and up-sampled to the same
resolution as the estimated high resolution mammographic im-
age. The prior constraints associated with each image location
is then multiplied by the calculated scalar α(x). The final
moment-adaptive prior constraints Γ can be defined based on
the following expression:

‖Γ(g)‖ =
∫ ∫

α(x, y)

[(
∂2g

∂2x

)2

+ 2
(
∂2g

∂x∂y

)2

+
(
∂2g

∂2y

)2
]
dxdy,

(17)
or in matrix form:

Γ(x) =


0 0 α(x) 0 0
0 2α(x) −8α(x) 2α(x) 0

α(x) −8α(x) 20α(x) −8α(x) α(x)
0 2α(x) −8α(x) 2α(x) 0
0 0 α(x) 0 0

 .
(18)

The high resolution mammographic image is obtained by
solving a phase-adaptive constrained optimization problem,
using an iterative solver such as the LSQR algorithm [21].

IV. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed resolution
enhancement method in terms of visual fidelity, the pro-
posed method was tested using digital mammographic im-
ages obtained from the Mammographic Image Analysis So-
ciety (MIAS) database [23]. The system used to acquire the
mammographic images was a Joyce-Loebl microdensitometer
SCANDIG-3, with a linear response in the optical density
range 0 − 3.2. Each mammographic image is 8-bit grayscale
with a pixel resolution of 50µm × 50µm. The test data-sets
can be summarized as follows:

1) TEST 1: MIA database mammogram 002, Back-
ground tissue: fatty-glandular, Class of abnormality:
well-defined/circumscribed masses, Severity of abnor-
mality: benign.

2) TEST 2: MIA database mammogram 145, Background
tissue: dense-glandular, Class of abnormality: spiculated
masses, Severity of abnormality: benign.
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3) TEST 3: MIA database mammogram 148, Background
tissue: fatty, Class of abnormality: spiculated masses,
Severity of abnormality: malignant.

4) TEST 4: MIA database mammogram 211, Background
tissue: fatty-glandular, Class of abnormality: calcifica-
tion, Severity of abnormality: malignant.

5) TEST 5: MIA database mammogram 212, Background
tissue: fatty-glandular, Class of abnormality: calcifica-
tion, Severity of abnormality: benign.

Each data-set consists of six low-resolution mammographic
images generated from a reference mammographic image.
To simulate low resolution and low dosage conditions, each
low-resolution mammographic image is generated by applying
a 4 × 4 average blur, Poisson-distributed noise (to simulate
quantum noise in mammographic images [22]), a spatial shift
(based on the arbitrarily chosen translations (∆x,∆y) =
{(0, 0), (0.5, 0), (0.25, 0.25), (0, 0.5), (0.75, 0.5), (0.5, 0.75)}),
as well as a resolution reduction by a factor of 4 with respect
to the reference mammographic image. The underlying
goal is to increase the resolution by a factor of 4 in each
dimension. For comparison purposes, Bicubic interpolation
and the iterative back-projection (IBP) method [4] were
evaluated. The IBP method was tested since it has been
used by Greenspan et al. [1] and Kennedy et al. [2], [3]
for medical image superresolution purposes. To evaluate the
performance of the proposed method in a quantitative manner,
the Peak-Signal-to-Noise Ratio (PSNR) was computed for
the resolution enhanced images obtained with the tested
algorithms, relative to the reference image used to generate
the low resolution images.

The PSNR results for all the test data-sets are summarized in
Table I. It can be observed that the PSNR values for the mam-
mographic images generated using the proposed method are
noticeably higher than those produced using the other methods,
for all test data-sets. To visualize the improvements obtained
from using the proposed method, regions of interest (ROI)
extracted from the high resolution mammographic images
produced using the evaluated methods for TEST 1, TEST 2,
TEST 3, and TEST 5 are shown in Figure 1, Figure 2, Figure 3,
and Figure 4, respectively. It is important to note the images
were contrast enhanced through intensity normalization to
improve visibility of details in the Figures. It can be seen
that the proposed method produces high resolution mam-
mographic images with noticeably improved visual fidelity
compared to other methods, both quantitatively and visually.
In TEST 1, the shape and boundaries of the calcifications
are better defined in the superresolution image obtained with
the proposed method. In TEST 2, the nodule boundaries are
difficult to interpret in the high resolution mammographic
image obtained using bicubic interpolation. Both IBP and the
proposed method provide noticeably improved structural detail
pertaining to the nodule boundary, with the proposed method
providing improved structural contrast around the boundary
when compared to the IBP method. In TEST 3, there is
a calcification behind dense tissues that is very difficult to
interpret in the high resolution mammographic image obtained
using bicubic interpolation. Both IBP and the proposed method

provide noticeably improved structural detail pertaining to the
calcification, with the proposed method providing improved
structural contrast over the IBP method. It can be seen in TEST
5 that both IBP and the proposed method provide sharper
images of the masses compared with bicubic interpolation.
However, the shape, boundaries and structure of the masses
tend to be better defined in the image provided by the proposed
method.

TABLE I
PSNR FOR TEST DATA-SETS

PSNR (dB)
Image Bicubic IBP Proposed

Interpolation Method Method
TEST 1 25.94 29.78 32.39
TEST 2 21.54 27.01 29.66
TEST 3 20.83 28.52 31.17
TEST 4 28.86 32.55 34.85
TEST 5 29.53 31.71 34.48

V. CONCLUSIONS

In this paper, we introduced a novel phase-adaptive su-
perresolution approach, designed to facilitate detailed visual
screening of mammographic images. The reconstructed high
resolution mammographic image can be tuned to preserve
and accentuate important structural characteristics of breast
tissues, improving the visibility of suspicious structures, such
as nodule boundaries and calcifications. The proposed method
solves the multi-source image superresolution reconstruction
problem using complex wavelet phase information, and impos-
ing third-order Markov prior constraints. Experimental results
are illustrated using mammographic images from the Mam-
mographic Image Analysis Society (MIAS) database [23], and
we show that improved visual fidelity can be achieved using
the proposed method when compared to existing techniques.
Future work involve the integration of intensity remapping
techniques into the proposed superresolution method to correct
for signal non-homogeneities in the acquired mammographic
images. Also, we plan on integrating contrast enhancement to
further accentuate structural characteristics in breast tissues.
Furthermore, we plan on evaluating the proposed method for
other types of imaging modalities such as MR and PET against
more superresolution methods.
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Fig. 3. An ROI from TEST 3: a) low resolution image, b) bicubic
interpolation, c) IBP method, d) proposed method, e) reference image

Fig. 4. An ROI from TEST 5: a) low resolution image, b) bicubic
interpolation, c) IBP method, d) proposed method, e) reference image


