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Abstract. Scientific image processing involves a variety of problems in-
cluding image modelling, reconstruction, and synthesis. We are collaborat-
ing on an imaging problem in porous media, studied in-situ in an
imaging MRI in which it is imperative to infer aspects of the porous sample
at scales unresolved by the MRI. In this paper we develop an MCMC ap-
proach to resolution enhancement, where a low-resolution measurement is
fused with a statistical model derived from a high-resolution
image. Our approach is different from registration/super-resolution meth-
ods, in that the high and low resolution images are treated only as being
governed by the same spatial statistics, rather than actually representing
the same identical sample.

1 Introduction

Scientific imaging plays a significant role in research, especially with the avail-
ability of sophisticated imaging tools, including magnetic resonance imaging,
scanning electron microscopy, confocal microscopy, computer aided X-ray to-
mography, and ultrasound, to name only a few. Because of the significant re-
search funding and public interest in medical imaging and remote sensing, these
aspects of scientific imaging have seen considerable attention and success.

However there is an enormous variety of imaging problems outside of medi-
cine and remote sensing, where we would argue the current image processing
practice to be relatively rudimentary, and where substantial contributions re-
main to be made. One such area is that of porous media [1] — the science of
water-porous materials such as cement, concrete, cartilage, bone, wood, and soil,
with corresponding significance in the construction, medical, and environmental
industries.

The research in this paper is predicated on the quandary of imaging such
porous media. High-resolution two-dimensional images of a porous surface can
be produced, however viewing the interior of a sample requires cutting, polishing,
and exposure to air, all of which may alter the sample. In-situ three-dimensional
images of a medium can be measured using an imaging MRI, however the spatial
resolution is very limited, such that only the largest pores are resolved.

Our long-term objective is the fusion of data from multiple imaging modali-
ties to produce high-resolution images of porous media; for example, the fusion
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(a) Sintered Glass Spheres (b) Berea Sandstone

Fig. 1. Two examples of high-resolution 2D slices of irregular porous media

of high-resolution 2D and low-resolution 3D measurements. As it will never be
feasible to acquire hundreds or thousands of 2D slices from a single sample, the
given 2D measurements will image only an infinitesimal fraction of the 3D sam-
ple, so we are not interested in a 2D-3D co-registration problem, as is common
in medical imaging and remote sensing. Instead, we view the 2D image as char-
acterizing the sample, such that we infer a statistical model from the image, and
fuse this model with the 3D data set to infer details at a higher resolution.

As an initial exploration of the above long-term research objective, this paper
explores the statistical fusion of low and high-resolution data sets, limiting our
attention here to two-dimensional random fields for simplicity.

2 Bayesian Image Analysis

Most porous media [1], such as those shown in Fig. 1, possess clear spatial pat-
terns and relationships which characterize the medium. While simple image prior
models can be obtained from image statistics such as spatial variances and corre-
lation functions, such models are particularly poor for discrete-state (pore/solid)
problems, in which case Gibbs random-field models are widely used [8],[5].

As the generation of a high resolution realization from a low resolution ob-
servation is highly ill-posed, some sort of regularization constraint is needed.
In a non-Bayesian case (Fig. 2 (I,II)), multiple input images can be combined
using methods of super resolution and data-fusion [4]. However, in our scien-
tific imaging application in porous media we do not have the luxury of multi-
ple images, although we may have available high-resolution measurements from
statistically-equivalent samples (Fig. 2 (III)). Therefore, we consider a Bayesian
approach in which the prior model can be characterized according to a high
resolution 2D image and a low resolution 2D image or 3D volume which is the
measurements characterizing a sample from which we wish to infer high resolu-
tion details.
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(I) Super-Resolution (III)Posterior Sampling

+

(II) Multi-Resolution
Image Fusion

Model

Fig. 2. Different prospectives in data fusion: We may be registering and fusing multiple
images (I), fusing data across resolution (II), or statistical fusion through a model (III),
as we propose in this paper. Although (II) and (III) appear superficially similar, in (II)
the two data sets correspond to the identical underlying image, whereas in (III) the
data are only assumed to obey the same statistics.

3 Posterior Sampling

There are two common objectives associated with Bayesian random-field mod-
els [9], [10]:

1. To generate random realizations consistent with the prior statistics of the
model, referred to as random synthesis or prior sampling.

2. To solve for the optimal image based on measurements and a prior model,
known as as estimation.

Prior sampling is not a function of measurements, and is therefore of limited
use in settings where we wish to enhance a low-resolution data set, whereas esti-
mation produce only those image features or structures which are inferable from
the measurements, and therefore of limited utility in porous media which exhibit
behavior over a wide range of scales. Instead, we propose to do posterior sam-
pling (Fig. 3) — the synthesis of random images simultaneously obeying both
the measurements and the prior models, producing results similar to estimates in
densely-measured area, and producing a random synthesis in those area not con-
strained by measured values, thereby creating a high resolution result containing
structure on a variety of scales.
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Fig. 3. Posterior Sampling. The sample image Zs is used for learning/estimating the
prior model. An irregular and incomplete measurement from the unknown image ZT is
available as M which is considered in the prior model. The posterior sample, unknown
image and the sample image obey the same statistics.

3.1 Problem Formulation

To formulate the problem, we have used Gibbs Random Fields (GRFs) theory.
GRFs are lattice models, used to quantify the spatial interactions of observed
values at the nodes of a grid and to compute a probability for any configuration
of that grid [12] [3]. GRFs were originally used in statistical physics to study the
thermodynamic characteristics of interacting neighboring particles in a system
[12]. Any Gibbs probability distribution takes the form

p(Z) =
e−βH(Z)

Z (1)

where H(·) is an energy function:

H(Z) =
∑

c∈C
Vc(Z) (2)

written as a function of interactions over a local clique C , where Z is a normal-
ization factor, the partition function, and β = 1/T is related to the temperature
T . As the joint prior probability p(Z) is strictly a function of H , the energy
H implicitly encodes all of the characteristics of the random field. In order to
solve the posterior sampling problem we will need to sample from the posterior
probability [10]:

p(Z|M) =
e−βH(Z|M)

Z (3)
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where
H(Z|M) = H(Z) + α||M − f(Z)|| (4)

for some norm || · ||, where f(·) is the forward model, describing how measure-
ments are derived from unknowns,

M = f(Z). (5)

Two questions remain: the selection of H , and the balancing of α and β in pro-
ducing a random sample. The selection of H entails identifying the prior model
and the measurement model, which are H(Z) and ||M − f(Z)|| respectively,
shown in Eq. (4).

3.2 Prior Models

We consider two types of prior model:

1. Ising model [12]: Each site can take two possible values and a first-order
neighborhood structure is considered for each site, i.e. for every site zi,j in
the field, sites zi,j+1, zi,j−1, zi+1,j , zi−1,j are defined as its neighbors. The
potential function for a this neighborhood is defined as:

H(Z) =
∑

i,j

− zi,j (zi,j+1 + zi,j−1 + zi+1,j + zi−1,j) (6)

We do not for a moment consider the Ising model a meaningful representation
of porous media. We include it only because it is simple, widely understood,
and therefore a convenient point of comparison.

2. Histogram model [2]: This model is non-parametric, keeping the entire joint
probability distribution of local set of pixels within a neighborhood. We
have chosen the neighborhood of a pixel to be the eight adjacent pixels,
leading to a non-parametric model containing of a histogram of 29 = 512
probabilities. For reasons of convenience we compute two histograms, one for
configurations with a black pixel at the center and another for white. Fig. 4
shows such histogram, learned from the image in Fig. 1(a).

3.3 Gibbs Sampling Subject to Constraint

It is hardly possible to sample directly from the posterior distribution since
the configuration space for an image with N sites has 2N2

elements. When
the random field is considered to be continuous, hierarchical and multi-scale
approaches [7] can be applied. However, for the discrete case Monte Carlo Markov
Chain (MCMC) methods [12] are most fitting.

The well known Gibbs sampler [10], based on an MCMC approach, generates
random samples from the Gibbs distribution by producing a Markov chain whose
elements are a sequence Z1, Z2, , ..., such that Zi−1 and Zi can differ in at most
one pixel [11].
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(a) Probability of 256 possible configurations
which have black pixel at the center

(b) Examples of two configurations
and their probability

Fig. 4. An example of probability distribution of all possible configurations with black
pixels at the center (a), with examples of two configurations and their probability (b).
The random field is modeled non-parametrically via the probability of every configu-
ration of the eight binary pixels surrounding a central pixel.

In principle, the posterior sampling appears straightforward: specify the en-
ergy function and run the Gibbs sampler. In practice the problem is not at all
straightforward.

The process of annealing involves generating a sequence of samples, applying
the Gibbs sampler while gradually increasing β (decreasing T ) in the energy
function. This annealing process is started at small β (high temperature), where
p(Z) is only a weak function of Z, thus Z is relatively unconstrained, and as
β increases the system is driven to lower energy until the minimum energy, the
most probable Z maximizing p(Z), is obtained.

But here lies the problem:

1. We are not seeking the most probable realization, rather we want a random
realization faithful to the prior model and measurements, that is, we wish
to draw a random sample from p(Z) at β = ∞ (T �= 0).

2. However the energy function H(Z), empirically derived from porous media,
is really only valid at β = ∞ (T = 0). That is, Z is unlikely to look like a
porous medium unless the empirical constraints in H(Z) are rigidly asserted.

Astonishingly, almost all porous media MCMC papers ignore the above dis-
tinction and do simulated annealing to generate “random samples” from the
prior model, a procedure which succeed because the annealing process fails to
find the optimum Z maximizing p(Z), and finds a random, near-optimum Z
instead.

Therefore, we are left with three possible approaches:

1. Posterior sampling from the Gibbs distribution, problematic as described
above.

2. Maximizing the Gibbs posterior distribution [11], by simulated annealing.
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3. Constrained maximization of the posterior distribution [11], also by simu-
lated annealing.

The latter two cases are distinguished by the relative choices of weighting
factors α, β in( 3), (4). If α is fixed and β → ∞ (the second approach) then we
have regular annealing on a fixed model. However if β is fixed, or slowly increasing
such that β/α → 0 as α → ∞ (the third approach), then we are annealing subject
to generating samples within the following constrained space [10], [11]

{Z | ‖M − f(Z)‖ = 0}. (7)

That is, this set contains Z which matches the low-resolution measurement
perfectly.

4 Results and Evaluation

To evaluate and test the proposed approach, we have applied Gibbs sampling
with hard constraint in the form of low-resolution measurement to a portion of
two images shown in Fig. 1. The results for those images are shown in Fig. 5,
Fig. 6 and Fig. 7 three different samples are generated for the two prior models
(Ising and Histogram).

If the original high-resolution image is n× n and the measurement is m×m,
the defined down-sampling parameter is d = n

m . For the result shown in Fig. 5,
Fig. 6 and Fig. 7, d = 8.

The results can be evaluated in terms of the goodness of fit to the prior and
measurement models. For the reconstructed image Z|M from true, underlying
sample Zs, we define J(Z|M |M) and J(Z|M |ZT ) to be the goodness of fit to the
prior and measurement, respectively

J(Z|M |M) = ‖M − f(Z|M )‖2 (8)

J(Z|M |ZT ) = ‖ZT − Z|M‖2
. (9)

Satisfying the prior model perfectly implies finding Z such that H(Z) = 0.
However, a random sample found by suboptimal annealing, will be expected to
have H(Z) > 0. The actual numerical value of H(Z) is difficult to interpret,
therefore we will assess all generated samples on the basis of goodness of fit to
the measurement J(Z|M) and the Mean-Squared Error (MSE ) J(Z|ZT ) to the
underlying, true high-resolution ground-truth ZT .

For the Ising model, parameter β in Eq. (3) is estimated using the method
in [6]. As a one-parameter model the Ising model is able to represent only a very
limited range of structures, so the reconstruction are relatively poor.

The histogram model, although with a structure nearly as local as Ising, has
many more degrees of freedom (512), and is able to give a much clearer, more
convincing reconstruction.
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(a) Original image (b) Measurement

(c) Reconstructed using Ising model (d) Reconstructed using Histogram model

Fig. 5. reconstructed original image (a), given measurement as (b) and using two
different models. The result using Ising and Histogram model is illustrated respectively
in (c) and (d). The resolution of original image is 8 times greater than the measurement,
i.e., d=8.

We can also study the MSE variations for different values of the down-
sampling parameter d, i.e. as a function of measurement resolution. Fig. 8 shows
this variation. Clearly, as expected, J(Z|ZT ) is monotonically increasing with
d, however the increase is relatively modest, implying that even for large d the
method is producing meaningful estimates. The MSE for teh proposed method
is also compared to the following reconstruction methods:

1. Random reconstruction, which assigns values {0, 1} to the sites in the image
with probability 0.5,

2. Constrained random reconstruction, which assigns values {0, 1} to the sites
in the image with probability 0.5 constrained by the measurement.

The correlation between the reconstructed and the original images is more
subtle to measure. A pixel in the middle of a large pore or solid is likely to be
the same in the original and reconstructed images, as opposed to a pixel on a
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(a) Original image (b) Measurement

(c) Reconstructed using Ising model (d) Reconstructed using Histogram model

Fig. 6. reconstructed original image in (a)which is a small portion of Berea image,
given measurement in (b) and using two different models. The result using Ising and
Histogram model is illustrated respectively in (c) and (d). The resolution of original
image is 8 times greater than the measurement, i.e. d=8.

pore/solid boundary. That is, the original-reconstructed correlation is likely a
function of structure size. If we measure structure size at a pixel as the number
of times a pixel value is unchanged by sampling, then we can compute correlation
as a function of size. The results of Fig. 9 confirm our expectations, and quan-
tify how many scales below the measurement resolution the posterior samples
accurately reflect the measured sample.

A final comparison examines pore statistics as a function of pore size. Given
an (n × n) image Z, we define Z(k), k = 1 , ... , n − 1, as

Z(k)(i, j) =
1
k2

h+k−1∑

h=i

g+k−1∑

g=j

Z(g, h). (10)
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(a) Original image (b) Measurement

(c) Reconstructed using Ising model (d) Reconstructed using Histogram model

Fig. 7. reconstruction of a portion of Berea image in (a), given measurement in (b) and
using two different models. The result using Ising and Histogram model is illustrated
respectively in (c) and (d). The resolution of original image is 8 times greater than
the measurement, i.e. d=8. Although the reconstructed image shown in (d) is more
consistent with the original image shown in (c), the prior model still needs to have
more contribution in the process to avoid artifacts caused by the measurement.

2 4 8 16
0.1

0.2

0.3

0.4

0.5

down−sampling parameter (d)

M
S

E MSE between the original and a random Z
MSE between the original and a random filed satisfying measr. constraint
MSE between the original and the posterior sample

Fig. 8. How the MSE J(Z|ZT ) of the reconstruction process for the image in Fig. 1(a)
changes as a function of measurement resolution. d = n/m is the down-sampling pa-
rameter for m × m measurement and n × n original image. The MSE J(Z|ZT ) of the
proposed method is also compared to two other methods: random reconstruction with
probability 0.5 and constrained random reconstruction also with probability 0.5 but
constrained by the measurement.
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Fig. 9. Correlation between the original and reconstructed image, with the correlation
computed as a function of structure scale. As would be expected, the details at the
finest scales are only weakly correlated with truth, but much more strongly for larger
structures.
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Fig. 10. Pore probability as a function of size k for the image in Fig. 1(a): By down-
sampling each image into overlapping blocks of size k = 2, 3, .., n − 1 and counting the
number of pore blocks, we have a sense of pore distribution vs. scale.

In other words, each element of Z(k) is the sum of a (k × k) block in Z.
Then we consider the probability of a pixel to be a pore pixel as the fraction
of pore pixels in Z(k). Therefore, for each k the probability of a pixel to be
a pore pixel is obtained. Fig. 10 plots the pore probability as a function of k,
shown for different values of the down-sampling parameter, d. The comparison
shows the effect of measurement resolution on the reconstruction process and
the remarkable consistency of the reconstructed image with the pore statistics
of the original.
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5 Conclusion

In this paper, a model-based approach for image sampling and reconstruction
of porous media is introduced. Separate from current approaches such as super-
resolution and multi-resolution image fusion, we have considered a statistical
model-based approach in which a given low-resolution measurement constrains
the model. The approach shows considerable promise on the basis of the preser-
vation of pore statistics and the production of meaningful structures at resolution
fewer than given measurements. Comparing the Ising and histogram model in
the reconstruction process shows that the later generates samples which are more
consistent with the measurement and the prior model. However, a proper prior
model needs to have more contribution in the process than the histogram model
to avoid artifacts generated by the measurement.
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