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ABSTRACT

3D video games use texture  maps to  improve the realism and the visual  detail  of  graphical 

objects without significantly increasing rendering complexity.  The general trend in the gaming industry 

towards the use of large texture maps has lead to the use of texture compression techniques.  Current 

color texture compression techniques treat all texture content uniformly which can lead to reduced visual 

quality.   

This paper addresses this issue by introducing a perceptually adaptive approach to color texture 

map compression that is based on the human vision system.  The proposed method attempts to improve 

visual  detail  and compression performance without  adding computational  complexity.   Experimental 

results  show improved  visual  quality  and  compression  performance  over  existing  techniques.   The 

proposed method is well suited for real-time applications such as 3D video games.
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1. INTRODUCTION

One of the essential graphics techniques used in modern 3D video games is texture mapping [1]. 

In texture mapping, an image, referred to as a texture, is mapped to the surface of a simpler graphical 

object to give the appearance of fine details.  Figure 1 illustrates the use of texture mapping on a head 

model.  The face texture used gives the simple head model the appearance of having eyes, nose, lips and 

hair, despite the fact that the underlying model does not contain such details.  This technique is used to 

improve the realism of graphical objects without the increased computational complexity of rendering 

complex  geometry.   This  makes  the  technique suitable  for  real-time  3D applications  such as  video 

games.  

Figure 1: Left: Simple head model
Right: Head model with texture mapping

The  major  drawback  to  texture  mapping  is  that  textures  need  to  be  stored  in  memory and 

therefore the trend towards larger textures have increased the memory requirements of 3D video games. 

This problem is compounded by the fact that the amount of video memory available on a consumer 3D 



video card is limited.  Therefore, it is often the case that textures need to be fetched from slower sources 

such as secondary storage devices (e.g., hard drives and optical drives).  To reduce the storage and data 

transfer requirements of 3D video games, texture map compression is often used.  Texture maps are also 

used by more advanced techniques such as bump-mapping [2] and displacement mapping [3]. 

Many  different  techniques  have  been  proposed  for  compressing  images  to  reduce  storage 

requirements.   The  most  popular  techniques  are  transform-based  techniques  such  as  JPEG  [4]  and 

JPEG2000 [5],  which have high compression rates while maintaining a high level of visual quality. 

However, such image compression techniques are not well suited for handling texture maps in a real-

time 3D video game environment.  First, transform-based techniques require that entire blocks of pixels 

be decompressed.  Furthermore, these algorithms are variable rate techniques that do not allow for the 

address  calculation  of  a  specific  pixel  within  a  texture  map  compressed  using  these  algorithms. 

Therefore, these compression schemes do not allow for fast random access to individual pixels  in a 

texture map.  Finally, these techniques can be computationally expensive to perform, thus making real-

time processing challenging in the context of a 3D video game.  

More efficient techniques have been used to compress texture maps in 3D video games.  DXTC 

(DirectX Texture Compression) is a family of texture compression techniques based on the Color Cell 

Compression (CCC) method [6].  The DXT-1 format can be used to compress a RGBA texture at a ratio 

of 6:1 and the DXT-5 format can be used to compress a RGBA texture at a ratio of 4:1.  One of the 

major  benefits  of DXTC is  the fact  that  it  is  part  of the Direct3D standard and therefore hardware 

acceleration is typically available on modern consumer 3D video cards.  DXTC has become the leading 



technique  for  compressing  color  textures  in  current  generation  3D  video  games.   Recently,  ATI 

Technologies introduced 3Dc, a compression algorithm based on BTC (Block Truncation Coding) [7] to 

address the shortcomings of DXTC when used for normal map compression.  Other texture compression 

algorithms include texture compression using low-frequency signal modulation [8] and PACKMAN / 

iPACKMAN [9].

One of the major disadvantages of DXTC is the fact that it treats all texture content uniformly. 

Therefore, the same amount of data is used to represent regions lacking details as the amount of data 

used to represent highly detailed regions in the texture map.  DXTC establishes a fixed tradeoff between 

visual quality and texture map compression rates, regardless of the amount of detail in the texture map. 

The adverse effect of this  approach is that  regions containing perceptually important  details  such as 

edges may appear to be significantly degraded.  This is particularly a problem for textures that can be 

viewed up close by the user in a 3D video game environment,  such as floor and wall textures.  An 

example of this problem is illustrated in Figure 2, where a wall texture is compressed using DXTC.  It 

can be easily seen that fine details are significantly distorted by the compression process.  Insufficient 

data is used to represent the details of the wall texture.  One approach to addressing this problem is to 

develop a texture compression algorithm that adapts based on the perceptual characteristics of the human 

vision system.



Figure 2: Texture compression using DXTC
Top: Original wall texture

Bottom: Wall texture compressed using DXTC  
Notice the fine details in the texture, such as edges appear significantly degraded.

The main contribution of this paper is a practical adaptive approach to texture compression for 

use in 3D video games.  This method utilizes perceptually important characteristics such as edge activity 

and texture activity to improve visual quality while achieving high compression rates.  This allows for 

3D video  games  to  retain  the  visual  detail  as  envisioned  by the  texture  artist.   In  this  paper,  the 

underlying theory behind adaptive texture map compression is described in Section 2.  A CCC-based 

implementation of the proposed algorithm is presented in Section 3.  The testing methods and test data 

are outlined in Section 4.  Finally, experimental results comparing an implementation of the proposed 

approach with the original DXTC algorithm are discussed in Section 5, and conclusions are drawn in 

Section 6.



2. THEORY

Before outlining an implementation of the proposed texture map compression algorithm, it is 

important to discuss the theory behind the key components of the algorithm.  First, the underlying theory 

behind the CCC compression scheme is presented.  Second, a number of perceptual characteristics that 

are important to the human vision system are presented along with practical empirical metrics used for 

quantifying  these  characteristics.   Finally,  the  theory  behind  perceptually  adaptive  texture  map 

compression is described in detail.

2.1. Color Cell Compression (CCC)

CCC is a lossy texture compression algorithm designed for the compression of color texture 

maps.  In CCC, the image is divided into a set of smaller blocks of size 4 × 4.  For each block, two 8-bit 

color values are selected to represent the base colors of the block.  The selection is based on the local 

statistics of the block.  Finally, a 16-bit value is stored to indicate which of the two base colors are used 

to represent the pixel,  resulting in a total  storage requirement  of 2 bits  per pixel  (BPP).   The most 

popular extension to CCC is DXTC, also referred to as S3TC (S3 Texture Compression).  

DXTC is a family of lossy texture compression methods that is widely used in 3D video games 

and is typically supported in hardware by consumer 3D video cards.  As an industry standard for texture 



compression in 3D video games, it is important to understand the improvements DXTC makes to the 

basic CCC concept.  There are a total of five versions of the basic DXTC compression methodology, 

aptly  named  DXT1  through  DXT5.   For  the  purpose  of  explaining  the  basic  DXTC  compression 

methodology, the DXT1 compression method is described.  In DXT1, a RGB image is divided into a set 

of smaller blocks of size 4× 4.  For each block, two 16-bit R5G6B5 color values C1 and C2 are chosen 

based on the local color statistics to represent the pixel values in the block.  Two intermediate color 

values (C3 and C4) are calculated as follows:

If C1 > C2 :

3 1 2
2 1
3 3

C C C= +                           (1)

4 1 2
1 2
3 3

C C C= +                           (2)

If C1 ≤  C2 :

3 1 2
1 1
2 2

C C C= +                           (3)

4 { 0, 0, 0}C R G B= = = =                   (4)

The color value used to  represent  each pixel  in  the block is  then determined by finding the 

Euclidean distance between the actual color value of a pixel and each of the four color values.  This 

information is then stored as a 32-bit value, where 2 bits are used per pixel.  This information serves as a 



color index.  For example, if the actual color value of a pixel is closest to C1, then the pixel is given a 

value of 0.  The color index and the two color values C1 and C2 are then stored for each block.  

To illustrate the compression performance of DXTC, consider the compression of a RGB texture 

map using DXT1.  Assume that each pixel in the original texture map is represented by a 24-bit RGB 

color value.  DXT1 divides the image into blocks of size 4× 4 and represents the color value of a pixel 

using 16-bit R5G6B5 values.  Since two 16-bit color values and one 32-bit color index are stored for 

each block, a total of 64 bits is needed per block.  As the original RGB texture map requires 16 × 24 = 

384 bits of data per block, DXTC compression results to a compression ratio of 6:1.  

The DXTC texture compression technique inherits a number of important benefits from CCC 

that are useful in 3D video games.  First, it facilitates random access to individual pixels within a texture 

map without the need to decompress large segments of a texture map.  This is an important factor for 

real-time 3D applications such as 3D video games, where pixels may be accessed from different blocks 

within a texture.  Second, it  is computationally efficient, particularly in modern 3D video cards that 

provide full hardware acceleration for this technique.  However, DXTC also suffers from the fact that it 

is a fixed rate texture compression algorithm that treats all texture content equally.  Since highly detailed 

texture content is stored using the same limited amount of data as simple content, important details in 

the texture appear noticeably degraded, particularly due to the sensitivity of the human vision system to 

such details.  This problem can be illustrated using a simple example.  Consider a texture map consisting 

of a highly detailed region surrounded by a constant red background.    While the blocks in the constant 

red background regions can be represented by a single 16-bit color value, a total of 64 bits is spent on the 



block.  The blocks in the highly detailed region require fine color granularity to be represented properly 

but are limited to the 64 bits available per block, resulting in visible degradation.  Therefore, a method to 

adaptively allocate data in a more effective manner is highly desired to address this problem.

2.2. Perceptually Important Metrics

One approach to allocating data resources for texture representation in a more effective manner is 

to  adjust  the data  allocation  scheme depending on the visual  importance of texture  content.   Fixed 

texture compression algorithms such as CCC and its variants treat all texture content equally and do not 

take  into  account  the  perception  of  the  human  vision  system.   Characteristics  that  are  perceptually 

important to the human vision system can be used to enhance the overall visual quality of a texture while 

achieving high compression rates and reasonable performance.   In the proposed texture compression 

algorithm, the following perceptually important characteristics are chosen for consideration:

1. Edge activity

2. Texture activity

3. Brightness

These characteristics can be evaluated quantitatively using computationally efficient metrics.  For the 

proposed algorithm, the metrics are evaluated in a block-based fashion.



2.2.1 Edge Activity

To  evaluate  the  edge  characteristics  of  the  texture,  the  texture  is  processed  using  an  edge 

detection algorithm such as a Sobel edge detector or a Canny edge detector to create a binary edge map 

(E), where edge pixels are represented by a value of 1 and non-edge pixels are represented by a value of 

0.  An edge rating (ER) for a texture block is determined using the following metric:

block( ( , ))
x y

ER E x y= ∑ ∑                         (5)

where Eblock(x,y) is the edge value of the pixel at coordinates (x,y) within the texture block.

The human vision system is heavily reliant on edges for visual recognition [10].  As such, the 

human vision system is very sensitive to edge degradation in visual content.  Therefore, it is important 

that edge information be preserved to improve the overall perceived quality of a texture.  As such, more 

data bits should be allocated for regions with high edge activity.  

2.2.2 Texture Activity

To evaluate the texture activity of a texture block, a texture rating (TR) is determined using the 

following metric:



2
blockTR s=                             (6)

where  s2
block is the spatial variance of pixel intensities within the texture block.  A high texture rating 

indicates  high texture  activity.   The human  vision  system is  less  sensitive  to  visual  degradation  in 

regions with high texture activity than those containing high edge activity [10].  Therefore, these regions 

with  high  texture  activity  can  be  represented  with  less  data  than  regions  with  high  edge  activity. 

Furthermore, regions with low texture activity such as smooth constant regions can be represented using 

fewer data bits than regions with high texture activity without experiencing a noticeable degradation in 

visual quality.  The spatial variance is a good metric for evaluating texture activity and has the added 

benefit of having relatively low computational complexity.

2.2.3 Brightness  

The overall brightness rating (BR) of a texture block is determined using the following metric:

blockBR µ=              (7)

where  μblock is the sample mean of the pixel intensities within the texture block.  The human vision 

system is less sensitive to visual degradation in dark regions.  Therefore, regions with a low brightness 

rating can be represented with fewer data bits without noticeably degrading visual quality.  The sample 

mean is used as a measurement of brightness because of its low computational complexity.



2.3. Perceptually Adaptive Texture Map Compression

Using the perceptual evaluation metrics described in Section 2.2, it is possible to improve visual 

quality by allocating more  bits  to  regions  within  a texture  map that  improve  perceptually from the 

additional bits.  Furthermore, it is also possible to improve compression rates by allocating fewer bits to 

regions that can be represented with fewer bits without noticeable visual quality degradation.  A practical 

approach to performing adaptive data allocation is to divide the texture map into smaller blocks and 

classify each  block  based  on  its  perceptual  characteristics.   Based  on  its  classification,  a  block  is 

compressed using different fixed rate texture compression techniques.   As such,  all  blocks within a 

particular classification have the same compression rate.  However, many compression rates may exist 

within a single texture map.  This is the approach taken by the proposed algorithm. 

There are a number of important  benefits  to the proposed approach when applied to  texture 

compression.   First,  since the bit  rate  for each block is  known based on its  classification,  efficient 

random access to individual pixels within a texture map is possible.  Second, the use of different classes 

allows different texture content to be represented with the amount of data bits needed to provide good 

visual quality.  Finally, the block classification process is performed during the production stage of game 

development when the texture map is compressed and therefore does not add additional overhead during 

the decompression process.

To  achieve  high  compression  rates  while  preserving  visual  quality,  a  number  of  different 



compression techniques are used based on the perceptual characteristics of texture content.  The first 

technique is the use of variable texture block sizes.  For algorithms such as CCC, variable block sizes 

allow for the same base colors to be used for a larger area.  While this is unsuitable for regions with a 

high level of fine detail, such as regions with high edge activity, it is useful for regions with fewer fine 

details without causing noticeable visual degradation.  The second technique is the use of a reduced 

number of base colors used to represent a block.  This technique is well suited for regions where the 

pixel color values are very similar to each other.  An example illustrating this is a uniform region where 

all pixels are the same color.  In such a case, all the pixels within the region can be represented by a 

single base color value.  The final technique is the use of subsampling, where a block is decimated to a 

smaller size spatially during compression.  Random access to an individual pixel within a block can still 

be achieved by dividing its relative coordinates by the subsampling factor.  To illustrate this technique, 

consider a texture map that was subsampled by a factor of 2 in each dimension and compressed using 

CCC.  To access the color value of a pixel in the texture map at the original coordinates (x,y) = (5,5), the 

x and y-coordinates are divided by 2 and then rounded to the nearest integer.  Therefore, the pixel color 

value is obtained at coordinates (x,y) = (3,3) in the subsampled texture map.  This technique can be 

performed on a block level.  This technique is suitable for smooth regions, as little perceivable detail is 

lost during the subsampling process for such regions. 

3. IMPLEMENTATION

3.1 Perceptual Classification



To  demonstrate  the  effectiveness  of  perceptually  adaptive  texture  compression,  an 

implementation  of  the  concept  was  developed based  on  the  CCC compression  algorithm.   For  the 

purpose of our implementation, the source textures are RGB raster images, where each pixel of an image 

is represented by 24-bits (8-bits for red, 8-bits for green, and 8-bits for blue).  Texture maps are divided 

into  8× 8  macroblocks.   The  macroblocks  are  then  classified  into  one  of  four  macroblock  classes 

(LOWEST, LOW, MEDIUM, and HIGH) based on the perceptual metrics described in Section 2.2.  The 

following  classification  algorithm  was  used  for  each  macroblock  (based  on  the  8-bit  luminance 

component of each macroblock):

IF ER > tedge THEN 

Class = HIGH

ELSE IF TR > ttexture_medium THEN

Class = MEDIUM

ELSE IF TR > ttexture_low AND BR > tbrightness THEN

Class = LOW

ELSE

Class = LOWEST

where tedge  is the edge activity threshold,  ttexture_medium and ttexture_low  are the two texture activity thresholds, 

and tbrightness is the brightness threshold.  Based on test results with a number of different types of textures, 

the threshold coefficients that yield the desired balance between compression performance and visual 



quality  were  found  to  be  the  following:  tedge=1,  ttexture_medium=5,  ttexture_low=2,  and  tbrightness=10.   These 

parameters  can  be  adjusted  by  the  texture  artist  to  optimize  the  balance  between  compression 

performance and visual quality for a specific texture.  The class information is stored as bit-mask with 2 

bits  being  used  to  identify  the  macroblock  class.   This  bit-mask  allows  for  the  efficient  address 

calculation of each block and facilitates fast random access to individual pixels in a texture map.  Once 

the  macroblocks  have  been  classified,  they  are  compressed  using  the  technique  chosen  for  the 

macroblock class.

3.2 ‘LOWEST’ Macroblock

If a macroblock is classified as LOWEST, the only information stored is a 15-bit R5G5B5 color 

value  representing  the  mean  color  value  of  the  block.   Including  the  2  bits  used  to  identify  the 

macroblock class, a total of 17 bits is required to represent the 8× 8 macroblock.  This results in a bit rate 

of 0.266 BPP.

3.3 ‘LOW’ Macroblock

If a macroblock is classified as LOW, the block is subsampled by a factor of two in both the 

horizontal  and vertical  directions to yield a 4× 4 block.  Two 15-bit  color values are stored as base 

colors.  Based on the stored base colors, two 15-bit color values are calculated using linear interpolation. 

These color values are used as intermediate  base colors.   Finally,  one 32-bit  color index is  used to 

indicate which of the four base colors represents the color of a particular pixel.  Including the 2 bits used 



to identify the macroblock class, a total of 64 bits is required to represent the 8 × 8 macroblock.  This 

results in a bit rate of 1 BPP.

3.4 ‘MEDIUM’ Macroblock

If a macroblock is classified as MEDIUM, it is divided into two 8 × 4 sub-blocks.  For each sub-

block, two 15-bit stored color values and two 15-bit interpolated intermediate color values are used as 

base colors.  Finally, one 64-bit color index is used for each sub-block to indicate which of the four base 

colors represents the color of a particular pixel.  Including the 2 bits used to identify the macroblock 

class, a total of 190 bits is required to represent the 8× 8 macroblock.  This results in a bit rate of 3 BPP.

3.5 ‘HIGH’ Macroblock

If a macroblock is classified as HIGH, it is divided into four 4× 4 sub-blocks.  For each sub-

block, two 15-bit stored color values and six 15-bit interpolated intermediate color values are used as 

base colors.  Finally, one 48-bit color index is used for each sub-block to indicate which of the eight base 

colors represents the color of a particular pixel.  Including the 2 bits used to identify the macroblock 

class, a total of 314 bits is required to represent the 8× 8 macroblock.  This results in a bit rate of 5 BPP.



3.6 ‘High Quality’ Implementation

A higher quality (HQ) variant of the proposed implementation is possible for 3D video games 

where  visual  quality  is  more  important  than  compression  performance.   This  is  accomplished  by 

increasing the number of interpolated color values to six for macroblocks classified as ‘MEDIUM’ and 

14 for those classified as ‘HIGH’.  This results in a total of 378 bits per ‘HIGH’ macroblock (6 BPP) and 

254 bits per ‘MEDIUM’ macroblock (4 BPP).

4. TESTING METHODS

To test the effectiveness of the proposed implementation, seven texture maps of various sizes and 

content types were compressed using both the normal variant (NORMAL) and high quality variant (HQ) 

of the method.  The texture maps were also compressed using DXTC for comparison purposes.  The 

chosen textures are typical of those used in 3D video games.  The test textures are summarized below.

• WOOD: A 512× 512 wood-tiled wall texture obtained from [11].  

• BRICK: A 256× 256 brick wall texture obtained from [12].  

• CRATE: A 512× 512 crate box texture obtained from [12].    

• GIRL: A modified 512× 512 texture of a girl’s head based on HL2 Korin model from [13].  

• GIRL2: A 1024× 1024 texture of a girl’s head obtained from HL2 Charlie Vigor model from [14].

• ROOF: A 256× 256 texture of a rectangular panel roof obtained from [12].  



• FLOOR: A 512× 512 wooden floor texture obtained from [12].  

• DOOR: A 512× 512 door texture obtained from [12].  

The thresholds described in Section 3.1 were used for all tests.  However, in practical situations, 

the texture artist can adjust the thresholds to achieve better compression performance or better visual 

quality.  To evaluate the visual quality of the compressed textures in a quantitative manner, the PSNR of 

the luminance component was measured.

5. EXPERIMENTAL RESULTS

The compression performance results are shown in Table I.  Based on the results, it can be seen 

that the normal implementation of the proposed technique performed noticeably better than DXTC in 

seven of the eight test cases, and slightly better in the remaining BRICK test case.  The reason that better 

compression was not achieved in the BRICK test case is due to the large number of significant edges 

within the texture, as edges are preserved with more data than other characteristics.  The high quality 

implementation was able to outperform DXTC noticeably in six of the eight test cases, while performing 

worse than DXTC in the BRICK and ROOF cases.  



The PSNR results providing a quantitative measure of visual quality are shown in Table II.  It can 

be observed that the normal implementation performed noticeably better than DXTC in all test cases. 

Furthermore, the high quality implementation performed significantly better than both DXTC and the 

normal  implementation.   Two  of  the  test  cases  (GIRL  and  ROOF)  are  shown  using  the  three 

compression methods as illustrated in Figure 3, Figure 4, and Figure 5.  The visual quality of the normal 

and high quality variants is noticeably superior to that produced by the DXTC method.  The fine details 

are significantly more refined in the textures produced using the proposed implementations, with the 

high quality implementation  comparable  to  the original  uncompressed textures.   This  is  particularly 

noticeable at the ends of the shingles in the ROOF case and around the eyebrow and eye regions in the 

GIRL case.  Therefore, it is clear that the proposed algorithm can be effective at providing high quality 

texture compression while retaining overall compression performance.

TABLE I
COMPRESSION PERFORMANCE

Texture
Compression Ratio Improvement Over DXTC

NORMAL HQ NORMAL HQ

WOOD 12.19:1 9.979:1 103.1% 66.31%
BRICK 6.092:1 4.859:1 1.537% -19.02%
CRATE 11.7:1 9.538:1 95.04% 58.97%
GIRL 10.18:1 7.978:1 69.75% 32.97%
GIRL2 27.85:1 23.6:1 364.2% 293.3%
ROOF 6.7:1 5.239:1 11.67% -12.68%

FLOOR 12.11:1 10.12:1 101.9% 68.59%
DOOR 7.875:1 6.314:1 31.24% 5.236%

Average 11.84:1 9.70:1 97.33% 61.66%



Figure 3: ROOF test case
Top-left: Uncompressed; Top-right: DXTC;

Bottom-left: Normal Implementation;

TABLE II
Y-PSNR AFTER COMPRESSION

Texture DXTC 
(dB)

Proposed (dB) PSNR Gain (dB)

NORMAL HQ NORMAL HQ

WOOD 37.9444 41.15 44.32 3.209 6.379
BRICK 33.2397 35.64 38.63 2.403 5.386
CRATE 37.7446 40.23 43.23 2.488 5.483
GIRL 42.4887 43.62 46.92 1.129 4.429
GIRL2 48.7520 48.94 49.8 0.188 1.044
ROOF 36.5583 38.4 43.87 1.839 7.315
FLOOR 40.2802 43.94 46.14 3.663 5.86
DOOR 35.6481 39.55 43.94 3.901 8.289
Average 39.082 41.43 44.61 2.353 5.523



Bottom-right: High Quality Implementation

Figure 4: GIRL test case

Top-left: Uncompressed; Top-right: DXTC;
Bottom-left: Normal Implementation;

Bottom-right: High Quality Implementation



Figure 5: DOOR test case
Top-left: Uncompressed; Top-right: DXTC;

Bottom-left: Normal Implementation;
Bottom-right: High Quality Implementation

6. CONCLUSIONS AND FUTURE WORK

In this  paper,  we have introduced a practical  adaptive method for compressing texture maps 

based  on  the  human  vision  system for  use  in  3D video  games.   Experimental  results  demonstrate 

superior  compression  performance  and  visual  quality  when  compared  to  DXTC.    Therefore,  this 

technique  can  be  used to  improve  visual  quality in  future  3D video  games.   Future work includes 

developing texture compression hardware based on the proposed technique.

ACKNOWLEDGEMENTS



The authors would like to thank Epson Canada and the Natural  Sciences and Engineering Research 

Council of Canada.  Special thanks also go to texture author Slap for the HL2 Charlie Vigor textures.

REFERENCES

[1] E.  Catmull,  “Computer  Display of  Curved Surfaces,”  in  Proceedings  of  IEEE Conference  on 

Computer Graphics, Pattern Recognition, and Data Structures, pages 11-17, 1975.

[2] J.  Blinn,  “Simulation of Wrinkled Surfaces,” in  Proceedings of  the 5th Annual Conference on 

Computer Graphics and Interactive Techniques, Vol. 12, No. 3, pages 286-292, 1978.

[3] R. Cook, “Shade Trees,” in  Proceedings of the 11th Annual Conference on Computer Graphics  

and Interactive Techniques, pages 223-231, 1984.

[4] G. Wallace, “The JPEG Still Picture Compression Standard,” Communications of the ACM, 34(4), 

pages 30-34, 1991.

[5] M. Boliek, C. Christopoulos, and E. Majani, “JPEG 2000 Part I Final Committee Draft Version 

1.0,” http://www.jpeg.org/public/fcd15444-1.pdf, 2000.

[6] G. Campbell,  T.  DeFanti,  J.  Frederiksen, S. Joyce, and L. Leske, “Two Bit  /  Pixel  Full Color 

Encoding,” in Proceedings of the 13th Annual Conference on Computer Graphics and Interactive  

Techniques, pages 215-223, 1986.

[7] E.  Delp  and  O.  Mitchell,  “Image  Compression  Using  Block  Truncation  Coding,”  in  IEEE 

Transactions on Communications, 27(9), pages 1335-1342, 1979.

[8] S. Fenney, “Texture Compression Using Low-Frequency Signal Modulation,” in  Proceedings of  

the ACM SIGGRAPH / EUROGRAPHICS Conference on Graphics Hardware, pages 84-91, 2003.



[9] J.  Ström  and  T.  Akenine-Möller,  “iPACKMAN:  High-Quality,  Low-Complexity  Texture 

Compression for Mobile Phones,” in  Proceedings of the ACM SIGGRAPH / EUROGRAPHICS 

Conference on Graphics Hardware, pages 63-70, 2005.

[10] X. Ran and N. Farvardin, “A Perceptually Motivated Three-Component Image Model – Part  I: 

Description of the Model,” IEEE Transactions on Image Processing, 4(4): 401-415, 1995.



[11] 3D Excellence.com: Wood Textures, http://www.3dexcellence.com/textures.html, 2005.

[12] PhotoRealistic Texture Pack, http://berneyboy.planetquake.gamespy.com//textures.htm, 2003.

[13] The Model for HL2, http://www11.plala.or.jp/nkinta/hl2.htm, 2006.

[14] Half-Life 2 Charlie Vigor DeathMatch Model, 

http://halflife2.filefront.com/file/HalfLife_2_Charlie_Vigor_DeathMatch_Model;57119, 2006.


	Practical Perceptually Adaptive Color Texture Map 
	Compression for 3D Video Games
	Abstract

	2.2.1 Edge Activity
	2.2.2 Texture Activity
	2.2.3 Brightness  

