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Abstract

Identifying the surfaces of three-dimensional static ob-
jects or of two-dimensional objects over time are key to a
variety of applications throughout computer vision. Active
surface techniques have been widely applied to such tasks,
such that a deformable spline surface evolves by the influ-
ence of internal and external (typically opposing) energies
until the model converges to the desired surface. Present
deformable model surface extraction techniques are com-
putationally expensive and are not able to reliably identify
surfaces in the presence of noise, high curvature, or clutter.

This paper proposes a novel active surface technique,
decoupled active surfaces, with the specific objectives of ro-
bustness and computational efficiency. Motivated by recent
results in two-dimensional object segmentation, the internal
and external energies are treated separately, which leads to
much faster convergence. A truncated maximum likelihood
estimator is applied to generate a surface consistent with
the measurements (external energy), and a Bayesian linear
least squares estimator is asserted to enforce the prior (in-
ternal energy).

To maintain tractability for typical three-dimensional
problems, the density of vertices is dynamically resampled
based on curvature, a novel quasi-random search is used
as a substitute for the ML estimator, and sparse conjugate-
gradient is used to execute the Bayesian estimator. The per-
formance of the proposed method is presented using two
natural and two synthetic image volumes.

1. Introduction

Deformable model based segmentation has been widely
used throughout computer vision: in medical image anal-
ysis [1, 2], surface reconstruction [3, 4, 5], feature extrac-
tion [6], visual tracking [7], and motion estimation [8]. As
illustrated in Fig. 1, surface extraction techniques are es-
sential to segment and quantify important structures of vol-

Figure 1. MRI of a human brain: producing a 3D segmentation of
such data has countless applications in diagnosis and treatment.

umetric images for successful recognition or diagnosis.
Active surfaces, the three-dimensional generalization of

two-dimensional active contours, are a popular approach
for such surface extraction. The basic idea of active sur-
faces is to evolve a deformable model [6, 9, 10, 11, 12, 13]
under the influences of internal (prior) and external (mea-
surement) energies to capture the surface of a 3D object.
Typically, the internal energy maintains surface smoothness
via some sort of elastic (thin-plate) constraint, whereas the
external energy pulls the deformable model towards the de-
sired object boundary, usually defined using an image gra-
dient. Many approaches based on the original active surface
concept have been proposed, broadly falling into two cate-
gories: parametric [10, 14, 11] and non-parametric [15, 16].

All of these active surface methods are direct extensions
of their 2D active contour counterparts to the 3D context.
In the parametric case, 3D surfaces are explicitly repre-
sented [10, 11] using a regular 2D parametric grid, however
the grid-to-surface mapping is not unique and is unevenly
spaced, such that parametric surface approaches are not able
to capture high-curvature surfaces in the presence of noise
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without parameter tuning. In contrast, non-parametric ac-
tive surfaces [17, 15] are robust to initialization and are
capable of finding multiple high-curvature surfaces, how-
ever these methods are extremely slow and are intolerant of
breaks or gaps in the measured surface.

An example illustrating the tradeoff between a paramet-
ric and non-parametric active surface models is shown in
Fig. 2. The non-parametric active surface model identifies
eight separate surfaces (Fig. 2(b)) of a single broken cube,
however, a parametric active surface model finds a single
continuous boundary around the broken cube.

Normalized graph cut [18] or spectral clustering is an-
other popular segmentation method that is widely used in
computer vision literature. However, the gigantic storage
burden requirement makes the method impractical for large
3D object segmentation.

Many of the above problems — lack of robust conver-
gence in the presence of clutter and high computational and
storage complexity — are also present in 2D active con-
tours. To address these problems in 2D, Mishra et al. [12]
proposed a decoupled active contour (DAC) which success-
fully identifies the boundary of a single object in the pres-
ence of noise and background clutter. Motivated by DAC’s
robustness, this paper describes the development of a par-
allel approach, a decoupled active surface (DAS), for iden-
tifying the surface of a volumetric 3D object. The novel
DAS is computationally efficient, shows good convergence
robustness, and is not based on a mapped grid, thus allowing
the segmentation of more complex geometries.

The rest of the paper is organized as follows. Section 2
is a brief discussion on the theory of parametric active sur-
faces, followed by identifying the limitations of traditional
approaches. The theory and implementation of DAS are
provided in Section 3, with experimental results and valida-
tion provided in Section 4.

2. Active Surface Theory
An active surface is a generalized energy-minimizing 3D

spline [9, 10, 11], represented using a regular grid v(s, r) =
[x(s, r), y(s, r), z(s, r)], whose total energy is expressed as

E =

1∫
0

1∫
0

(Eint(v (s, r)) + βEext(v (s, r))) dsdr. (1)

where Eint(v (s, r)) and Eext(v (s, r)) are the internal and
external energies, respectively, of the active surface. The in-
ternal energy asserts the prior or inherent constraints on the
surface, typically penalizing slope and/or curvature terms:
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The weights αi and β controls the influence of the internal
and external energies. The external energy creates an attrac-
tive force towards the desired boundary, normally a region
of high gradient:

Eext(v (s, r)) = − (∇Gσ ∗ I3)
2

(v(s, r)), (3)

Here ∇ is a derivative operator, Gσ is a Gaussian kernel of
bandwidth σ, and I3 is a series of images representing a vol-
ume. A desired surface is usually obtained by minimizing
the total energy E of the active surface v.

To illustrate the typical problems of the traditional active
surface, the convergence of (1) is demonstrated in Fig. 3(a)
using a synthetic volumetric cube (red) with a spherical ini-
tial solution (black). For traditional representation schemes
which map a 2D grid to the 3D surface, boundary condition
enforcement is a complicated task, as shown in Fig. 3(b),
(c) and (d). Using free boundary and free pole conditions
in (1), a broken surface is generated (Fig. 3(b)), similarly a
free pole condition generates holes at both poles of the con-
verged surface (Fig. 3(c)), whereas constrained boundary
and poles lead to a biased internal force which creates a non-
uniform vertex motion, such that the vertices near the poles
have a lower velocity compared to other vertices (Fig. 3(d)).

In summary, the following three problems are prevalent
with the conventional active surface based representation
scheme and solution technique:

• The conventional 3D surface representation scheme
v(s, r) is not able to handle complex geometries; even
in cases where the geometry can in principle be rep-
resented, the 2D-3D mapping creates a biased internal
force, as seen in Fig. 3(d).

• The conventional active surface is a direct extension
of 2D active contour to 3D and uses iterative gradient
descent to solve (1). Such an iterative solver is very
slow and sensitive to local minima.

• There exists a delicate relationship between the
weights (parameters) in (1).

Most of the present parametric active surface methods, such
as gradient vector flow (GVFS) [11] and vector field convo-
lution (VFC) [10], have attempted to solve some of these
problems (sensitivity to initial solution and inability to con-
verge towards concave regions) by increasing the capture
range of the traditional active surface by diffusing the tradi-
tional gradient-based external force. However, these mod-
ifications are not able to overcome the problems of local
minima and convergence speed.

3. From Decoupled Active Contours to Decou-
pled Active Surfaces

The decoupled active contour proposed by Mishra et al.
(DAC) [12] has as its principle novelty a decoupling (Fig. 4)
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(a) Volumetric image (b) Non-parametric surface (c)Parametric surface

Figure 2. Example of the suitability of parametric active surfaces over non-parametric active surfaces. (a) An image of a broken cube. (b)
Non-parametric active surface identifies eight separate surfaces. (c) Parametric active surface finds a single connected surface of the broken
cube.
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Figure 3. Three examples (b, c and d) illustrating the convergence of traditional, parameterized active-surface schemes. We start with an
initial, parameterized spherical surface (a), seeking to converge to the red synthetic cube. The partially-converged active surfaces after 500
iterations are shown in panels (b), (c) and (d). Parametric models have difficulties with boundaries (b) and singularities at poles (c,d).

of the internal and external energy terms, on the premise
that together the energies are difficult to optimize, whereas
individually the solution is much more straightforward, so
a conditional coordinate-descent approach leads to excep-
tionally fast convergence.

The method optimizes the external energy by applying
a dynamic programming (Viterbi search) method, and the
internal (prior) energy by asserting a linear Bayesian esti-
mator. High-curvature boundaries are preserved by using a
non-stationary prior, obtained by non-uniform point spac-
ing along the contour, where an importance sampling step
is used, based on curvature, to generate the points.

We find the basic premise (internal-external energy de-
coupling, curvature-based re-sampling) highly motivating,
however there are significant problems with the straightfor-
ward extension of the method to surfaces in three dimen-
sions. The Viterbi search is not practical on a 3D trellis
(shown in Fig. 5) since causality fails, the definition of cur-
vature and mesh re-sampling is far more elusive on a set of
vertices in 3D relative to points along a 2D curve, finally
very large numbers of active surface vertices are needed to

represent the surface, leading to unacceptably large compu-
tational and storage requirements for a Bayesian estimation
step. The purpose of this paper is address these three limi-
tations, to obtain a fast, robust segmentation method for 3D
objects. Each of the novel developments is described in the
subsections below.

3.1. Iterative Quasi Random Search (IQRS) for Sur-
face Identification

The ML estimator / Viterbi method of [12] are too slow
for 3D:
We propose an iterative quasi-random search (IQRS) to find
an optimal surface within a specified search space. The
search space is created using a discrete 3D trellis and a
quasi-random number generator [19, 20], and the problem
of finding the best surface is modeled as a hidden Markov
model (HHM).

Fig. 5 shows the 3D trellis, such that the active surface v
is represented using a set of q vertices

vj = vzj |zj=0 = (xj,0, yj,0, zj,0) , j ∈ [1, q] (4)
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Figure 4. Common flow diagram for DAC and DAS

Figure 5. Example 3D trellis used in iterative quasi random search.
The initial grey surface vj = vzj |zj=0, j ∈ [1, q] is triangulated
using conforming triangles (black). Each search normal (green)
contains 2× u+ 1 nodes. In this illustration, q = 25 and u = 2.

and f triangular faces. Given a face fk, the three vertices
corresponding to face fk are defined as

Z (fk) = [vafk , vbfk , vcfk ]. (5)

Similarly, the neighboring vertices of a vertex vi are given
by vΩzj=i

. For efficiency, both Z and Ω are stored as look-
up tables.

At each of the q vertices shown in Fig. 5, a set of 2∗u+1
points are defined lying (along a line) evenly spaced normal
to the surface. The possible set of solutions over which an
optimization algorithm is carried out is presented using a
graph, representing the search space. The hypothesis of a
node i belonging to a surface v is computed from the exter-
nal energy Eext and modeled as p(Eext|vzj=i), the obser-
vation probability. To avoid noise, a transition probability
p(vzj=i, vΩzj=i

) for a node is computed using the Euclidian
distance of the current node vzj=i from its first-order neigh-
boring nodes vΩzj=i

. The pseudo-code for IQRS algorithm
is provided in Algorithm 1.

The optimal boundary vmk using IQRS is assigned as the
measured boundary at iteration k. A non-stationary prior is
essential in the update step to capture high curvature bound-
aries. The generation of the non-stationary prior using cur-
vature based mesh re-sampling and update step follows.

3.2. Curvature Based Mesh Re-sampling

The definition of curvature is much more subtle on an

Algorithm 1 [vmk ] = Function IQRS(vek−1, ε)

Obtain the states `j , j ∈ [1, q] corresponding to high
gradient locations as:
`j = arg max

i=[−u:u]

(
p
(
Eext|vzj|zj=i

))
, j = {1, 2 · · · q}

Assign vmk = vek−1 (Previous estimated boundary)
repeat

Let r = {· · ·}q be a sequence of q quasi random
numbers generated using a quasi random number
generator [19, 20].
Assign vpmk = vmk and `pj = `j , j ∈ [1, q]
for j ∈ r do

Update the values of `j as:

`j = arg max
i=[−u:u]

(
p
(
Eext|vzj|zj=i

)
p
(
vzj|z j=i, vΩzj=`

p
j

))
end for
vmk = vzj|z j=`j

until ‖vmk − vpmk ‖ ≤ ε

implicit 3D vertex set than on a 2D curve:
High curvature regions (corners, edges) of a surface can
captured by relaxing the prior. This has been accomplished
via an importance sampling step in 2D, placing a greater
density of samples near regions of high curvature [12].

The curvature κ of a parametric 2D curve v(s) =
[x(s), y(s)] is defined as the rate of change of tangent angle
with respect the arclength s. However for a 3D surface the
curvature at a particular point varies as the plane through the
normal at that point changes, therefore there is no unique
definition of surface curvature. 3D curvature is usually de-
fined using principal and Gaussian curvatures, however for
our purposes an exact definition of curvature is not needed,
rather what is needed is some measure of triangulation er-
ror, such that additional triangles are placed near edges and
corners. By using least squares to fit a plane to the first-
order neighboring vertices vΩi , the pseudo curvature κi can
be represented as the perpendicular distance from surface
node i to the plane.

Having computed κ at all vertices, Algorithm 2 produces
the resampled set of vertices, such that faces with curvature
exceeding a threshold κth are considered for subsampling,
and then along the longest edge of that face. Reducing the
number of vertices is a far more difficult operation, there-
fore the method is initialized with a deliberately small num-
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Algorithm 2 [vout] = Function 3DResample(vin, κth, lth )
1: vout = vin
2: while j ≤ q do
3: Compute the pseudo curvature κj
4: if κj > κth then
5: Get all the edges e(j) that are connected to the

vertex j
6: Get the longest edge length ll and the index i cor-

responding to ll from the length l(ei(j)) of all
edges.

7: if ll > lth then
8: Bisect the edge ei(j) by inserting a new node

and update vout
9: Update the vout

10: end if
11: end if
12: j = j + 1.
13: end while

ber of vertices, with further vertices added as needed, but
never removed.

3.3. Statistical Estimation

The 3D problem is far too large to undertake a simple
Bayesian estimator:
In principle, the surface nodes could be identified purely us-
ing the Viterbi-like IQRS method of Algorithm 1, however
IQRS does not admit the assertion of complex shape priors
or noise statistics. Since both the prior model and measure-
ment model are essential for the robust convergence of a
contour or surface in the presence of noise, therefore some
sort of Bayesian step is needed. The exact (e) and measured
(m) nodes of a surface can be expressed as

xmk = xek + η, ymk = yek + η, zmk = zek + η (6)

where η ∼ N (0, Rk), xek ∼ N
(
µxe

k
, Pk
)
, yek ∼

N
(
µyek , Pk

)
, and zek ∼ N

(
µzek , Pk

)
. The Bayesian lin-

ear least-squares estimator can be formulated as [21]

xek =
(
R−1
k + P−1

k

)−1
R−1
k xmk , (7)

where similar expressions hold for yk and zk. The mea-
surement uncertainty matrix Rk is a diagonal matrix where
each diagonal component (the noise variance) is computed
empirically from a local window. Following the conven-
tional active surface formulation, DAS asserts a second-
order penalty as prior in Qk = P−1

k . For a reasonably sized
mesh of q = 5000 vertices, the dimensionality of the con-
straint matrix Qt is 5000× 5000, clearly making the direct
solution of (7) impractical.

HoweverQk andRk are highly sparse, therefore the sys-
tem matrix

(
R−1
k +Qk

)
is also sparse, allowing (7) to be

solved very efficiently using implicit, iterative methods. We
propose to use conjugate gradient, solving (7) as a linear
system (

R−1
k +Qk

)︸ ︷︷ ︸
A

x̂k = R−1
k xmk︸ ︷︷ ︸
b

(8)

Since conjugate gradient requires only the matrix-vector
productAx, and since the entries inA represent a fixed con-
straint, and those in R computed from the image, therefore
neither Q nor R require storing explicitly, even in sparse
form, and an implicit functional representation is used to
dynamically compute Ax.

4. Testing and Discussions
The capabilities of DAC to segment 2D objects in the

presence of noise and background clutter have been demon-
strated [12]. DAS generalizes the DAC concepts to 3D and
validates its claims using three natural and synthetic 3D vol-
umetric images and two 2D moving image sequence. The
four test cases involve a wide range of characteristics in-
cluding high curvature and noise. The proposed DAS is
compared to the vector field convolution (VFC) [10] active
surface method.

We downloaded the code for VFC from [22] and utilized
the code for testing. All experiments are performed on a
P4 Intel 2.4Ghz processor, 1Gb RAM using MATLAB. The
parameters for VFC are adopted from [10]. In the proposed
approach the parameters: κth = 1, lth = 8, α1 = 0.1, α2 =
0.1, α4 = 0.05, α5 = 0.05 and α3 = 0 are used for all
test cases. Both approaches are initialized with a spherical
initial surface . DAS’s ability to identify the surface of 3D
volumetric images is presented in Figs. 6 and 7.

Fig. 6 compares the performance of DAS (middle) and
VFC (right). VFC was unable to identify either synthetic
surface (A and B). The unbiased internal force created due
to the conventional representation scheme used in VFC
smoothed the high curvature portion of the U-shaped object.
In contrast, the DAS successfully identified the high curva-
ture surface regions of both objects A and B, using sepa-
rated measurement and prior steps, and also by enforcing a
lower force in high curvature regions. The high-curvature
tolerance of DAS is illustrated most clearly in the sharpness
of the top and bottom surface edges in image (B).

The convergence time of DAS compared to VFC is pre-
sented in Table 1. The convergence time of DAS is clearly
significantly lower than that of VFC.

VFC requires a large number of nodes in order to seg-
ment natural volumetric images. The current MATLAB
implementation of VFC is not able to handle more than
q = 5000 mesh nodes, therefore we are unable to present
VFC results for natural volumetric images. The ability of
DAS to identify the outer surface of a human head in a vol-
umetric MR image, and the trajectory of a walking man in
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(A)

(B)
Original volumetric image DAS VFC [10]

Figure 6. Boundary identification accuracy of DAS and VFC using two surfaces: a U-shape (A), top, and a noisy twin inverted conical
volume (B), bottom. DAS (center column) segments both of these objects successfully, note particularly the sharpness of the cone edges,
however VFC (right column) is ineffective for both objects.

Table 1. Comparison table showing execution time in seconds for the surfaces in Fig. 6, comparing DAS and VFC [10]. DAS is more than
an order of magnitude faster than VFC.

A (u-shape) B (inverted twin cone) C (MRI Brain) D (walk sequence) E (walk sequence)
(DAS) 323 179 297 512 539
(VFC) 12853 11232 - - -

a spatio-temporal sequence [23] are demonstrated in Figs. 7
and 8, respectively. In both cases, DAS successfully identi-
fied high curvature regions (e.g., the ears, nose and eyes in
the MR image) the human walking trajectory.

5. Conclusions

This paper proposed a novel decoupled active surface
(DAS) for identifying the surface of static 3D objects and
moving 2D objects in volumetric imagery. DAS is a sig-
nificant three-dimensional generalizatoin of the decoupled
active contour (DAC) used for identifying boundaries in
2D imagery. DAS has achieved dramatic improvements
in computational requirements and segmentation accuracy
compared VFC, a current parametric active surface method.

The computational efficiency of the DAS method is due
to the use of decoupled prior-measurement terms, and due
to the use of efficient approaches for the measurement and
prior assertions. The high curvature tolerance of the method

is due to the novel resampling method, implicitly making
the prior non-stationary, weakening it in areas of high curva-
ture and allowing the surface to accommodate sharp folds.
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