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Quasi-Monte Carlo Estimation Approach for
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Abstract—An important postprocessing step for MR data is noise
reduction. Noise in MR data is difficult to suppress due to its
signal-dependence. To address this issue, a novel stochastic ap-
proach to noise reduction for MR data is presented. The estima-
tion of the noise-free signal is formulated as a general Bayesian
least-squares estimation problem and solved using a quasi-Monte
Carlo method that takes into account the statistical characteristics
of the underlying noise and the regional statistics of the observed
signal in a data-adaptive manner. A set of experiments were per-
formed to compare the proposed quasi-Monte Carlo estimation
(QMCE) method to state-of-the-art wavelet-based MR noise re-
duction (WAVE) and nonlocal means MR noise reduction (NLM)
methods using MR data volumes with synthetic noise, as well as
real noise-contaminated MR data. Experimental results show that
QMCE is capable of achieving state-of-the-art performance when
compared to WAVE and NLM methods quantitatively in SNR,
mean structural similarity (MSSIM), and contrast measures. Vi-
sual comparisons show that QMCE provides effective noise sup-
pression, while better preserving tissue structural boundaries and
restoring contrast.

Index Terms—Bayesian, denoising, MR, noise reduction, quasi-
Monte Carlo, regional statistics, stochastic.

I. INTRODUCTION

RI is a medical imaging technique that has become a
M very powerful tool for clinical diagnosis as well as for
studying the structural and functional characteristics of the body.
MRI provides high contrast between tissues when compared to
other imaging techniques without exposing patients to harmful
ionizing radiation. While MRI technology has improved signif-
icantly over the years to provide improved resolution and SNR,
as well as reduced acquisition times, there are still many funda-
mental tradeoffs between these three aspects due to operational,
financial, and physical constraints. For example, it is necessary
to constrain acquisition time from an operational perspective
to alleviate patient discomfort and to improve the number of
acquisitions that can be made within a certain period of time.
However, constraining the acquisition time generally results in
a decrease in SNR, which is undesirable. Therefore, low-level
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postprocessing methods for reducing noise in MRI are desired
for both clinical visualization as well as higher level postpro-
cessing operations, such as segmentation and tracking, whose
performance can be greatly affected by the presence of noise.

Noise in MR data is a result of various factors, such as thermal
noises from the patient and electronic noises from the MRI
device [1], [2], and the noise-contaminated magnitude data is
typically modeled as following a Rician distribution [3]. The
main challenge in suppressing noise in MR data is that the noise
statistics vary based on the underlying signal. Furthermore, a
parametric model, such as the Rician distribution may not well
model noise-contaminated data depending on the underlying
MRI technology. Given the importance of noise reduction in
MR data, various MR noise reduction techniques have been
proposed in research literature over the years. One of the first
MR noise reduction methods was proposed by McGibney and
Smith [4], where the underlying signal is estimated as the linear
weighted mean over a local neighborhood. Aja-Fernandez et al.
[5] extended upon this approach by computing a linear minimum
mean squared error estimate of the signal. Nonlinear approaches
for estimating the signal were proposed by Gerig ef al. [6] and
Samsonov and Johnson [7], based on the concept of anisotropic
diffusion proposed by Perona and Malik [8]. One issue with
the aforementioned methods is that they rely solely on local
neighborhood information, which may be insufficient for noise
suppression under low SNR scenarios.

A popular class of approaches for MR noise reduction are
wavelet-based methods [9]-[15]. In particular, Nowak [12]
proposed incorporating the Rician distribution model into
a threshold-based wavelet noise reduction framework, while
Pirzurica et al. [13] introduced a wavelet noise reduction method
based on estimates of the underlying noise distribution. One
issue with wavelet-based methods is that they can introduce
significant artifacts that relate to the wavelet being used. An-
other approach to MR noise reduction was taken by Sijbers
et al. [16], [17], which estimates both the underlying signal and
noise variance using a maximum-likelihood (ML) approach.
More recently, Coupe et al. [18], Manjon et al. [19], and Wiest-
Daesslé et al. [20] introduced MR noise suppression meth-
ods based on the nonlocal means method proposed by Buades
et al. [21], [22], which was shown to provide good structural
preservation even under low SNR scenarios, with [18] and [20]
providing improved efficiency through a preselection process.

The main contribution of this paper is a novel stochastic noise
reduction method for MR data. The proposed method utilizes
a quasi-Monte Carlo estimation (QMCE) approach for estimat-
ing the noise-free signal, which learns the statistical charac-
teristics of the underlying noise distribution, as well as taking
into account the regional statistics of the observed signal, in a
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data-adaptive manner. To the best of the authors’ knowledge,
there are no previous methods that have utilized such an ap-
proach to estimate the noise-free signal for MRI.

II. MATERIALS AND METHODS
A. Problem Formulation

Let X be a set of sites into a discrete lattice S upon which
the MR data is defined and x € X be a site in S. Let M =
{M(z)|lz € X}, A={A(zx)|lz € X}, and N ={N(z)|z €
X} be random fields on X, and M(z), A(z), and N(x) be
random variables representing the observed signal, the noise-
free signal, and noise signal following a distribution p at site
x, respectively. Let m = {m(x)|x € X}, a = {a(z)|z € X},
and n = {n(z)|r € X} be realizations of M, A, and N, re-
spectively. The problem of estimating the noise-free signal a(x)
from the observed signal m(z) can be formulated as the follow-
ing general Bayesian least-squares estimation problem:

a(z) = argmin {E[(a(z) — a(z))?*|m(z)Ve € X]}. (1)
a(z)ea(x)
Minimizing the expression in (1) gives us the following
expression:

a(x) = /p (a(z)|m(z))a(z)da(z). 2

This means that the optimal estimate of the noise-free signal
a(x) is the mean conditioned on the observed signal m(x).
The problem of separating the noise-free signal a(x) from the
noise signal n(x) is very challenging in two ways. First, no
information is known about a(x), making (2) impossible to
solve directly. To work around this issue in a practical sense, a
common approach used in numerical optimization is to use an
initial estimate for a(z), denoted as ag (), in place of the actual
a(x). This gives us

a(x) = / p (a0 (&) m(z))ao (z)dao (x). 3)

In the current implementation, the initial estimate of the noise-
free signal (ag(x)) is set to a smoothed version of m(z) using a
Gaussian kernel with unit standard deviation. Second, not only
is the noise in MR data signal-dependent, the noise distribution
can vary depending on the underlying MRI technique. There-
fore, solving for a(x) based on (2) can be very challenging
given the highly complex nature of the posterior distribution
p (ag(x)|m(x)). A common approach to addressing this issue
is to instead utilize a linear least-squares approximation of the
problem, based on parametric distribution models, such as the
Rician distribution [5]. However, such approximations can be a
poor fit given the highly complex nature of MR imagery, thus re-
sulting in poor signal estimates. Even nonlinear approximations
of the problem based on single-point statistics can lead to poor
signal estimates given the physical relationships between tis-
sues that are captured in MR data. To account for such physical
relationships between tissues and the statistical characteristics
of the MR data in a data-adaptive manner, we propose to instead
employ a quasi-Monte Carlo approach to estimating a(x) based
on regional statistics.
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B. Quasi-Monte Carlo Method Based on Regional Statistics

The primary challenge to estimating a(z) using (2) is in
obtaining a reliable estimate of p (ag(z)|m(x)). Rather than
utilizing a parametric distribution model or nonparametric dis-
tribution models based on single-point statistics, which can be
a poor fit for the underlying MR data due to factors, such as
imaging technique and physical tissue relationships, we instead
estimate p (ag (x)|m(x)) using the following quasi-Monte Carlo
approach based on regional statistics.

First, a set of n samples {z;—1 __, } is drawn from a((x) us-
ing a Sobol quasi-random sequence @ (z) to promote low sample
discrepancies [23]. To account for physical tissue relationships
captured in MR data, we wish to utilize regional statistics rather
than single-point statistics. Let us define a local region around
a site x, denoted as p(z), as all samples x; in the image such
that ||z — ;|2 < r, where r defines the radius of the local re-
gion. Therefore, to determine the inclusion of x; as a sample
used to estimate p (ap (z)|m(x)), we first measure the degree of
likelihood £ of the local region around x;, denoted as p(z;),
belonging to the same distribution as the local region of the site
being estimated, denoted as p(x), which we model based on the
eITOr € = M (x) — Qo p(z;) between the local regions

L(p(z)), p(x)) = H fe@)p(z;), p(x)) ©)
i=1

where ¢ is the ith sample in the local region, n, is the number
of samples in a local region, and f(e(4)|p(x;), p(x)) is a con-
ditional functional with respect to the regions. The motivation
behind the inclusion of samples for estimating p (ag(x)|m(z))
based on the degree of likelihood L is that samples with similar
physical tissue relationships as that of = provide more rele-
vant information with regards to a(x) than those with dissimilar
physical tissue relationships.

To integrate noise statistics in £, we propose the following
noise-adaptive Gibbs-based energy functional, designed such
that the energy functional approaches zero within two noise
standard deviations

. N 2
4 (my () (1) = a0 (s (0))
Zo?

f(e(@)]p(z;), p(x)) = exp | —
(5)

where m,,(,) (i) and ag ,(,,)(i) are the observed signal and the
initial estimate of the ith sample in regions p(z) and p(z; ), re-
spectively, Z is the number of sites in a region, and o is the noise
standard deviation and can be estimated as the square root of the
expected value of the squared background intensities [19]. By
designing £ based on a likelihood cutoff of approximately two
noise standard deviations, we have accounted for the underlying
noise in the image. The use of two noise standard deviations is
motivated by parametric tests presented in Section III.

To further reduce the influence of outlier noise on the esti-
mation of a(x), particularly in low SNR scenarios, where £
is relatively low across all samples, we wish to only include
samples satisfying the following likelihood criterion based on
the degree of regional likelihood £ for inclusion in estimating
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p (ao (@)|m(@)):
Lp(a;), pla) > 7 ©)

where 7 is the acceptance threshold. We can derive the accep-
tance threshold 7 by enforcing the same “two noise standard
deviations” criterion used in the design of (5) into (6). Re-
placing the (m,(,)(x;) — ag y(,)(x;)) term with 20 in (5) and
substituting it into (6) gives

n,

L(p(x >Hep

Therefore, the acceptance threshold 7 becomes

T = Hexp [ } (8)

Given the remaining samples satisfying (6), let 2 be the
set of v samples {x;—1, .} selected for the estimation of
p (ag(z)|m(x)). Given €, the Monte Carlo posterior distribu-
tion estimate p (ag (x)|m(x)) can be determined as follows:

" (ao(x)|m(z))

J v (ao(2)[m(x)) dao (x)

QWUZE plee). ple))

X exp (%(W)j . (10)

Integrating the regional likelihood £ as an objective function for
the Monte Carlo posterior distribution estimate in (9) allows for
samples with high regional likelihood to have greater influence
on the estimation of p (ag(x)|m(x)) and improves the quality
of the estimate of the noise-free signal.

Given (9), the noise-free signal a(z) can be estimated as
follows:

)2
202

(N

p (ag(z)|m(x)) =

€))

p* (ag(z)|m(z

a(x) = /ﬁ(a0($)|m(m))a0(x)dao(x). (11)

C. Handling MR Magnitude Data

There are situations, where noise reduction must be per-
formed on MR magnitude data. As discussed in [12], there exists
a noise bias of 202 in the squared magnitude of the MR signal
that can be removed by simply subtracting the bias to recover
the noise-free signal. Therefore, an unbiased estimate of the
magnitude of the noise-free signal, denoted as |G|, based on the
proposed QMCE approach can be defined as follows [19], [20]:

la(z)| = \/(/25(ao(IE)|m(fE))a%($)dao(iv)> —202. (12)

Based on the formulation in (12), it is possible that the term
under the square root is a| is set
to zero. As pointed out by Wiest-Daesslé et al. [20], negative
values are mainly found in the background of the images in real
data.
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T2 volume

PD volume
Fig. 1. Noise-free MR volumes used in experiment from the BrainWeb phan-
tom [24].

III. EXPERIMENTAL RESULTS

To evaluate the effectiveness of QMCE for denoising MRI
data, three sets of experiments involving both synthetic 3-D MR
data with simulated Rician noise and real noise-contaminated
3-D MR data were performed. For comparison purposes,
the state-of-the-art wavelet-based MR noise reduction method
(WAVE) proposed by Pizurica et al. [13] and the state-of-the-art
nonlocal means MR noise reduction method (NLM) proposed
in Wiest-Daesslé er al. [20] were also evaluated. Note that NLM
and QMCE are implemented such that the noise reduction is
performed in 3-D, whereas WAVE performed noise reduction in
2-D for individual slices. All tested methods were implemented
using the parameters proposed in the associated research lit-
erature, with a 11 x 11 x 11 search volume, a 5 x 5 x 5 local
neighborhood, and i = ¢ used for NLM based on [20]. For
testing purposes, n was set to 200 as it was shown through
experimentation across the range 50 < n < 500 that little im-
provement in average SNR is observed across all tested data be-
yond n = 200. Also, it was shown by Wiest-Daesslé et al. [20]
that setting the radius of the local region r to 2 provides the
optimal average SNR based on empirical testing, and therefore,
this setting was used during testing. QMCE was implemented
in MATLAB and tested on an Intel Pentium 4 3 GHz machine
with 1 GB of RAM.

A. Experiment 1: SNR and Mean Structural
Similarity Evaluation

In the first set of experiments, we investigate the effective-
ness of QMCE for suppressing different levels of Rician noise.
This gives us a good sense empirically on how much noise is
reduced by QMCE. To achieve this goal, three noise-free sim-
ulated MR volumes (PD, T'1, and 72), with voxel resolution of
1 mm? and 8-bit quantization, from the BrainWeb phantom [24]
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SNRs of the estimates of the noise-free signals with respect to Rician noise standard deviation o. QMCE produced estimates with noticeably higher SNRs

than WAVE for all tested noise levels, while achieving comparable SNRs when compared to NLM.
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Fig. 3.  MSSIM measures [25] of the estimates of the noise-free signals with respect to Rician noise standard deviation 0. QMCE produced estimates with

noticeably higher MSSIM values than WAVE for all tested noise levels, while achieving comparable MSSIM values when compared to NLM.

was contaminated by simulated Rician noise with standard de-
viations o = {2%, 5%, 10%, 15%} of the dynamic range. The
noise-free MR volumes used as the basis for this set of exper-
iments are shown in Fig. 1. To contaminate the MR volumes
with simulated Rician noise, the real and imaginary parts of
the simulated MR volumes was contaminated with zero-mean
Gaussian noise [19]. For visualization purposes, the magnitude
of the MR volumes is shown. The noise-contaminated MR vol-
umes are then processed using the tested methods and the SNR,
as described in [13], and the mean structural similarity (MSSIM)
value [25] was measured. The SNR measure was computed ac-
cording to the following formula [13]:

where Var(a) is the variance of the noise-free reference data
and Var(a — a) is the noise variance. The SNR measure pro-
vides an indication of how accurate the reconstructed signal is
compared to the original noise-free signal, where a high SNR
value indicates strong signal fidelity and accurate signal recon-
struction. The MSSIM measure provides a good indication of
how well image details are preserved in the reconstructed signal
compared to the original noise-free signal. High MSSIM values
indicate strong detail preservation in the reconstructed signal,
which is very important for clinical visualization and diagnosis
of disease.

Plots of the SNRs and MSSIM values of the estimates of the
noise-free signals with respect to Rician noise standard devia-

SNR (@) = 10log,, ( (13)

tion o are shown in Figs. 2 and 3, respectively. QMCE produced
estimates with noticeably higher SNRs and MSSIM values than
WAVE for all tested Rician noise standard deviations, while
achieving comparable SNRs and MSSIM values when com-
pared to NLM. An example slice of the signal estimate for
the 72 volume at the tested Rician noise standard deviations is
shown in Fig. 4. The signal estimate produced by WAVE con-
tains significant artifacts that relate to the underlying wavelet
used. These artifacts are particularly noticeable in the homoge-
neous regions of the white matter, where band-like structures
are formed that do not appear in the original noise-free data.
The estimates produced by NLM and QMCE do not contain
such artifacts and better preserve structural characteristics as
well as suppress noise at all noise levels, with QMCE provid-
ing an improvement in sharpness of structural characteristics at
high noise levels. A closeup of an example slice of the signal
estimate for the 71 volume at 5% simulated Rician noise is
shown in Fig. 5. On close visual inspection, NLM and QMCE
performed noticeably better at estimating the noise-free signal
than WAVE, which is contaminated by significant artifacts. As
with the previous example, QMCE provides improvement in
sharpness of structural characteristics when compared to NLM,
particularly in the gray matter regions.

B. Experiment 2: Contrast Evaluation

In the second set of experiments, we investigate the effec-
tiveness of QMCE at restoring the contrast in MR data under
different levels of simulated Rician noise. This gives us a good
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WAVE [13]
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NLM [20]

o =5%

o= 10%

oc=15%

Fig. 4.

Example of slice of the estimate of the noise-free signal produced by the WAVE [13], NLM [20], and QMCE methods for the 72 volume at different

Rician noise standard deviations. The signal estimate produced by WAVE contains significant artifacts that relate to the underlying wavelet used. The estimates
of the noise-free signals produced by NLM and QMCE do not contain such artifacts and better preserve structural characteristics as well as suppress noise at all
noise levels, with QMCE providing an improvement in sharpness of structural characteristics at high noise levels, particularly in the gray matter regions.

sense empirically on how well different features such as tissues
can be distinguished in the estimated noise-free signal, which is
important for visual interpretation and analysis. To achieve this
goal, the noise-free volumes used in the first set of experiments
was contaminated by simulated Rician noise with standard de-
viations o = {2%, 5%, 10%, 15%} of the dynamic range. The
noise-contaminated MR volumes are then processed using the
tested methods and the contrast ¢ was measured as follows

[12]:
o~ (Ber=rien) (Farrees) 00

where E(a1) and E(as) are the expected values of the dark
regions and bright regions of a, respectively, and E(d;) and
E(ay) are the expected values of the dark regions and bright
regions of a, respectively.

Plots of the contrast of the signal estimates with respect to
Rician noise standard deviation ¢ are shown in Fig. 6. QMCE
produced signal estimates with comparable contrast as NLM for
all tested Rician noise standard deviations, with WAVE perform-
ing noticeably worst. Furthermore, the ability of the WAVE to
restore contrast decreases significant as ¢ increases. Both NLM
and QMCE are able to restore noticeably more contrast in the
estimated signal at all values of o when compared to WAVE.
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Original
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WAVE [13]

NLM [20

QMCE

Fig. 5. Closeup of an example slice of the signal estimate of the noise-free
signal for the 71 volume at 5% simulated Rician noise produced by the WAVE
[13], NLM [20], and QMCE methods, and their corresponding residuals. There
is noticeable artifacts in the estimate produced by WAVE in the homogeneous
regions of the white matter, where band-like structures are formed that do not
appear in the original noise-free data and curved structures formed by gray
matter have a blocky appearance.

C. Experiment 3: Real-Noisy MR Data

In the third set of experiments, we investigate the effective-
ness of QMCE at reducing noise in real noise-contaminated MR
data. This gives us a good sense subjectively on how well QMCE
performs in real-world situations, and thus, validate its operation
applicability. To achieve this goal, a real patient MR/T1 brain
volume, with a slice thickness of 5-mm and 8-bit quantization,
of a 76-year-old male with chronic subdural hematoma [26] was
processed using the tested methods. Given that this is real noise-
contaminated MR data, the noise-free data is unavailable and as
such the effectiveness of denoising will be evaluated visually.
The noise o was estimated as the square root of the expected
value of the squared background intensities [19], although other
approaches such as that produced by Aja-Fernandez et al. [27]
may provide more robust estimates in the situation, where ghost-
ing artifacts exist in the data. The magnitude of three slices from
the signal estimate of the real noise-contaminated MR data are
shown in Fig. 7. As with the first set of experiments, NLM and
QMCE is able to better preserve structural characteristics, while
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suppressing the underlying noise when compared to WAVE.
Furthermore, the signal estimate produced by both NLM and
QMCE does not exhibit the significant artifacts contained in
that proposed by WAVE, which is most noticeable in the homo-
geneous regions of the white matter, where band-like structures
are formed that do not appear in the original noise-free data.
The signal estimates produced by QMCE exhibit sharper struc-
tural characteristics than NLM, particularly in the gray matter
regions.

D. Experiment 4: Choice of Acceptance Criterion

In Section II-B, we utilized a “two standard deviations™ ac-
ceptance criterion to derive the acceptance threshold 7. To jus-
tify the choice of this acceptance criterion, we investigate the
effectiveness of QMCE at reducing noise for suppressing dif-
ferent levels of Rician noise given different acceptance criteria.
This gives us a good sense empirically on what is a suitable
acceptance criterion for deriving 7. To achieve this goal, the
three noise-free simulated MR volumes (PD, T'1, and 72) used
in Section III-A are contaminated by simulated Rician noise
with standard deviations 0 = {5%, 15%} of the dynamic range.
The noise-contaminated MR volumes are then processed using
QMCE for different acceptance criteria from 0.17 to 117 and
the average SNR was measured.

Plots of the average SNRs with respect to acceptance criterion
for Rician noise standard deviation o = {5%, 15%} are shown
in Fig. 8. QMCE produced the highest average SNRs for both
0 = 5% and o = 15% when the acceptance criterion is set up
20, thus empirically providing justification for the use of the
“two standard deviations” acceptance criterion used to derive
T.

IV. COMPUTATIONAL COST ANALYSIS

In the third set of experiments, we investigate the compu-
tational cost of performing QMCE relative to the other tested
methods. To achieve this goal, the execution time of all three
tested methods was recorded for denoising the three simulated
MR volumes from the BrainWeb phantom [24] used in the first
set experiments. Each volume consists of 181 x 217 x 181
voxels, with a voxel resolution of 1 mm?®. At 1.09 s per slice,
WAVE performs significantly faster than either NLM or QMCE,
although the level of denoising performance is significantly
worse than the other two methods, as shown in previous experi-
ments. Despite being slower than WAVE, the execution time of
QMCE at 15.67 s per slice is noticeably faster than that of NLM
at 96.95 s per slice, while achieving similarly high levels of noise
reduction and structure preservation. This difference in execu-
tion time between NLM and QMCE can be attributed to the fact
that NLM uses a large number of pixels, many of which have
low relevancy to estimate the noise-free signal, whereas QMCE
uses a small set of samples with high relevancy, and thus, require
significantly fewer computations. Given the independent nature
of performing QMCE on each voxel, one effective approach to
significantly reducing execution time is by employing a paral-
lel processing framework, where multiple voxels are processed
using QMCE in parallel.
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Fig. 6. Contrast of the signal estimates with respect to Rician noise standard deviation o.
WAVE [13] NLM [20]
Slice 17
Slice 25
Slice 34
Fig. 7. Example slices from the signal estimates produced by WAVE [13], NLM [20], and QMCE for real noise-contaminated MR data. As with the first set of

experiments, NLM and QMCE is able to better preserve structural characteristics, while suppressing the underlying noise when compared to WAVE. Furthermore,
the signal estimate produced by both NLM and QMCE does not exhibit the significant artifacts contained in that proposed by WAVE, which is most noticeable
in the homogeneous regions of the white matter, where band-like structures are formed that do not appear in the original noise-free data. The signal estimates
produced by QMCE exhibit sharper structural characteristics than NLM, particularly in the gray matter regions.

V. CONCLUSION

In this paper, a novel stochastic approach for denoising MR
data was introduced. A general Bayesian least-squares formula-
tion of the noise-free signal estimation problem was presented
and a QMCE approach was introduced for solving the problem
in a reliable manner based on regional statistics. Experimental

results show that QMCE provides state-of-the-art performance
compared to both the WAVE and NLM methods quantitatively
in SNR, MSSIM, and contrast measures. Furthermore, visual
comparisons show that QMCE provides noticeably improved
tissue structural preservation and higher contrast without signifi-
cant artifacts. Future work involves investigating the operational



WONG AND MISHRA: QUASI-MONTE CARLO ESTIMATION APPROACH FOR DENOISING MRI DATA BASED ON REGIONAL STATISTICS

=-==0=5%
—0=15%

Average SNR

0 2 4 6 8 10 12
Acceptance criterion (multiples of 6)

Fig. 8. Average SNRs with respect to acceptance criterion for Rician noise
standard deviation o = {5%, 15%} QMCE produced the highest average SNRs
for both cases when the acceptance criterion is set to 20.

application of QMCE on various MRI and spectroscopy appli-
cations, such as functional MRI and diffusion-weighted MRI.
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