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Abstract

A novel multi-scale approach is presented for the pur-
pose of robust keypoint extraction in high-noise environ-
ments. A multi-scale representation of the noisy scene is
computed using quasi-random scale space theory. A gra-
dient second-order moment analysis is employed at each
quasi-random scale to identify initial keypoint candidates.
Final keypoints and their characteristic scales are selected
based on the local Hessian trace extrema over all quasi-
random scales. The proposed keypoint extraction method
is designed to reduce noise sensitivity by taking advantage
of the structural localization and noise robustness gained
through the use of quasi-random scale space theory. Exper-
imental results using scenes under different high noise con-
ditions, as well as real synthetic aperture sonar imagery,
show the effectiveness of the proposed method for noise ro-
bust keypoint extraction when compared to existing keypoint
extraction techniques.

1 Introduction

An important task in computer vision is the extraction of
distinctive keypoints of interest from scenes, which is cru-
cial in a wide variety of applications such as image regis-
tration [1, 2], object recognition [3, 4], and 3D reconstruc-
tion [5]. An ongoing challenge in the design of keypoint
extraction algorithms is dealing with images and videos ac-
quired under the presence of noise. For example, surveil-
lance videos acquired in outdoor environments at night are
often contaminated with a high level of shot noise due to
poor lighting conditions. Another example of noise contam-
ination in a real-world scenario is that of underwater images
and videos acquired using sonar systems, which are con-
taminated by a high level of speckle noise due to the inter-
ference of backscatter signals. The presence of noise in the
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acquired scene is highly undesirable from the perspective of
keypoint extraction, as noise possesses distinctive structural
characteristics that makes the differentiation between key-
points and image noise a challenging task. Therefore, it is
highly desirable to identify methods that are capable of re-
liably extracting unique keypoints of interest in high-noise
environments.

Keypoint extraction methods can be generally divided
into two main categories: 1) single-scale methods, and ii)
multi-scale methods. In single-scale methods [6, 7, 8],
distinctive keypoints are extracted directly from the ac-
quired scene. For example, the Harris keypoint extraction
method [6] computes structural distinctiveness based on the
second order moments extracted from the image, and identi-
fies the local maxima of the computed metric as keypoints in
the image. There are two main limitations associated with
single-scale methods. First, such methods are highly sensi-
tive to the presence of noise, resulting in the detection of nu-
merous erroneous keypoints not associated with the actual
structural characteristics of the scene. Second, such meth-
ods have no sense of scale, hence often producing poorly
localized keypoints, and even missing important keypoints,
in scenes characterized by structures and objects at different
scales.

In multi-scale methods [9, 10, 11, 12], a scene is first de-
composed into a multi-scale representation, and distinctive
keypoints are then identified, along with their characteris-
tic scales, based on a metric of structural distinctiveness
across all scales. For example, in the approach proposed
by Lowe [10], the scene is first decomposed into a Gaus-
sian scale space representation, and identifies the keypoints
as the local optima of the difference of Gaussians function
applied to the scale space representation. There are two
main benefits to existing multi-scale methods. First, such
methods produce keypoints with better feature localization
than single-scale methods for structures at different scales,
making them more suited for scenes characterized by multi-
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scale characteristics. Second, such methods allow for the
identification of the characteristic scale at each keypoint,
which is very important for matching features captured at
different scales.

While addressing the issues associated with multi-scale
feature localization, existing multi-scale methods are of-
ten limited in their ability to handle high noise situations
such as underwater sonar imaging. A major factor con-
tributing to these limitations is the use of Gaussian scale
space, which has been shown to produce unsatisfactory
scale space representations of images characterized by high
noise levels [14]. The underlying goal of the proposed key-
point extraction method is to address the issues associated
with noise through the use of quasi-random scale space the-
ory [14], which was shown to provide better structural lo-
calization across all scales compared to existing scale space
formulations, especially under high noise scenarios. This
paper is organized as follows. The proposed quasi-random
scale space (QRS) keypoint extraction method is presented
in Section 2. Experimental results are presented and dis-
cussed in Section 4. Finally, conclusions are drawn and fu-
ture work is discussed in Section 5.

2 QRS keypoint extraction method

The QRS keypoint extraction method is centered around
quasi-random scale space theory [14] and is comprised of
the three main steps. First, a quasi-random scale space rep-
resentation is computed from the scene in question. Sec-
ond, structural distinctiveness is computed at each quasi-
random scale using a gradient second order moment anal-
ysis to identify a initial set of keypoint candidates. Third,
the final set of keypoints is determined on the local Hessian
trace extrema at each keypoint candidate across all quasi-
random scales. Each of the steps are described in detail in
the subsequent sections.

2.1 Quasi-random scale space

In the first step of the QRS keypoint extract method, a
multi-scale representation of the scene in question is com-
puted. In existing multi-scale methods, such a multi-scale
scene representation is computed based on Gaussian scale
space theory. However, it has been shown that such an ap-
proach produces multi-scale representations that are sensi-
tive to high noise conditions [14], as well as provide no-
ticeable structural delocalization at coarser scales [13]. To
address this issue, we propose to instead use quasi-random
scale space theory [14] to compute the multi-scale scene
representation, which can be described as follows.

Let S be set of sites in a discrete lattice £ upon which
the scene is defined and s € S be a site in £. Fur-
ther, let the acquired scene I = {I(s)|s € S}, gradient
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Figure 1. An example of a multi-scale rep-
resentation computed using quasi-random
scale space theory. The produced represen-
tation exhibits strong structural localization
at all scales, as well as low noise sensitivity.

G; = {Gi(s)|s € S}, scale space representation L;
{Li(s)|s € S}, and residual fine scale structure C;
{C;(s)|s € S} be random fields on S. Initializing with
Ly(s) = I(s), the scale space decomposition can be ex-
pressed s the following recursion relationship,

L,;l(s) = LZ(S) + CZ‘(S)7 (1)

where C'is interpreted as the inter-scale residual. Formulat-
ing the computation of L;(s) as an inverse problem, where
the “measurement”, and “noise” are represented by L;_1(s)
and C;(s) respectively, we can estimate the “state” L;(s) as
a Bayesian least-squares estimate,

£s(s) = argg, min { £ ((£4(9) L)) 12 <s>)(2}).

Given Eq. 2, the analytical solution for L; (s) can be ex-
pressed as

Li(s) / L (8)p (L () [Lics ()L (s). 3)

E(Li(s)|Li-1(s))

What Eq. 2 implies is that the optimal estimate of scale
space representation L; (s) is the mean conditioned on the
previous scale space representation L;_1 ().

To compute L; (s) based on Eq. 2, it is necessary to com-
pute the posterior distribution p (L;(s)|L;—1(s)), which is
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Figure 2. Keypoint extraction results for TEST1 at different noise levels.

difficult to do given the complex, nonlinear nature of im-
ages. To compute p (L;(s)|L;—1(s)) in an accurate yet effi-
cient manner, a quasi-random density estimation approach
is employed. First, n samples are drawn from a Sobol quasi-
random sequence [15] with respect to site s at scale ¢, which
promotes low discrepancy samples to be drawn. To use only
samples with high relevancy in the posterior estimation, a
Gaussian mixture model is fitted to the distribution p(L;(s))
and all samples within the Gaussian distribution to which
L;_1(s) belongs are accepted as the realizable sample set
of p (Li(s)|Li-1(s))-
Given the selected sample set (2, the posterior distribu-
tion p (L;(s)|L;—1(s)) is estimated as
D) L (5)) = — P (Li(s)Liza(s)
fp §)|Liz1(s)) dLi(s)

where p* can be expressed as

i(s)|Li-1(s)) =
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where f1 (k), f2 (k), and f5 (k) are objective functions, as-
sessing sample relevance, on the basis of intensity, gradient,

27‘(’L

exp

27

and spatial offset respectively [14].

An example of a multi-scale representation computed us-
ing quasi-random scale space theory is shown in Fig. 1; ob-
serve particularly the strong structural localization and low
noise sensitivity.

2.2 Keypoint candidate selection

In the second step of the QRS keypoint extract method,
a set of keypoint candidates {p},p5,...,p,} is selected
at each quasi-random scale. A widely accepted approach
to identifying suitable keypoints of interest is to assess
the structural distinctiveness of local neighborhoods around
sites in a scene. In QRS, a gradient second order moment
analysis approach is employed and can be described as fol-
lows. For each quasi-random scale L;, the gradient second
order moment matrix at a particular site s can be defined as

{AsLi(9)}”  {AsLi(s)}HALi(s)}
(ML)} {ALi(s)} {2, Li(s))? .
where A, and A, are the gradients along the x and y-
directions, respectively. Based on ®p,(s), the structural
distinctiveness at site s is computed based on the Noble re-
sponse metric [16], which provides a reliable indication of
significant change in the orthogonal directions,

(I)Li<s) =
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Figure 3. Keypoint extraction results for TEST2 at different noise levels.

o (s) = 2 (PL(s)) )

 trace (¥, (s))’

where det and trace denote the determinant and trace of a
matrix. The local maxima of py, (s) are selected as keypoint
candidates, with L; selected as their characteristic scale.

3 Final keypoint selection

In the third and final step of QRS, the final set of key-
points {p1,pa,...,pm} is determined based on the initial
set of keypoint candidates {p}, p5,...,p,}. A widely ac-
cepted approach to selecting the final set of keypoints is to
identify the keypoint candidates whose characteristic scales
attain an extremum for some objective function over all
scales. A comprehensive experimental study conducted by
Mikolajczyk and Schmid [17] found that the Hessian trace
function provided the most reliable selection of correct key-
points and their characteristic scales. Motivated by this,
in QRS, the final set of keypoints {p1,pa,...,pm | are se-
lected as all keypoint candidates whose characteristic scales
attain a local Hessian trace extremum over all quasi-random
scales.
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4 Experimental Results

To evaluate the effectiveness of the proposed QRS key-
point extraction method, two sets of experiments were per-
formed. The first set of experiments involves investigating
the effectiveness of QRS at detecting distinctive keypoints
at different noise levels. To achieve this goal, three noise-
free test images (one synthetic image with structures at dif-
ferent scales, and two real-world scenes with objects of dif-
ferent scales) were contaminated by Gaussian noise with
standard deviations ¢ = {10%,20%,40%} of the image
dynamic range, and keypoints were then extracted from the
noise-comtaminated images.

The second set of experiments involves investigating the
effectiveness of QRS at detecting distinctive keypoints in
real-world high-noise environments. To achieve this goal,
keypoints were extracted from four underwater scenes from
EdgeTech (West Wareham, Massachusetts) acquired using
side-scan synthetic aperture sonar systems. Due to the inter-
ference of backscatter signals during the sonar imaging pro-
cess, the underwater scenes are contaminated by high lev-
els of multiplicative speckle noise. Extraction of keypoints
from sonar imagery is important for applications such as
underwater tracking as well as 3D reconstruction of sunken
objects.

For comparison purposes, the Laplacian of Gaussian
(LoG) method proposed by Lindeberg [9] and the Harris-
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Figure 4. Keypoint extraction results for TEST3 at different noise levels.

Laplacian (HL) method proposed by Mikolajczyk and
Schmid [12] were also tested. All of the tested methods are
implemented using the parameters proposed in the original
works. The QRS keypoint extraction method was imple-
mented using 8 quasi-random scales.

The extracted keypoints and their corresponding charac-
teristic scales extracted by each tested method for the three
noise-contaminated test images at different noise levels are
shown in Figs. 2-4. Several observations can be made from
the keypoint extraction results. QRS is able to detect no-
ticeably more distinctive keypoints of interest than HL for
TESTI1 and TEST?2, while producing fewer erroneous key-
points than HL for TEST3 under the ¢ = 10% case. Under
high noise scenarios (o {20%,40%}), QRS produces
noticeably fewer erroneous keypoints than HL for all test
images. When compared to LoG, QRS produces notice-
ably fewer erroneous keypoints under all noise scenarios
for all test images. These results indicate the effectiveness
of QRS at extracting distinctive keypoints of interest under
high-noise environments.

The extracted keypoints and their corresponding char-
acteristic scales extracted by each tested method for the
four side-scan synthetic aperture sonar images are shown
in Fig. 5. QRS is able to detect distinctive keypoints while
producing significantly fewer erroneous keypoints than HL.
and LoG for all four sonar images. These results indicate
the effectiveness of QRS at extracting distinctive keypoints
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of interest under real-world high-noise environments.

5 Conclusions

A novel keypoint extraction method named QRS based
on quasi-random scale space theory is presented. Based
on the quasi-random scales space representation computed
from the scene in question, a gradient second order moment
analysis is employed at each scale to identify an initial set
of keypoint candidates. A local Hessian trace extrema de-
tection approach is then taken to identify the final set of
keypoints and their characteristic scales. Experimental re-
sults involving scenes under different noise levels as well
as real synthetic aperture sonar imagees demonstrate the
noise robustness of QRS when compared to existing key-
point extraction methods. Future work involves a more thor-
ough performance analysis of QRS, as well as investigating
strategies for extending QRS for affine and illumination in-
variant keypoint extraction.
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Figure 5. Keypoint extraction results for real synthetic aperture sonar imagery.
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