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Abstract

Dual-polarization synthetic aperture radar (SAR) image data, such as that available from

RADARSAT-2, provides additional information for discriminating sea ice types compared to

single-polarization data. A thorough investigation of published feature extraction and fusion

techniques for making optimal use of this additional information for unsupervised sea ice

image segmentation has been performed. Segmentation was performed by transforming the

dual-pol data (a) into a new two channel feature space (multivariate) and (b) into a fused

single channel feature space (univariate). Both real and synthetic dual-polarization SAR sea

ice images were transformed using a variety of methods and segmented using a recognized

SAR segmentation algorithm (IRGS). The results indicate that the untransformed data pro-

vides consistent and high segmentation accuracy, avoids feature extraction pre-processing,

and is thus recommended for SAR sea ice image segmentation using dual-pol imagery.

1. Introduction

Sea ice mapping is an important application of remote sensing systems, essential for

understanding the Arctic climate system (Johannessen et al., 2004) and for safe navigation

of ships in waters where sea ice can form (Wilson et al., 2004). Single-polarization images from

the Canadian RADARSAT-1 (RS-1) synthetic aperture radar (SAR) are an important source

of information for operational sea ice mapping (Flett, 2003). RADARSAT-2 (RS-2), launched

in 2007, is a Canadian SAR satellite that offers an operationally useful dual-polarization mode
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that is expected to improve discrimination of water from ice (Ramsay et al., 2004) and better

distinguish between different types of ice (Scheuchl et al., 2004b). These enhancements are

important because under certain but common circumstances, interpreting the various types

of ice and water in single-polarization images can be ambiguous.

This paper investigates the advantages of using dual-polarization SAR image data from

RS-2 for the purposes of automatic, unsupervised sea ice image segmentation. Current

operational sea ice maps are produced manually by human analysts. This process is subjective

and labor-intensive, so automated ice mapping algorithms are desired. Consideration of the

advantages of dual-polarization data for automated sea ice mapping algorithms is motivated.

This paper focuses on the use of RS-2’s dual-polarization HH and HV magnitude data since

it is the most operationally useful mode due to its 500 km swath width (Ramsay et al., 2004).

Multi-polarimetric (full- and dual-polarization) SAR imagery improves the classification

and segmentation of sea ice as compared to single polarization imagery and many examples

can be found in the literature. Fully-polarimetric SAR imagery, consisting of HH, HV, VH

and VV channels, was assessed in (Manore et al., 2001), which found that using either the

cross-polarization channels or the co-polarization ratio HH/VV can improve ice-water dis-

crimination. The HH/VV ratio can also be used to estimate sea ice thickness (Nakamura

et al., 2005). Similarly, The cross-polarization ratio HV/HH improves sea ice discrimina-

tion (Scheuchl et al., 2004b) and is one of the principal multi-polarization parameters (Collins

and Livingstone, 1996). Fully polarimetric or HH and VV data has also been used for other

applications, such as land cover classification (Park and Chi, 2008), ship detection (Li and

Chong, 2008) and crop monitoring (Bouvet et al., 2009).

Dual-polarization ENVISAT ASAR data, which is similar to RADARSAT-2 data, im-

prove the separation of water and ice when used with an unsupervised segmentation algo-

rithm (Scheuchl et al., 2004a). RGB composite images of HH and HV data significantly

improved visual discrimination of open water and ice (De Abreu et al., 2003). Another work

tested dual-polarization data from a Ku-band SAR with three different classifiers (Orlando

2



et al., 1990). The classification accuracy of first year ice, multi-year ice and icebergs was

improved. Feature extraction using the co-polarized and cross-polarized channels was also

performed using principal component analysis (PCA), which improved the visual distinction

of the different ice types but did not improve classification accuracy.

In addition to direct usage of multi-polarization data, or fusing the multi-polarization

bands with polarimetric band ratios, generic image fusion techniques have also been consid-

ered for combining multi-polarization imagery into single-band images for visualization or

processing. Wavelet image fusion, which decomposes images into multi-resolution wavelet

coefficient bands and combines the coefficients from multiple images according to defined

rules (Pajares and de la Cruz, 2004), has been used for multi-polarization SAR image fu-

sion (Simone et al., 2002)(Hong et al., 2002)(Jin et al., 2006)(Zhang et al., 2007). Other image

fusion techniques are based on similar principles of multi-resolution decomposition (Zhang

and Blum, 1999)(Yang et al., 2009). The results of these image fusion techniques have gen-

erally been assessed by their visual appearance, either subjectively or with some objective

measure of image quality, rather than by the efficacy of an image segmentation or classifica-

tion algorithm applied to the fused result.

The research literature indicates that there is potential for improvements in sea ice dis-

crimination from multi-polarization data, but we know of no papers that specifically test RS-

2’s dual-polarization magnitude data with a state-of-the-art sea ice image segmentation algo-

rithm. Although previous papers have assessed the improvements of using dual-polarization

data for sea ice discrimination, the assessment was either a visual assessment (Manore

et al., 2001) (De Abreu et al., 2003) or using traditional, pixel-based image classification

schemes (Scheuchl et al., 2004a)(Orlando et al., 1990). Therefore, this paper will focus on

investigating methods to most effectively use dual-polarization RS-2 data in the novel Itera-

tive Region Growing with Semantics (IRGS) image segmentation algorithm (Yu and Clausi,

2008). This algorithm is part of a larger system called MAGIC (Map-Guided Ice Classi-

fication) (Clausi et al., 2010), which aims to provide pixel level accurate ice maps given a
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manually created ice map using operational data. The IRGS algorithm has been demon-

strated to be an improvement over other state-of-the-art segmentation algorithms for both

generic (Qin and Clausi, 2010) and SAR (Yu and Clausi, 2008)(Yu and Clausi, 2007) imagery.

IRGS has also been successfully applied to IKONOS imagery and improves upon other algo-

rithms for segmentation of Brazilian savannahs (Barbosa and Maillard, 2010). IRGS differs

from other image segmentation methods by using a region-based segmentation scheme with

full consideration of image edges as part of the segmentation model.

In this paper, the potential improvements of using dual-polarization imagery with IRGS

are investigated. The experiments will determine whether the dual-polarization data is best

used in a multivariate framework, as in a multi-variate extension of IRGS (MIRGS) (Qin

and Clausi, 2010), or in a univariate data fusion framework in which the two polarization

channels are first combined into a single band before being given to the univariate IRGS

algorithm. This will address the question of whether feature extraction or image fusion is

helpful for automated algorithms and, if so, which technique is best in the context of the

MIRGS image segmentation algorithm. To the best of our knowledge, no such study exists

even though many different feature extraction and fusion methods have been proposed. This

work is available to practitioners attempting to automatically interpret dual-polarization

SAR imagery.

Section 2 gives a brief overview of the IRGS algorithm that is used for the experiments.

Section 3 states the research objectives that will be considered. Section 4 describes the

tested image data. Section 5 describes the tested feature extraction and fusion methods and

Section 6 presents the results. Finally, Section 7 concludes the paper.

2. Iterative Region Growing with Semantics algorithm

The MIRGS algorithm (Qin and Clausi, 2010), which is the multivariate version of the

original univariate IRGS algorithm (Yu and Clausi, 2008)(Yu and Clausi, 2007), is the un-

supervised image segmentation algorithm that is applied to the dual-polarization RS-2 data.
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Figure 1: Major steps of the MIRGS algorithm. 1a) To initialize the system, MIRGS computes the image
gradient and 1b) generates the watershed regions (with simplified shapes in this diagram; they are more
arbitrary in general) and the region adjacency graph (RAG). 2) The watershed regions are then segmented
with K-means clustering. 3) Regions are relabeled by Gibbs sampling (Geman and Geman, 1984). 4) Regions
with the same label are merged. Steps 3 and 4 are repeated for a user-specified number of iterations. 5) The
final segmentation is produced.

“Unsupervised” indicates that no a priori assumptions of the class distributions is used to

drive the segmentation process; “supervised” methods typically use training data to estimate

the class distributions. Since MIRGS is unsupervised, it does not have the necessary infor-

mation to perform labeling with specific ice class names. In the MAGIC system, labeling

is performed after segmentation to complete the classification process (Clausi et al., 2010).

Automatic labeling is another line of research (Ochilov et al., 2010).

IRGS has been successfully applied to single-polarization RS-1 HH imagery. The re-

sults have been evaluated by Canadian Ice Service (CIS) experts and found to outperform

other methods (Clausi et al., 2010)(Yu and Clausi, 2007). As such, MIRGS is the segmen-

tation method used in this paper and this section summarizes the published description of

MIRGS (Qin and Clausi, 2010).

Fig. 1 shows the major steps of MIRGS. The algorithm accepts as input an image with at

least one image channel. The image is first segmented with a watershed algorithm (Vincent

and Soille, 1991) that divides the image into many small regions each with relatively uniform

backscatter. The image gradient must be computed to generate the watershed segmentation

and it is straightforward to calculate the gradient of a single channel image. However, for
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multichannel images, MIRGS uses a vector field gradient (VFG) approach (Lee and Cok,

1991) to calculate the joint image gradient from all channels since the edge content in each

channel may be different. The computed gradient is normalized so that the largest gradient

in the scene has a value of 1.0 to ensure that MIRGS scales properly for scenes with differ-

ent dynamic ranges. Once the watershed (Vincent and Soille, 1991) is generated from the

normalized image gradient, the image is represented by a region adjacency graph (RAG) (Li,

2001) data structure where each node represents a watershed region and where each graph

edge connects spatially adjacent regions.

Each watershed region is assigned an initial label via a K-means algorithm (Duda et al.,

2001) to initialize MIRGS. The region-based K-means algorithm used in MIRGS is described

in (Qin and Clausi, 2010). MIRGS then enters an iterative phase to find a configuration of

labels for the regions that globally minimizes a cost function. At each iteration, a labeling

process is performed with Gibbs sampling (Geman and Geman, 1984) to move the segmen-

tation towards the optimal configuration. After each iteration, regions with the same labels

are merged to reduce the number of nodes in the RAG by combining adjacent regions, which

makes subsequent iterations more efficient as fewer nodes have to be considered.

The cost function that MIRGS minimizes to produce the optimal segmentation consists of

a feature space model and a spatial context model (Qin and Clausi, 2010). The cost function

considers a segmentation more likely to be “true” when the regions assigned to each class are

similar to each other in feature space and when spatially adjacent regions belong to the same

class if the edge strength between them is weak. This is similar to the Markov random field

(MRF) based multi-level logistic (MLL) segmentation model (Derin and Elliott, 1987) but

MLL does not consider the edge strength in its spatial context model. The MIRGS model

agrees more closely with intuition: if there is a strong edge between two regions, they are

more likely to be from different classes than when there is no edge. MLL, in contrast, makes

no such distinction and favours results where adjacent regions are assigned to the same class

regardless of the edge strength between them.
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3. Research objectives

To generate an accurate and consistent segmentation, the MIRGS algorithm requires data

with sufficient feature space separability for different ice classes, i.e. it should be possible

to discern a difference in feature space values between different classes (for example, one

class might appear darker than another class in the image). Additionally, MIRGS requires

the proper generation of the initial watershed and an image gradient that presents strong

boundaries between regions of different ice classes. As will be seen in Section 4, information

from both dual-polarization channels (HH and HV) are necessary. Many strategies exist to

use dual-polarization RS-2 data to satisfy these requirements. The objective of this study is

to determine which of these strategies is the most effective. The following three strategies

will be tested:

1. Direct MIRGS implementation: The most basic strategy is to use the backscatter values

from the HH and HV channels directly in the multivariate formulation of MIRGS, using

the VFG gradient method that is already implemented to create the watershed and

image gradient.

2. Gradient combination: While the feature space separability provided by the dual-

polarization data is fully utilized by Strategy 1, the VFG image gradient was not

designed with domain knowledge of dual-polarization data. VFG tends to assign the

highest strength only to edges that are strongest in both the HH and HV channels while

strong edges that appear in only one of the two channels are assigned a lower value.

However, strong edges that appear in at least one of the channels are equally meaning-

ful as they denote a boundary between ice classes. Thus, there is motivation for testing

and comparing various gradient generation strategies that combine information from

both channels.

3. Feature extraction and image fusion: Another strategy for making use of dual-polarization

data is to fuse the information from both channels into a single image first with fea-

ture extraction or image fusion techniques before segmentation in MIRGS. If feature
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space separability can be maintained between all ice classes after mapping each two

dimensional feature vector to a one dimensional value, then both the separability and

the image gradient requirements can be satisfied: all ice classes will have a different

brightness in the fused image, which will naturally cause edges between them to appear

in the fused image.

The experiments will test whether the basic multivariate strategy, a modified gradient

combination approach or feature extraction will give the best results for the RS-2 data.

4. Data

ScanSAR Wide A has a pixel resolution of 100 m × 100 m, with a pixel spacing of 50 m

× 50 m. The full 500km swath width spans approximately 10000 × 10000 pixels. The CIS

expects to use data from the co-polarization (σ◦HH) and the cross-polarization (σ◦HV ) channels

for their operations and has provided real-valued RS-2 imagery for testing. Each pixel in the

image is represented by a two dimensional feature vector whose elements are σ◦HH and σ◦HV .

The HH channel contains the same information as that available from the single-polarization

RADARSAT-1 (RS-1) satellite. Complex-valued images are not considered in this paper

because these are not used operationally by CIS.

A Gulf of St. Lawrence scene recorded on February 25, 2008 was tested in this paper.

CIS provided operational ice charts for the area on this date, which were created from RS-1

data since CIS had not yet integrated RS-2 imagery into their operational pipeline at that

time. A manually segmented ground-truth image was produced based on the ice charts for a

small part of the RS-2 scene (depicting an area north of Anticosti Island) to use for validation

purposes (Fig. 2). This image represents ice appearance for an incidence angle range of less

than 10◦.

There are still ambiguities in the manual segmentation because certain ice types cannot

always be reliably identified from the backscatter images alone and because each polygon

in the CIS ice chart contains a mix of ice types but not the exact pixel location of each
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type. However, there are small patches of the original, full RS-2 scene where the ice type is

known, such as within polygons that have only one ice type or a mix of distinctive ice types.

Although the ice type in these areas is known more reliably, they occur in small, isolated

patches, which is not ideal for testing a segmentation algorithm.

To overcome the above difficulties, a synthetic image was created as a second test image

(Fig. 3). The synthetic image consists of artificially created shapes, which are each assigned to

one of four ice classes. For each ice class, a patch that unambiguously represents that class was

identified in the full RS-2 scene and the shapes were filled with textures synthesized from the

corresponding patch. Therefore, the ice class of each shape in the synthetic image is known

unambiguously, which creates a more reliable ground-truth than the manual segmentation of

the image shown in Fig. 2. The IceSynth II algorithm (Wong et al., 2010) synthesized the

textures. IceSynth II extends the small patches of known class into a larger synthetic patch

with the same textural and backscatter characteristics. In the synthetic image, the joint

statistical properties of the HH and HV channels are maintained because IceSynth II draws

data from the same locations in both channels as it synthesizes the image. Thus, the synthetic

image has the same type of intra-class variation and inter-class contrast characteristics as the

original RS-2 image for the selected ice types. All of the patches of known ice type occurred

at incidence angles between 30◦ to 35◦.

Although the geometric appearance of the synthetic image is not fully realistic, this does

not have a large effect on the segmentation process as MIRGS only takes into account edge

strength between regions but not the boundary shape. Since the synthetic image provides a

more reliable ground-truth and the real image provides more realistic shapes, both images

are tested in this paper to obtain more reliable conclusions.

Both the real and synthetic image show that neither the HH nor the HV channel alone

clearly distinguishes between all the ice types within each image. In the real image, water

and first year ice look similar in HH while smooth ice, gray ice and water are ambiguous in

HV. In the synthetic image, which represents ice at a different incidence angle range, the
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(a) Location of study area (b) HH of study area

(c) HV of study area (d) Ground-truth

(e) Scale and legend for subfigures (b)-(d)

RADARSAT-2 Data and Products c©MacDONALD, DETTWILER AND ASSOCIATES LTD. (2008) - All Rights Reserved.

Figure 2: The real dual-polarization image and its associated ground-truth image is a subscene of an area
north of Anticosti Island taken from a February 25, 2008 scene of the Gulf of St. Lawrence.
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(a) Synthesized HH (b) Synthesized HV (c) Ground-truth

Figure 3: The synthetic dual-polarization image and its associated ground-truth are synthesized from samples
taken from the February 25, 2008 Gulf of St. Lawrence image.

water, gray ice and first year ice are indistinguishable in HH while smooth ice and water are

poorly separated in HV. Therefore, information from both channels is needed for accurate

segmentation.

The images tested are purposely limited in incidence angle range to exclude the effects

of incidence angle related appearance changes (Drinkwater, 1989), (Ulaby et al., 1986) of ice

types (especially open water) within the same image. This is similar to how the MAGIC

system performs segmentation only within operator created polygons and regions of interest

to minimize the effects of incidence angle (Clausi et al., 2010). The HV channel is less

sensitive to incidence angle effects (Scheuchl et al., 2004a), but it cannot distinguish all ice

types, as explained earlier. Thus, incidence angle effects are not considered in this paper.

While this precludes fully automatic sea ice segmentation, the procedure is still extremely

valuable since it enables creation of pixel-resolution sea ice maps once an operator created

polygon is available.

All image data are provided by CIS as 8-bit digital numbers (DN) that represent the

backscatter value at each pixel with a range-dependent gain applied for operational visual

analysis. In this paper, the backscatter value in decibels (dB) is recovered with a supplied

lookup table prior to use. To facilitate display and data normalization conventions expected

by the tested algorithms, the range [−35,−5] dB of the backscatter values has been mapped
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to [0, 255] for processing. Since the original data provided by CIS are 8-bit DNs, this process

does not cause loss of any significant figures. All internal calculations, however, are done

with floating point arithmetic.

5. Methods

5.1. Gradient combination

As discussed in Section 3, the multivariate VFG gradient calculation method used by

MIRGS in Strategy 1 assigns a strong edge strength only to edges that appear in both the

HH and the HV channels. However, strong edges that appear in only one channel are equally

meaningful and should also be assigned a high edge strength. Therefore, three different

gradient calculation rules are tested to evaluate Strategy 2. In this section, let ∇(HH)
s be the

gradient at pixel s from the HH image alone, ∇(HV )
s be the gradient for the HV image alone

and ∇V FG
s be the VFG (Lee and Cok, 1991) that MIRGS uses. Let S be the set of all pixels

in the image.

The simplest way of combining strong edges that appear in any of the channels is to take

the maximum normalized gradient (MAX):

∇MAX
s = max

{
∇(HH)

s ,∇(HV )
s ,∇V FG

s

}
(1)

The MAX rule ensures that the ∇s always reflects the maximum edge strength available from

all channels at each pixel. Inclusion of ∇V FG
s covers cases where a site has a weak relative

gradient magnitude in each individual channel but a strong relative magnitude when both

channels are considered jointly.

In the absence of noise, the MAX rule ensures that any edge that is strong in at least one

of the channels has high edge strength in the combined gradient. However, for sites with a

non-zero gradient due to noise, the MAX rule chooses the largest gradient value and amplifies

the effect of noise. Thus, two alternative gradient combination rules are also tested. The
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first is an Absolute Difference Weighted Average (ADWA) gradient rule. This rule is defined

as follows:

∇ADWA
s = wADWA

s ∇MAX
s + (1− wADWA

s )∇V FG
s (2)

where:

wADWA
s =

|∇(HH)
s −∇(HV )

s |
max
s∈S

{
|∇(HH)

s −∇(HV )
s |

} (3)

In the ADWA rule, the combined gradient weights heavily toward ∇MAX
s if the difference in

gradient magnitude between HH and HV is large. This occurs when one of the channels has

a strong edge and the other does not, which is when the MAX rule is appropriate. If the

difference in gradient magnitude is small, it is either a pixel with noise (under the assumption

that noise has a smaller magnitude than true edges) or the edge is strong in both individual

channels. In this latter case, VFG is appropriate since it minimizes noise (Lee and Cok,

1991) and properly addresses strong edges that appear in both channels.

The second alternative to the MAX rule is the Canny gradient combination rule (CG).

This rule is identical to ADWA but the weight wADWA
s is replaced with:

wCG
s =


1 if site s is a local maximum

0 otherwise
(4)

The local maximum is defined as in the Canny edge detection algorithm (Canny, 1986): a

pixel s is a local maximum if the gradient magnitude is larger than that of its immediate

neighbours in the gradient direction. In the CG rule, maxima are assigned the gradient value

of ∇MAX
s since they are more likely to be real edges. Non-maxima are assigned the gradient
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value of ∇V FG
s .

5.2. Image fusion

Two separate image fusion techniques, the HV/HH band ratio and wavelet image fusion,

were tested as methods to implement Strategy 3. Wavelet image fusion is performed with

several different image fusion rules. Let DHH(p) and DHV (p) represent the wavelet decom-

position of the HH and HV channels, where p = (r, c, k, l) indicates the wavelet coefficient

in row r and column c of the kth decomposition level for the lth direction. When l = 0, the

coefficient image is referred to as the approximation coefficient image. Higher l correspond

to horizontal (1), vertical (2) and diagonal (3) detail coefficient images. Let DF (p) be the

wavelet decomposition of the fused image. DF (p) is created by combining the corresponding

coefficients in DHH(p) and DHV (p) with fusion rules. Following (Pajares and de la Cruz,

2004), each detail coefficient of DF (p) is fused by taking the maximum of the coefficients in

the corresponding position in DHH(p) and DHV (p).

Two fusion rules for the approximation coefficients are tested: the weighted-average (WA)

rule, first introduced in (Burt and Kolczynski, 1993) and used for multi-polarization SAR

fusion in (Simone et al., 2002), and an Absolute Difference Weighted Average (ADWA) rule

that has been formulated to take advantage of differences in the HH and HV channels. The

WA rule was found to give the best results in (Pajares and de la Cruz, 2004). It is formulated

as follows (Burt and Kolczynski, 1993):

DF (p) = w1(p)DHH(p) + w2(p)DHV (p) (5)

where w1 and w2 are weights that are assigned based on a match measure between the coeffi-

cients at each location. If the match measure indicates similarity between the coefficients, the

weights will average the two coefficients. If the matching is poor, the weights will choose the

more salient coefficient. The match measure is the local normalized correlation for a small
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neighbourhood around each location while the salience calculation is a measure of the local

variance in each coefficient image (Burt and Kolczynski, 1993). For this work, the match

measure and salience at each location p was computed by considering a 3 × 3 window based

on promising results in initial tests.

The ADWA rule is a simpler fusion rule. To implement ADWA, the weights w1(p) and

w2(p) in Eq. 5 are set to the following:

w1(p) =
|DHH(p)−DHV (p)|

max
r,c
{|DHH(p)−DHV (p)|}

(6)

w2(p) = 1− w1(p) (7)

where the maximum value of |DHH(p)−DHV (p)| is taken over all rows and columns at the

particular decomposition level. The ADWA rule emphasizes the coefficients in the HH band

when the difference between HH and HV is large. When the difference between the HH and

HV band is small, it emphasizes the HV band. The reasoning for this approach comes from

the characteristics of dual-polarization data. The backscatter difference between HH and

HV is small for first year ice, so the ADWA rule makes the first year ice darker in the fused

image by emphasizing the darker HV band. For open water at near range incidence angles,

the HH band is much brighter than the HV band and will remain bright in the fused image

by emphasizing the HH band. This fusion technique increases contrast between first year ice

and open water in the fused image, which helps to resolve the ambiguities observed in Fig. 2

between first year ice and water.

The wavelet basis used was the Daubechies wavelet with eight coefficients. Although

many other wavelet bases can be used, the tests here are not meant to be an exhaustive

investigation of the optimal wavelet basis. For all tests, four levels of decomposition were

used as this gave the best results during initial testing. Rather than using the discrete

wavelet transform (DWT), as in (Simone et al., 2002) and (Pajares and de la Cruz, 2004),
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Figure 4: The HH & HV feature space plot of the real image (Fig. 2). Light shades in the background
indicate the Gaussian maximum likelihood decision boundaries.

the stationary wavelet transform (SWT) (Nason and Silverman, 1995) was used since it

produced fewer visual artifacts in the fused images, which is a result noted in (Rockinger,

1997).

5.3. Feature space fusion with feature extraction techniques

Strategy 3 can also be implemented by feature extraction, where the original feature

vectors transformed by considering the properties of the feature space. Fig. 4 shows a feature

space plot of the real image (Fig. 2) with the dual-polarization HH & HV feature set. HH and

HV values in DN of each feature vector are mapped to the y(HH) and y(HV ) axes, respectively.

For clarity, only 5000 data points, selected from a regular image grid, are shown. Lighter

shades in the background indicate the decision boundaries for a Gaussian maximum likelihood

(ML) classifier. The feature extraction methods tested in this paper attempt to transform

the 2-D feature space shown in Fig. 4 into a 1-D feature space that retains class separability.

Hence, feature extraction is a form of dimensionality reduction. When applied to image

data, it can also be considered a form of image fusion. Three categories of feature extraction

methods are tested: principal component analysis (PCA), parabolic arc-length projection

(PAL) and non-linear dimensionality reduction (NLDR).

Principal component analysis (PCA) has been used as a feature extraction technique for
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multichannel image data (Orlando et al., 1990), (Collins and Livingstone, 1996), (Yu et al.,

2009), (Pohl and Genderen, 1998). PCA fuses the HH and HV channels by projecting the 2-D

feature vectors (denoted by ys) onto the axes in the direction of maximum variance of the

data (the principal component direction) (Schowengerdt, 1997). Mathematically, the fused

PCA channel for each feature vector at pixel s can be calculated as follows (Schowengerdt,

1997):

yPC
s = eT(ys − ȳ) (8)

where ys is the feature vector at pixel s, ȳ is the mean of the feature vectors and e is the

eigenvector corresponding to the largest eigenvalue of the feature vector covariance matrix.

Fusion with feature extraction methods is not limited to linear projections. The feature

space distribution of class clusters in Fig. 4 suggests that a simple linear projection may not

maintain full class separability: the class means are not distributed along a straight line but

rather a curve. This is the case for all RS-2 image data that were investigated. Projection of

the points onto a coordinate system defined by a non-linear curve may be a more useful way

of fusing the two channels while maintaining feature space separability. A parabolic curve in

the dual-polarization feature space of Fig. 4 can be defined by:

y(HV ) = a(y(HH))2 + c (9)

The constants a and c are found by least squares fitting Eq. 9 to the data points. Projec-

tion of each data point to the arc-length coordinate of this parabolic curve is a non-linear

transformation that may be able to “unwrap” the feature space into a single dimension while

maintaining class separability. The projection is accomplished as follows. Let y′s be the point

on the parabola closest to the feature vector being transformed (ys):
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y′s = arg min
yp
||ys − yp|| (10)

where yp is any point on the parabola and ||ys − yp|| indicates Euclidean distance between

ys and yp. y′s is found by minimizing the Euclidean distance equation, which results in a

cubic equation that can be solved analytically (Cardano, 1545). When more than one root is

found, the one which corresponds to the largest HH (y(HH)) value is chosen. The parabolic

arc-length (PAL) coordinate is calculated by using the standard arc-length formula (Bradley

and Smith, 1995) with the quadratic curve in Equation 9:

yPAL
s =

y′s
(HH)∫
0

√
1 + (2ay(HH))2dy(HH) (11)

where a is the least-squares fitted coefficient from Equation 9, y′s
(HH) is the HH component

of y′s and yPAL
s is the Parabolic Arc-Length coordinate of pixel s. The arc-length is measured

from y(HH) = 0. Equation 11 is integrated analytically.

Other families of curves can also be used; the parabolic curve is tested here as a repre-

sentative of non-linear projections using curve fitting because there are analytical solutions

to the above equations.

In addition to the PCA and PAL techniques, three non-linear dimensionality reduc-

tion (NLDR) techniques were also used for feature extraction: locally linear embedding

(LLE) (Roweis and Saul, 2000), Laplacian eigenmaps (LEIGS) (Belkin and Niyogi, 2003)

and local tangent-space alignment (LTSA) (Zhang and Zha, 2003). These techniques map

the data to coordinates of a low dimensional “manifold” embedded in the higher dimensional

feature space. Unlike the PAL technique, which assumes a parabolic curve or manifold,

NLDR techniques learn the manifold coordinates from the data, with no assumption for a

particular manifold shape. NLDR techniques are normally used for reducing the dimension-
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ality of very high-dimension data but they are used here as non-linear generalizations of the

common PCA feature extraction technique to determine whether dual-polarization data can

be better fused with non-linear projections, as suggested by the feature space plot in Fig. 4.

Conceptually, NLDR methods assume that the image feature vector at pixel s arises from:

ys = f(Ψs) + ε (12)

where f is some unknown non-linear mapping, Ψs are the manifold coordinates of pixel s

and ε is noise (Zhang and Zha, 2003). NLDR methods find Ψs without explicitly knowing f .

The three NLDR methods considered here operate similarly: for every feature vector ys, the

local geometry as defined by the k nearest Euclidean distance neighbours in feature space is

determined and manifold coordinates are found that preserve the local geometry for all the

original feature vectors. The three methods mainly differ in the nature of the local geometry

that they preserve.

LLE (Roweis and Saul, 2000) assumes that the manifold is locally linear and that each

data point can be reconstructed by a linear combination of its neighbours. An optimal set of

weights for this reconstruction can be found. A weight matrix W is computed by minimizing

the following reconstruction error E(W):

E(W) =
∑
s

|ys −
k∑

j=1

Wsjysj |2 (13)

where ysj refers to one of the k nearest neighbours of the feature vector ys. LLE assumes that

there is a linear mapping between the original feature space and the manifold coordinates on a

local level that consists of a translation, rotation and scaling. Since the weights are invariant

to translation, rotation and scaling (Roweis and Saul, 2000), the same set of weights will

also optimally reconstruct the lower-dimensional manifold coordinates of each point from its
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neighbours in the manifold space. Therefore, choosing the Ψ (the set of all Ψs for every site

s in the scene) to minimize the cost function Φ(Ψ):

Φ(Ψ) =
∑
s

|Ψs −
k∑

j=1

WsjΨsj |2 (14)

will give the desired manifold coordinates. In Equation 14, the Wsj are fixed to the values

found in Eq. 13 and the optimization is performed to find a set of Ψs that globally minimizes

the expression. Only one parameter, k, needs to be chosen. This was set to k = 8 after tests

from 4 to 16 neighbours showed little difference in results.

LEIGS (Belkin and Niyogi, 2003) constructs an adjacency graph with feature vectors ys

as nodes. Any two nodes are connected by an edge if at least one of the nodes is among the

k nearest neighbours of the other. A weight matrix W is constructed where Wij = 1 if nodes

i and j are connected on the graph. LEIGS then finds the set of lower dimensional manifold

coordinates Ψ that minimizes the cost function Φ(Ψ):

Φ(Ψ) =
∑
ij

(Ψi −Ψj)Wij (15)

where the summation is done over all pairs of nodes in the graph. The idea behind LEIGS is

that points which are neighbours in the original feature space are mapped to points that are

close together in the manifold coordinate space. This is ensured by the cost function while

constraints described in (Belkin and Niyogi, 2003) ensure that the mapped coordinates do

not collapse into a single point or a subspace with fewer dimensions than desired. The only

parameter is k, the number of nearest neighbours. This value was again set to k = 8 after

initial testing from 4 to 16 revealed little difference in the results.

LTSA (Zhang and Zha, 2003) uses the k nearest neighbours of a feature vector and

uses the best fit hyperplane of those points as an estimate of the local manifold tangent.
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The k nearest neighbours are then converted to local tangent space coordinates θsj , where

j = 1 . . . k to indicate each of the nearest neighbour points. LTSA assumes that there is

an affine transformation Ls that approximately transforms the tangent space coordinates to

manifold coordinates:

Ψsj = Ψ̄sj + Lsθsj + εsj (16)

where Ψ̄sj is the mean of the manifold coordinates for the k nearest neighbours and εsj is a

reconstruction error. LTSA finds the set of Ls and Ψsj that minimizes the total reconstruction

error over all of the original data points:

∑
s

k∑
j=1

εsj =
∑
s

k∑
j=1

Ψsj − Ψ̄sj − Lsθsj (17)

The above problem is algebraically converted to an eigenvalue problem and the optimal

manifold coordinates Ψs can be found. As with LLE and LEIGS, the only parameter that

needs to be set is the number of nearest neighbours k and the same value of k = 8 was used.

The three NLDR techniques require solving eigenvalue problems for matrices with (MN)2

entries, where M is the image width in pixels and N is the image height. To reduce the

computational requirements, the original images were resampled via bicubic interpolation to

have a maximum of 4096 pixels prior to the NLDR process, which is the largest number

of points that could be handled without exhausting available memory (2 GB) on the test

system. The 4096 feature vectors form the training set for learning the manifold. The NLDR

technique is applied to the resampled image and the feature vector yt at each pixel t of the

resampled image will be mapped to manifold coordinates Ψt.

This produces manifold coordinates only for the training feature vectors. If the training

feature vectors (yt) are well-sampled from the underlining manifold and reasonably describe
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its shape, the original image feature vectors ys can be mapped to coordinates on the learned

manifold, using a generic method to estimate the manifold coordinates of feature vectors

based on a training subset (Li et al., 2005). The affine transform Lt that maps each HH-HV

feature vector in the training set to its manifold coordinate is found and feature vectors from

the original image are mapped to manifold coordinates by using the Lt of the nearest (in the

HH-HV feature space) training feature vector.

The resulting NLDR feature vectors in our implementation have two dimensions. The

final 1D manifold coordinates are obtained by discarding the second dimension, which does

not preserve as much of the local geometry of the original feature space. These 1D manifold

coordinates represent the desired fused image that is input into MIRGS. MIRGS was also

tested with the 2D NLDR feature vectors as a multichannel image since the transformed

feature space may be incidentally beneficial for segmentation accuracy. The gradient for this

multichannel image was computed with the VFG gradient technique for use with MIRGS.

For completeness, the second dimension of the NLDR feature vectors was also tested as a

univariate image.

The implementation of each of the three NLDR methods was obtained from (Wittman,

2005), which implements LLE, LEIGS and LTSA as described in (Roweis and Saul, 2000), (Belkin

and Niyogi, 2003) and (Zhang and Zha, 2003), respectively.

5.4. Experiments

Each method described in Sections 5.1 to 5.3 was tested on the two images mentioned

in Section 4. Each technique was applied to the calibrated dual-polarization images and

MIRGS was used to obtain a segmentation result. The segmentation result is then compared

to the ground-truth image. Two measures (Qin and Clausi, 2010) were used for measuring

segmentation accuracy: the overall accuracy (Acc.), which is the percentage of pixels cor-

rectly segmented and the κ coefficient (Bishop et al., 1975),(Congalton et al., 1983). The κ

coefficient is defined as follows (Richards and Jia, 2006):
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κ =
P

∑
k
xkk −

∑
k
xk+x+k

P 2 −∑
k
xk+x+k

(18)

where xij is the j-th entry on the i-th row of the segmentation error matrix, xi+ =
∑

j xij

and x+j =
∑

i xij. P represents the total number of pixels in the image. κ is a accuracy

assessment measure that ranges from [−1, 1] which compares the segmentation result to

random assignment. When κ = 0, the segmentation result is as good as random assignment.

When κ = 1, the segmentation is perfect. Negative κ indicate results that are biased against

the proper segmentation.

6. Results

Table 2 shows the accuracy assessment results for the real and synthetic images (Figs. 2

and 3) for all methods. The MIRGS parameter C1 (Qin and Clausi, 2010) that gave the

best results is also listed. C1 controls the strength of the spatial context model, with larger

C1 implying a greater reliance on spatial context rather than the feature model. In general

terms, a larger C1 leads to greater merging and smoother segmentation results. The entries

identified as ‘HH & HV’ indicate methods where the two bands are used directly with MIRGS.

There are four such entries corresponding to each method of gradient combination. HH &

HV with VFG gradient is the basic MIRGS algorithm (Qin and Clausi, 2010) applied to dual-

polarization data. Each NLDR technique is listed three times with suffixes ‘1’, ‘1 & 2’ and ‘2’.

The ‘1’ corresponds to the fused image formed by retaining only the first NLDR dimension.

The ‘1 & 2’ corresponds to the multivariate feature set consisting of both NLDR dimensions.

The ‘2’ corresponds to the image formed by retaining the second NLDR dimension. The

acronyms used in this section are summarized in Table 1.

In Table 2, the feature sets that resulted in the highest accuracy are highlighted. The

highest accuracy feature set is bolded, while those which are comparable to the most accurate

results are highlighted but listed in plain text. The grouping of results into those that

are comparable to the best results was done by visual assessment and by overall accuracy,
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rather than by considering statistical significance. It was found that any two results for

the same image had a statistically significant difference in accuracy according to McNemar’s

test (Foody, 2004), even for results that differ very little in accuracy or κ. This was due

to the large number of pixels for each class in the image. Since the groupings amongst the

results were very obvious qualitatively, statistical significance was not used.

For the real RS-2 image, the best accuracies were obtained with multivariate feature sets

(HH & HV and LLE 1 & 2). All of these performed very similarly, but the best accuracy

obtained in the table was provided by HH & HV, VFG Gradient. The proposed gradient

combination rules did not improve accuracy for the real image. MIRGS is not very sensitive

to the gradient combination method and all four gradient generation methods produced

very similar results. Many of the image fusion and feature extraction techniques (ADWA

Wavelet, WA Wavelet, LEIGS 1, LLE 1) produced accuracy results better than the best HH

or HV channels alone. This was expected as they each attempt to fuse the dual-polarization

information into a single band but the fused images were unable to match the accuracy of

the dual-polarization feature set HH & HV, indicating that some information had been lost

after fusion. The best results obtained with LTSA 1, PAL and PCA were unable to improve

upon the best HH results. The second dimension obtained by the NLDR techniques generally

performed worse than the first dimension, which is expected because it does not preserve as

much of the local geometry of the original feature space. The only exception is LTSA 2,

which performed slightly better than LTSA 1 for the real image. However, its performance

is still amongst the worst obtained for the real image.

All four of the segmentation results obtained for the synthetic image using the HH & HV

data had similar accuracy, with the MAX gradient performing best amongst the four. The

closeness of the accuracy values again shows that MIRGS is not sensitive to the gradient

combination method, which is agrees with the results for the real RS-2 image. Multivariate

feature sets LLE 1 & 2 and LTSA 1 & 2 also have similarly high accuracies, with LTSA

1 & 2 achieving the highest accuracy obtained from all the methods. The performance of
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Table 1: Summary of acronyms and naming conventions for the image fusion and feature extraction methods
tested.

Acronym Definition

Gradient Generation Methods

ADWA Gradient Gradient based on Eq. 3.
VFG Gradient Existing VFG gradient (Lee and

Cok, 1991).
MAX Gradient Gradient based on Eq. 1.
CG Gradient Gradient based on Eq. 4.

Image Fusion Techniques

ADWA Wavelet Wavelet fusion using Eq. 6.
WA Wavelet Wavelet fusion using Eq. 5.
HV / HH Band ratio image.

Feature Space Fusion and Feature Extraction Techniques

LEIGS Laplacian Eigenmaps (Belkin
and Niyogi, 2003).

LLE Locally Linear Embed-
ding (Roweis and Saul, 2000).

LTSA Local Tangent Space Align-
ment (Zhang and Zha, 2003).

PAL Fusion via Eq. 11.
PCA Principal Component Analy-

sis (Schowengerdt, 1997).

Suffixes following LEIGS, LLE & LTSA, e.g. ‘LEIGS 1 & 2’

1 First channel from dimensional-
ity reduction.

1 & 2 Both channels from dimension-
ality reduction.

2 Second channel from dimension-
ality reduction.
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Table 2: Segmentation overall accuracy (Acc.) and κ coefficient for each of the tested methods on both
the real and synthetic images. The number of channels input into MIRGS is shown to distinguish between
methods that are multivariate and methods that are univariate. The MIRGS parameter C1 that gave the
best results is also listed. Unless otherwise noted in the method name, VFG was used to compute the image
gradient for all multivariate techniques.

Method Channels Acc. (%) κ C1 Method Channels Acc. (%) κ C1

ADWA Wavelet 1 75.24 0.62 5 ADWA Wavelet 1 57.12 0.38 5

HH 1 72.14 0.57 7 HH 1 78.87 0.70 7

HH & HV, ADWA 2 83.92 0.77 3 HH & HV, ADWA 2 98.08 0.97 3

HH & HV, VFG 2 84.70 0.78 3 HH & HV, VFG 2 98.25 0.98 3

HH & HV, MAX 2 84.19 0.77 3 HH & HV, MAX 2 98.28 0.98 3

HH & HV, CG 2 83.92 0.77 3 HH & HV, CG 2 98.09 0.97 3

HV 1 48.37 0.30 5 HV 1 83.14 0.76 5

LEIGS 1 1 73.91 0.64 7 LEIGS 1 1 95.87 0.94 5

LEIGS 1 & 2 2 74.97 0.65 7 LEIGS 1 & 2 2 95.78 0.94 5

LEIGS 2 1 60.52 0.46 7 LEIGS 2 1 82.96 0.76 7

LLE 1 1 75.59 0.66 5 LLE 1 1 97.32 0.96 5

LLE 1 & 2 2 84.13 0.77 3 LLE 1 & 2 2 98.21 0.98 3

LLE 2 1 61.51 0.42 5 LLE 2 1 94.12 0.92 5

LTSA 1 1 49.30 0.31 5 LTSA 1 1 93.91 0.92 3

LTSA 1 & 2 2 62.88 0.50 5 LTSA 1 & 2 2 98.40 0.98 3

LTSA 2 1 50.38 0.29 5 LTSA 2 1 83.40 0.77 5

PAL 1 68.78 0.55 7 PAL 1 86.59 0.81 7

PCA 1 70.55 0.58 7 PCA 1 88.44 0.84 5

WA Wavelet 1 72.52 0.59 3 WA Wavelet 1 58.92 0.41 5

HV / HH 1 57.51 0.41 5 HV / HH 1 93.61 0.91 7

Real Image Synthetic Image

Bold Best result for given C1

Plain Results comparable to best result
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the single polarization channel HH is affected by the low feature space class separability

between ice types at the mid-range incidence angles that the synthetic image represents. In

contrast to the results with the real image, the HV channel provides better accuracy. Neither

of the single-polarization channels approach the best multivariate feature sets. The single

channel images created by using NLDR techniques (LEIGS 1, LLE 1, LTSA 1), PCA, PAL

and HV / HH all provide better accuracy than the individual HH or HV channels. In fact,

the univariate NLDR feature sets approach the multivariate level of accuracy. As with the

real image, PCA outperforms PAL. Less successful with this image are the wavelet fusion

methods, both of which have poor performance. ADWA wavelet fusion was designed to take

advantage of the high backscatter level of open water compared to first year ice in the HH

channel to increase image contrast. However, at mid-range incidence angles, the backscatter

of open water is closer to first year ice so the ADWA fusion does not perform as well. In

general, the segmentation accuracies obtained from the synthetic image were higher because

there are fewer thin or small details in the synthetic image.

Considering the results from both the real RS-2 image and the synthetic image, HH &

HV with any of the gradient combination rules and LLE 1 & 2 consistently provide the best

or near the best performance, with very little difference in accuracy or visual appearance

of the segmentation. The multivariate outputs from the NLDR transforms do not perform

better than HH & HV for either image. Although LTSA 1 & 2 provides the best accuracy

for the synthetic image, its performance is close to the HH & HV results and it performs

poorly on the real image. The inconsistency in performance may be related to the fact that

LTSA outputs different results for the same image when different sets of training feature

vectors are used to learn the manifold (Yu, 2009). The high performance of LTSA 1 & 2 for

the synthetic image is thus purely incidental. Among the univariate fused images obtained

from NLDR techniques, LLE 1 consistently achieves the highest univariate accuracy for both

synthetic and real images. LTSA 1 only performs well for the synthetic image and LEIGS

1 is not particularly noteworthy for either image. Since only LLE is applicable for both
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images tested, it appears to be the best NLDR technique for the purposes of fusing RS-2

data. However, neither the multivariate nor univariate output from LLE improve upon the

results obtained by using the HH & HV feature set directly in MIRGS.

The wavelet techniques, PAL, PCA and HV / HH do not perform particularly well for

either real or synthetic images and should not be considered as an image fusion method for

RS-2 SAR sea ice image segmentation. The above observations indicate that the basic MIRGS

algorithm with HH & HV data remains the best method for using the dual-polarization data.

Due to the lack of accuracy difference between the various types of gradient calculation

methods, there is no motivation for replacing VFG with any of the other tested methods.

Figs. 5 and 6 compare the segmentation results using HH data only and using the HH &

HV data (with VFG gradient) for both the real image and the synthetic image. The dual-

polarization clearly improves the discrimination of the four ice types as shown by the images

and the accuracy statistics in Table 2.

To obtain accurate results with only the HH channel, the spatial context model had to

be weighted highly with a large C1 value in MIRGS since the HH channel does not provide

sufficient feature space class separability for the different ice types. This illustrates the role

of the C1 parameter: poor separability between classes leads to a noisy segmentation where

some regions are incorrectly labeled. This can be partially compensated by an increased

C1 value, which gives greater emphasis to the spatial context model. The spatial context

model considers adjacent regions to be more likely to belong to the same class, which can

correct erroneously labeled regions as long as the adjacent regions are correctly labeled.

However, the increased spatial context weighting manifests itself as a loss of detail in the

segmentation results. Previous work (Yu, 2009) has explored the range of accuracy that can

be obtained by changing the C1 parameter. In general, the accuracy decreases smoothly as

C1 is adjusted away from the value that gives the peak accuracy for each type of image; large

C1 values caused over-smoothing while small C1 values led to noisy segmentations. As this

paper is focused on comparing the best attainable results between different image fusion or
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(a) HH (b) HH & HV (c) Ground-truth

Figure 5: Comparison of real image segmentation results obtained with (a) HH alone and with (b) HH &
HV with VFG gradient.

(a) HH (b) HH & HV (c) Ground-truth

Figure 6: Comparison of synthetic image segmentation results obtained with (a) HH alone and with (b) HH
& HV with VFG gradient.

feature extraction techniques, only the results from the C1 values giving highest accuracy are

reported.

7. Conclusion

The use of dual-polarization RADARSAT-2 SAR sea ice imagery, which will be used

for operational sea ice mapping, to improve sea ice segmentation has been investigated in

this paper. Experiments with both a real and a synthetic dual-polarization image generated

from real sea ice imagery were performed to determine the best strategy for utilizing the
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dual-polarization information. Several image fusion and feature extraction schemes for the

dual-polarization data were investigated and compared with using the dual-polarization data

directly in the standard MIRGS segmentation algorithm. The tested methods included classic

feature extraction approaches such as principal components analysis (PCA), as well as non-

linear dimensionality reduction (NLDR) techniques and gradient combination techniques

that attempted to combine the edge information from the dual-polarization channels in an

intelligent manner. Image fusion by means of a dual-polarization channel ratio (HV / HH)

and wavelet methods were also investigated.

According to the experiments, the best strategy for dual-polarization data is Strategy 1,

the standard MIRGS algorithm with no changes. Gradient combination rules (Strategy 2)

had very little effect on overall accuracy, while feature extraction and image fusion approaches

(Strategy 3) did not retain all the feature space class separability information when the two

channels were combined into one channel. The best studied fusion technique (whether image

fusion or feature extraction) was an NLDR technique called locally linear embedding (LLE)

which consistently produced the best single channel image segmentation results from the

dual-polarization data. However, it was still unable to match the segmentation performance

of the original HH & HV feature set. In terms of the benefits of adding dual-polarization

information for sea ice segmentation, the experiments have shown that it can substantially

improve the segmentation accuracy over segmentation with only single-polarization imagery.

This has confirmed that automated algorithms can benefit from the improvements provided

by dual-polarization data, just as other researchers have found that the dual-polarization

data is useful for human interpretation.

The work here has not considered the incidence angle variation of the appearance of

various ice types. Methods to make use of dual-polarization data to address this problem

should be investigated in future work. As additional dual-polarization sea ice data sets with

ground-truth becomes available, the experimental framework established in this paper could

be used to draw additional conclusions about the performance of data fusion for sea ice from
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different geographical locations and dates. A similar investigation of feature extraction and

image fusion methods for other applications such as agriculture or forestry could also be

performed.
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