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Abstract 

This paper presents a new approach to sea ice segmentation in synthetic aperture radar 

(SAR) intensity images by combining an edge-preserving region (EPR)-based 

representation with region-level MRF models. To construct the EPR-based representation 

of a SAR image, edge strength is measured using instantaneous coefficient of variation 

(ICOV) upon which the watershed algorithm is applied to partition the image into 

primitive regions. In addition, two new metrics for quantitative assessment of region 

characteristics (region accuracy and region redundancy) are defined and used for 

parameter estimation in the ICOV extraction process towards desired region 

characteristics. In combination with a region-level MRF, the EPR-based representation 

facilitates the segmentation process by largely reducing the search space of optimization 

process and improving parameter estimation of feature model, leading to considerable 

computational savings and less probability of false segmentation. The proposed 

segmentation method has been evaluated using a synthetic sea ice image corrupted with 

varying levels of speckle noise as well as real SAR sea ice images. Relative to the 

existing region-level MRF-based methods, testing results have demonstrated that our 

proposed method substantially improves the segmentation accuracy at high speckle noise 

and achieves on average 29% reduction of computational time.  
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I. INTRODUCTION 

Sea ice information is essential to the safety and efficiency of ship navigation in 

ice-infested regions [1]. Sea ice in polar regions also plays an important role in climate 

research, and receives considerable attention in recent years due to the increasing severity 

of global warming [2]. Spaceborne synthetic aperture radar (SAR), such as that carried by 

the Canadian satellites RADARSAT-1/2, provides an efficient method to monitor sea ice 

conditions especially for inaccessible regions. Manual processing of the large amount of 

SAR images is labor intensive and time consuming, while the labeling results by ice 

analysts have limited resolution and accuracy. The use of automated computer vision 

techniques is hence a desirable means to SAR image interpretation.  

Automated SAR sea ice interpretation can be implemented in a hierarchical way with 

two major parts: segmentation and labeling, as illustrated in Fig. 1. Sea ice image 

segmentation first partitions a SAR image into disjoint primitive regions ({Ri}) in terms 

of local homogeneity with respect to intensity and texture. A relational graph built on the 

regions is termed region-based representation in this paper. On the region-based 

Fig. 1. A hierarchical approach to automated interpretation of SAR sea ice imagery 
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representation, the segmentation process further groups regions ({Ri}) into a given 

number of region cluster ({Cj}), offering a high level description of SAR images. By 

incorporating expert knowledge of sea ice, the labeling process categorizes region 

clusters ({Cj}) into sea ice types ({Lj}) according to the definition by WOM [3] which 

includes: new ice, grey, grey-white, thin first-year, medium first-year, thick first-year, old 

ice and open water. 

In this paper, we present an efficient solution to the segmentation of SAR sea ice 

images by using Markov random field (MRF) models. 

A. MRF Approach to SAR Sea Ice Image Segmentation 

Various methods have been proposed for SAR sea ice image segmentation, including 

thresholding [4] or clustering approaches [5],[6], hybrid approaches combining edge 

detection and region merging [7],[8], and MRF-based approaches 

[9],[10],[11],[12],[13],[14]. The MRF model [16] is capable of characterizing image 

structure by modeling contextual dependencies in images and has been widely adopted 

for the analysis of various types of remote sensing imagery [17],[18],[19],[20],[21]. 

Under the Bayesian framework, the MRF context model can be combined with a feature 

model to form a maximum a posteriori (MAP)-MRF framework, offering a 

mathematically sound way to solve image segmentation problem [16]. The usefulness of 

MRF model for SAR sea ice image segmentation has been studied in a number of 

applications. Deng and Clausi [9] proposed a new MRF model for the segmentation of 
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SAR sea ice images, where improved segmentation accuracy was obtained by introducing 

an adaptive weighting scheme for appropriate interactions between the feature model and 

the MRF model. This adaptive MRF model was later used by Maillard and Clausi [10], in 

combination with the extraction of egg-code-map-based sea ice information, to offer a 

cognitive reasoning approach to sea ice segmentation and labeling. Rather than applying 

MRF models on pixel-level, a region adjacency graph (RAG) representation of a SAR 

image was first constructed based on the watershed segmentation, and region-level MRF 

models was then applied for the segmentation of sea ice images [11],[12],[13],[14],[15]. 

Furthermore, edge strength between regions was incorporated into MRF models instead 

of the commonly used multi-level logistic (MLL) model [14], leading to better 

adaptability to non-stationary of SAR images.  

B. Motivation and Objectives 

Though various improvements have been made, the MRF-based methods still suffers 

difficulties in seeking accurate segmentation of SAR sea ice images in a computationally 

efficient manner. For MRF defined over pixels of SAR images which are normally of 

large size, the corresponding huge search space makes the optimization process 

computationally expensive, limiting the practical use of this segmentation method. In 

addition, the optimization process is prone to be trapped in local minima due to the 

disturbance of the inherent speckle noise. As an alternative to pixel-level MRF, an image 

can be initially segmented into disjoint regions upon which a region-level MRF [14],[22], 
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[23],[24] is applied to model spatial contexts between regions. In contrast to pixel-level 

MRF, MRF at region-level can gain considerable computational savings due to the much 

reduced search space, while the segmentation accuracy depends on characteristics of 

underlying region-based image representation, e.g., misplacements between region 

boundaries and actual object edges. 

The existing region-based representations are normally constructed by applying 

watershed transform on SAR images [11],[12],[13],[14],[15],[22],[23]. These 

representations have a large number of segments due to speckle noise and feature 

variations, posing obstacles to region-level MRF-based segmentation with respect to both 

accuracy and computational efficiency. To overcome the problems, the impact of speckle 

noise and feature variations should be reduced in forming a region-based representation.  

In this paper, we propose a new approach to sea ice segmentation in SAR intensity 

imagery by combining an edge-preserving region (EPR)-based representation with 

region-level MRF models. The EPR-based representation gives an initial segmentation of 

SAR images in the form of primitive regions, with the goal of efficiently suppressing 

oversegmentation within objects while accurately locating region boundaries at object 

edges. To achieve this goal, object edges and within-object homogeneity in SAR images 

are first characterized by instantaneous coefficient of variation (ICOV) derived using the 

speckle reduction anisotropic diffusion (SRAD) algorithm [27], which has the distinctive 

advantages of detecting edges in the presence of speckle noise [28]. The watershed 

algorithm [31] is further applied to partition the image into disjoint regions. In contrast to 
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the previous ICOV-based segmentation algorithm [29], our scheme aims at a 

segmentation result more appropriate for a combination with region-level MRF models 

towards segmentation purpose. Specifically, two new metrics for quantitative assessment 

of region characteristics (region accuracy and region redundancy) are defined and used 

for parameter estimation in the ICOV extraction process.  

Combined with the EPR-based representation, the region-level MRF approach to 

SAR image segmentation is facilitated in the following two aspects: 

First, the segmentation process is largely accelerated. In contrast to existing 

region-based representations, the EPR-based representation has much fewer regions 

which correspondingly narrows down the search space associated with the optimization 

process. 

Second, the segmentation accuracy is improved over existing region-based 

representations. By alleviating speckle impacts on the segmentation, the EPR-based 

representation has much larger regions with boundaries positioning at object edges. In 

this manner, feature statistics of regions are less sensitive to speckle noise which leads to 

more accurate estimate of feature model parameters, and consequently reduces the 

probability of false segmentation. 

In the next section, MRF model-based image segmentation is briefly introduced. The 

EPR-based representation of SAR images and its combination with region-level MRFs 

are then presented in Section III. Definition of region characteristic metrics and its use for 

parameter estimation of the ICOV extraction process are described Section IV, followed 
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by evaluations of the proposed method in Section V. This paper is concluded in Section 

VI. 

II. MRF MODEL BASED SAR IMAGE SEGMENTATION 

A. Traditional MAP-MRF Framework 

Under the Bayesian framework, the image segmentation problem can be formulated 

as a MAP estimate [16] 

( ) ( ) ( )CPCfpfCPC
CC

maxargmaxarg ==∗ ,      (1) 

where P(C|f) denotes the posterior probability of the class label configuration C given the 

image feature f, p(f|C) is the conditional probability distribution given the configuration C, 

referred to as the feature model, and P(C) is the prior probability of the configuration C, 

referred to as the spatial context model. 

For pixels of single- or multi-look SAR intensity images, the feature model follows a 

Gamma distribution. Assuming the spatial context model takes a MLL MRF model with 

pairwise cliques [16], the MAP-MRF solution to SAR image segmentation can be 

obtained by minimizing an objective function as follows [9]: 
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where S={s=(h,w)︱1≦h≦M, 1≦w≦N} denotes a rectangular lattice for an image of 

size M×N. cs denotes the class label at site s, taking a value from the class label set 

{1,…,n} where n is the number of class labels in the segmented image and assumed to be 
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known a priori. L denotes the number of looks of the SAR image. fs denotes intensity 

value at site s, and 
scμ  denote the mean pixel intensity of class cs. The term α is a 

weighting parameter balancing the contributions of the feature and spatial context models. 

<s, k> denotes one pair-site clique of the neighboring sites s and k, and Q denotes the set 

of all pair-site cliques on S. U(cs, ck) is the pair-site clique energy whose form for the 

MLL model is  
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⎩
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To minimize the objective function in (2), combinatorial optimization method such as 

the simulated annealing [16] can be used. 

B. Region-Level MRF 

Instead of the pixel-level definition, the MRF model can be applied to region-level of 

an image by modeling the spatial context over constituent regions [16],[25],[26]. The 

regions are homogeneous with respect to intensity feature and can be obtained by 

employing an initial segmentation process, e.g., the watershed transform. In contrast to 

the pixel-level MRF, label configurations of the region-level MRF are changed on 

regions instead of pixels, and the associated objective function is adapted from (2) as  
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where r denotes a region of pixels and the disjoint union of r constitute the image S. cr 

denotes the class label of region r and 
rcμ  denotes the mean pixel intensity of class cr. 
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<r, k> denotes one pair-region clique of the neighboring regions s and k, and QR denotes 

the set of all pair-region cliques on S. 

III. THE EDGE-PRESERVING REGION (EPR)-BASED MRF FOR SAR SEA ICE IMAGE 

SEGMENTATION 

The proposed segmentation scheme is illustrated in Fig. 2. In the MAP-MRF 

framework, the original SAR image is fed into the feature model while a combination of 

an EPR-based representation of the SAR image and a region-level MRF model is used as 

the spatial context model. To facilitate the region-level MRF approach to SAR image 

segmentation, the underlying region-based representation is expected to characterize 

image contents in following two aspects:  

a) Region boundaries should be accurately located at object edges. Deviations 

between object edges and region boundaries cause segmentation error which cannot be 

corrected by the MRF model. On the other hand, the deviations also cause bias in 

parameter estimate of the feature model and further affect the segmentation accuracy.  

 

Figure 2. An edge-preserving region (EPR)-based MRF model for SAR sea ice  
image segmentation 
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b) Oversegmentation within homogeneous objects should be minimized. The degree 

of oversegmentation is proportional to the size of search space in optimization process 

and hence the computational burden of segmentation process. In the case of extensive 

oversegmentation, feature statistics of numerous tiny regions are dominated by speckle 

noise and feature variations which can lead to erroneous segmentation.  

To build region-based representations with above desirable characteristics, object 

edges and homogeneity within objects need to be enhanced which relies on an accurate 

detection of edges. A large number of algorithms have been developed for detecting 

edges in SAR images, e.g., the ratio-based detectors with constant false alarm rate 

[32][33][34]. However, these local window-based detectors have limited capability in 

describing within-object homogeneity which is hence not suitable for reducing 

oversegmentation of region-based presentations. In this work, the ICOV edge detector 

[28] is adopted for its accurate location of object edges in the presence of speckle noise 

and feature variations, as well as its multiscale nature appropriate for revealing 

within-object homogeneity. By using the ICOV, the so-called edge-preserving region 

(EPR)-based representation is constructed for SAR images in three steps as illustrated in 

Fig. 2. The ICOV edge strength map of a SAR image is first extracted by using the 

SRAD algorithm, which is then used by the watershed transform to decompose the image 

into primitive regions, upon which a RAG is constructed to form a region-based 

representation.  
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A. ICOV Extraction Using the SRAD Algorithm 

Let I denote the intensity of a SAR image, the ICOV edge strength is computed as 

1/ 2
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where q denotes the ICOV, ∇  is the magnitude of gradient and 2∇  is the Laplacian 

operator. The ICOV is a combination of normalized gradient operator and normalized 

Laplacian operator, which gives consistent measures of edge strength in areas of different 

radiometric intensities by taking into account the multiplicative nature of speckle noise 

[28]. The ICOV can be iteratively refined by using the SRAD algorithm which reduces 

the impact of speckle noise and generates a multiscale edge measures of SAR images 

The SRAD algorithm provides a partial differential equation (PDE) approach to 

speckle reduction of SAR images by introducing anisotropic diffusion [30] into the 

conventional Lee filter [35]. Starting from an original SAR image I0, the SRAD algorithm 

iteratively updates filtering result I(t) according to the following PDE:  
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where t is the time variable, div the divergence operator. c(q) is the diffusion coefficient 

defined on the ICOV q 
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where q0 is a function indicating intensity fluctuations in homogeneous regions caused by 

speckle noise which is then used by the c(q) to identify edges from homogeneous regions. 

The q0 can be estimated by  

( )( )
( )( )tI
tIq

μ
σ

=0 ,          (8) 

where μ(I(t)) and σ(I(t)) are the mean and standard deviation of I(t) over a homogeneous 

local window respectively. It should be noted that q, q0, and c(q) need to be updated at 

each iteration of the SRAD algorithm while the time variable t in these functions are 

omitted throughout the paper for clarity. 

By incorporating the ICOV q into the diffusion coefficient c(q), edge information can 

be used to guide the PDE process by encouraging isotropic diffusion in homogeneous 

regions while only allowing directed diffusion along edges. As a consequence, speckle 

noise in homogeneous regions as well as at edges can be efficiently reduced. Based on 

the despeckling result I(t), the ICOV can be computed for a more accurate measure of 

edge strength. In order for a successful detection of object boundaries, it should also be 

noted that the within-object ICOV should be smaller than that at object boundaries. 

However, this may not hold in the cases of heavy speckle noise or highly textured areas 

where within-object intensity variations are large. Therefore, the ICOV is more 
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appropriate for detecting object boundaries between homogeneous regions where speckle 

noise can be efficiently reduced and feature variations are minor. 

B. The Watershed Algorithm 

The watershed algorithm [31] is a popular morphological tool for image segmentation. 

It uses a drainage pattern of simulated rainfall to partition an image into disjoint regions 

called catchment basins separated by watershed lines. Based on edge strength measures 

of an image, the watershed algorithm combines identification of discontinuities and a 

region growing technique to reveal topological structure of the image, which detects 

object edges at boundaries of watershed regions. As a distinct advantage over other edge 

detection methods, object edges extracted by the watershed algorithm are always 

connected/closed and one-pixel width, which can be used for segmentation either by 

tracking the object boundaries or using region-based methods. In this work, based on the 

ICOV edge strength, we adopt immersion simulations algorithm [31] to compute 

watersheds of a SAR image.  

C. The RAG Representation 

To facilitate the use of the MRF model on region level, a region adjacency graph 

(RAG) [16] is then constructed to represent the watershed regions and their context 

relationships in the segmented image. The RAG provides an efficient structure for 

describing the content of an image by using a set of nodes and arcs, where each node 



 15

represents a region while the adjacency between regions is represented by an arc. Fig. 3 

illustrates an example of watershed segmentation and its associated RAG representation. 

IV. EVALUATING CHARACTERISTICS OF THE EPR-BASED REPRESENTATION 

In this section, we develop two quantitative metrics for objective assessment of 

characteristics of region-based SAR image representations, which are then used for the 

estimation of appropriate parameters in the ICOV extraction process towards desired 

region characteristics for SAR sea ice image segmentation. In addition, advantages of the 

EPR-based representation over other region-based representations are investigated in 

terms of the region characteristic metrics.  

A. Objective Assessment of Characteristics of Region-Based Representations 

a b

c
d

RAG

a

cb

d

U(a)

U(b) U(c)

U(d)

B(a,b) B(a,c)

B(b,c)

B(b,d) B(c,d)

(a) (b)  
Figure 3. (a) A watershed segmentation, (b) the corresponding RAG representation, 
where U(·) and B(·,·) denote unary properties of nodes and binary relationships 
between nodes respectively 
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Two region characteristic metrics are defined in accordance with the purpose of 

locating region boundaries at object edges while minimizing oversegmentation within 

objects. Definition of the metrics involves two images. One is a noise-free reference 

image where true object edges can be extracted. The other one is a noisy image by adding 

speckle noise to the noise-free image, upon which a region-based representation is 

generated.  

 Region accuracy (Ra)  

Ra is used to measure the accuracy of locating object edges by boundaries of the 

region-based representation  

2
1

1 1
1

eN

a
ie i

R
N d=

=
+∑         (9) 

where Ne indicates the number of true edge points detected in the noise-free image. di
2 

denotes the Euclidean distance between the ith true edge point and its nearest boundary 

point in the region-based representation. Ranging from 0 to 1, Ra reaches its maximum 

when all the edge points are covered by region boundaries. 

 Region redundancy (Rr) 

Rr indicates the degree of oversegmentation within objects by measuring the 

redundancy of a region-based representation 

1 e
r

R

NR
N∂

= −         (10) 
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where N∂R is the number of boundary points in the region-based representation. Rr falls 

into the range of 1-Ne to 1-Ne/NI where NI denotes the number of image pixels. For a 

given number of object edge points Ne, smaller Rr means less oversegmentation. 

The two region characteristics are closely related to the final segmentation 

performance. Segmentation accuracy depends on both region accuracy and region 

redundancy while segmentation time is proportional to region redundancy. The 

superiority between the region accuracy and the region redundancy actually depends on 

the major concern of the segmentation (accuracy or time) and normally a tradeoff 

between them has to be made.  

B. Parameter Estimation of the ICOV Extraction Process Based on Region 

Characteristic Metrics 

To generate the ICOV edge strength of a SAR image, the SRAD algorithm needs to 

determine the speckle level function q0 in (7). The speckle level function q0 is used to 

discriminate the response of speckle noise at each iteration of the diffusion process which 

is hence closely related to the consequent region-based representations. If q0 is too small, 

speckle noise cannot be efficiently suppressed and hence oversegmentation reduction is 

very limited. On the other hand, if q0 is too large, deviations between region boundaries 

and objects edges may become serious. In [29], q0 is computed on a homogeneous region 

selected in the SAR image as in (8) which may limit its practical use. In this work, q0 is 

assumed to take a form of exponential decay [27] 
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( )kt
L

q −= exp1
0         (11) 

where L denotes the nominal number of looks of the SAR image, k is a scale parameter, 

and t is the time variable. To determine an appropriate value of the speckle level function 

specifically for SAR sea ice images, impact of the scale parameter k on region 

characteristics is experimentally studied by using the metrics Ra and Rr. 

Fig. 4a shows a synthetic sea ice image which contains brighter ice floes of varying 

shapes and darker open water. The image is corrupted by 2-look speckle noise in intensity  

format and produces a simulated SAR sea ice image as shown in Fig. 4b. A set of 

EPR-based representations of Fig. 4b are generated by using the SRAD algorithm with 

different scale parameter k ranging from 1/2 to 1/20. Fig. 5 illustrates the evolution of 

region characteristic metrics Ra and Rr in the SRAD process, where the scale parameter k 

takes the value of 1/4, 1/6, 1/8 and 1/10 respectively. As indicated by the figure, region 

redundancy (dashed lines) is gradually reduced along with the diffusion process while 

region accuracy (solid lines) decreases at the same time. A comparison of region 

Figure 4. A simulated SAR sea ice image  

(a) A synthetic sea ice image. (b) A simulated SAR image 
with 2-look speckle noise 
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characteristics at around iteration 55 demonstrates the advantages of k=1/6 over the other 

values, where different k lead to almost the same region accuracy while k=1/6 has the 

least region redundancy.  

C. Comparisons of the EPR-Based Representation to Other Region-Based 

Representations 

Advantages of the EPR-based representation are studied based on the simulated SAR 

image Fig. 4b, by comparing watershed segmentation on ICOV edge strength with other 

types of edge strength measures of SAR images, which include gradients of SAR images, 

gradients of despeckling results of SAR images (Lee filter [35], enhanced Lee filter [36]), 

Figure 5. Impacts of the scale parameter k on region characteristics 
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and ratio-based edge strength with constant false alarm rate (ratio of averages [32], ratio 

detector [33]).   

The first comparison is between watershed segmentation on ICOV edge strength and 

gradients of despeckling results using the Lee filter and the enhance Lee filter 

respectively. These three filters are studied by adjusting their parameters (such as the q0 

in the SRAD filter) to generating filtering results of Fig. 4b with increasing smoothing 

degrees. Characteristics of the corresponding region-based representations at four 

different smoothing degrees are shown in Fig. 6. Along with the increase of smoothing 

degree, it can be seen the Lee filter results in very limited reduction on region redundancy 

 
Figure 6. Region characteristics of watershed segmentation on ICOV edge strength and 

gradients of despeckling results 
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while region accuracy keeps decreasing. On the other hand, the enhanced Lee filter is 

more capable of reducing region redundancy. The superiority of the EPR representation 

over the enhanced Lee filter-based region representation is clearly demonstrated at the 

third and fourth smoothing degrees, where better region accuracy while almost the same 

region redundancy are obtained. 

Further comparison is between watershed segmentation on ICOV edge strength and 

ratio-based edge strength with constant false alarm rate. Characteristics of regions 

generated by using the ICOV, the ratio of averages and the ratio detector are listed in 

Table I where the size of window for extracting the ratio-based edge strength is 9×9. As 

shown in the table, the ICOV outperforms the ratio-based edge strength on both region 

accuracy and region redundancy which indicates the advantages of ICOV on measuring 

edge strength in the presence of speckle noise.    

V. SEGMENTATION TESTING AND RESULTS 

A. Testing Setup 

Table I. Region characteristics of watershed segmentation on ICOV edge 
strength and ratio-based edge strength 

 Region Accuracy Region Redundancy 
ICOV 0.765 0.876 

Ratio detector 0.746 0.878 
Ratio of averages 0.762 0.881 
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Sea ice segmentation in SAR intensity images using the EPR-based MRF model 

(EPR-MRF) is tested and compared to the use of the traditional pixel-level MRF model 

as well as two other region-level MRF models. The first one is a noisy region(NR)-based 

MRF model (NR-MRF), where the noisy regions are generated by watershed 

segmentation on gradients of SAR images. The second one is the recently developed 

IRGS (iterative region growing using semantics) algorithm [13],[14] which is also a noisy 

region-based MRF approach to image segmentation. 

In the objective function (2) or (4) of MRF-based image segmentation, the weighting 

parameter α need to be determined. For the pixel-level MRF, an adaptive weighting 

scheme used for SAR sea ice image segmentation [9] is adopted where the α is fixed to 

be 1 and the feature model is weighted by 80*0.98n+1 at the nth iteration of the 

optimization process. It is worth noting that the weighting scheme balancing the feature 

model and the spatial context model has a considerable impact on the segmentation 

performance of pixel-level MRFs. Other weighting schemes, such as the one used in [38] 

which takes into account image characteristics, may further improve the segmentation 

accuracy while increase the computational time as well. For the region-level MRF, the α 

is empirically determined as 0.4 for simulated SAR sea ice images which demonstrates 

better segmentation result than the other values. The real SAR sea ice images have much 

more complicated structures than the simulated ones, and an appropriate value of α is 

empirically selected to be 3.0. The simulated annealing algorithm [16] is used to 

iteratively minimize the objective function, where the temperature T is decreased with the 



 23

iteration n as T(n) = 0.98n, and the number of iterations is set up as 300. Parameter 

estimation of the IRGS algorithm is the same as its original work [14]. 

 Method performance is evaluated in terms of the segmentation accuracy and 

computational time. Overall accuracy and kappa are used to measure segmentation 

accuracy. Overall accuracy refers to the percentage of pixels correctly classified. In 

addition, the kappa coefficient is applied to measure the performance in terms of the 

segmentation agreement [37]. The kappa coefficient has a range of -1 to 1, where a value 

close to 1 indicates better agreement. In general, a kappa coefficient greater than 0.8 

indicates a strong agreement.  

B. Segmentation Results 

 Simulated SAR Sea Ice Intensity Images 

The segmentation method is first evaluated using a synthetic sea ice image shown in 

Fig. 4a. The image is corrupted by multiplying simulated speckle noise at six levels with 

the corresponding number of looks (L): 1, 2, 3, 4, 8, 16. 

Table II lists the segmentation accuracy of the synthetic image (Fig. 4a) across 

different speckle noise levels. For the single-look SAR image, the pixel-level MRF 

results in poor segmentation results since the heavy speckle noise causes estimates of 

feature model parameters seriously deviate from their true values. By using the 

region-level MRF, the segmentation accuracy substantially increases since the impact of 

speckle noise on regions are much less than that on pixels. When the noise level 
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decreases to L>3, the pixel-level MRF produces more accurate segmentation results 

than the region-level MRF. For the three types of region-level MRF, in contrast to the 

use of noisy regions, it can be seen that the EPR-based MRF gains distinct 

improvements over the NR-MRF and the IRGS at speckle levels from 1 to 16. 

Specifically, increases on segmentation accuracy are proportional to the speckle level, 

and the largest increase is at the highest noise level of single-look. The results clearly 

Table II. Segmentation results (overall accuracy / kappa) for Fig. 
4a corrupted with varying levels of speckle noise. 

Region-level MRF 
L 

Pixel-level 
MRF 

IRGS  NR-MRF EPR-MRF 

16 98.7/0.974 98.2/0.964 98.1/0.961 98.4/0.967 

8 97.7/0.954 96.6/0.931 96.5/0.930 97.3/0.945 

4 96.3/0.926 93.7/0.872 94.4/0.886 95.5/0.908 

3 95.5/0.909 91.5/0.828 93.0/0.857 94.5/0.888 

2  91.1/0.815 88.0/0.759 90.8/0.811 92.7/0.849 

1 57.3/0.000 75.1/0.520 82.4/0.640 88.1/0.751 
 

(a) the pixel-level MRF  (b) the IRGS  (c) the NR-MRF (d) the EPR-MRF 

Figure 7. Segmentation of the simulated 2-look SAR sea ice image (Fig. 4b) by using 
pixel-level MRF and region-level MRF (IRGS, NR-MRF, EPR-MRF) 
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indicate that the performance of region-level MRF model is closely related to the 

underlying region-based representation due to the presence of noise. Relative to the noisy 

regions, the EPR-based representation is more capable of revealing the local image 

structures in SAR images which facilitates the MRF model in dealing with heavy speckle 

noise. 

An example of segmentation on the simulated 2-look SAR image (Fig. 4b) is shown 

in Fig. 7. In contrast to the pixel-level MRF (Fig. 7a), the NR-MRF (Fig. 7b) and the 

IRGS (Fig. 7c), the EPR-MRF (Fig. 7d) is more accurate in locating boundaries of ice 

floes and demonstrates an improved result with less false segmentation.  

 Real SAR Sea Ice Images 

The proposed segmentation method is applicable on single-channel, single- or 

multi-look SAR intensity data. Real SAR sea ice images used for evaluation are shown in 

Fig. 8, which were captured by RADARSAT-2 over LiaoDong Bay, China on January 14, 

2009 in Quad-Polarization mode (HH, HV, VH, VV polarizations) with the resolution of 

8m and the nominal number of looks is one. The images contain grey ice, grey-white ice 

as well as open water as indicated by the manual interpretation shown in Fig. 8e.  

The segmentation task is to divide the image into three classes while without further 

labeling the results with sea ice types. Segmentation accuracy of the HH-, HV-, VH-, 

VV-polarized images using various MRF models are listed in Table III which takes the 

manual interpretation in Fig. 8e as the ground truth. The IRGS algorithm has much 

poorer segmentation accuracy than the other algorithms since it assumes a Gaussian 



 26

distribution of pixel values which is far from the actual exponential distribution at 

single-look. Relative to the pixel-level MRF, the two region-level MRF (the NR-MRF 

and the EPR-MRF) demonstrates improved segmentation accuracy and the EPR-MRF  

Figure 8. SAR sea ice images captured by RADARSAT-2 over LiaoDong Bay, China on 
January 14, 2009 in Quad-Polarization mode 

(a) HH  polarization (b) HV  polarization 

(c) VH  polarization (d) VV  polarization  

(e) Manual interpretation 

Table III. Single-look segmentation results (overall accuracy / 
kappa) for Fig. 8a to 8d with HH, HV, VH and VV polarization. 

Region-level MRF 
Polarization 

Pixel-level 
MRF IRGS NR-MRF EPR-MRF 

HH 62.7/0.436 56.2/0.312 73.1/0.578 80.2/0.688 

HV 63.3/0.463 47.7/0.239 77.9/0.661 86.8/0.795 

VH 65.0/0.475 47.8/0.245 73.5/0.595 87.0/0.798 

VV 56.4/0.325 46.5/0.133 60.0/0.374 63.1/0.416 
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(a) the pixel-level MRF (b) the IRGS  (c) the NR-MRF (d) the EPR-MRF 

Fig. 9. Segmentation of the HH-polarized SAR sea ice image (Fig. 8a). 

(a) the pixel-level MRF (b) the IRGS (c) the NR-MRF (d) the EPR-MRF 

Fig. 10. Segmentation of the HV-polarized SAR sea ice image (Fig. 8b). 

(a) the pixel-level MRF (b) the IRGS (c) the NR-MRF (d) the EPR-MRF 

Fig. 11. Segmentation of the VH-polarized SAR sea ice image (Fig. 8c). 

(a) the pixel-level MRF (b) the IRGS (c) the NR-MRF (d) the EPR-MRF 

Figure 12. Segmentation of the VV-polarized SAR sea ice image (Fig. 8d). 
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achieves the best results across all the four polarization channels. Specifically in the case 

of HV and VH polarization, the kappa coefficients are largely increased from 0.23 or 0.24 

(by the IRGS) to 0.79. Segmentation results of the HH-, HV-, VH-, VV-polarized images 

using the pixels-level MRF, the IRGS, the NR-MRF and the EPR-MRF are shown in Fig. 

9 to Fig. 12. The results indicate that the pixel-level MRF and the IRGS are weak in 

discriminating the grey ice and the open water which have relatively small intensity 

differences. The advantages of the proposed EPR-MRF are clearly shown in Fig. 9d to 

Fig. 12d where efficient separations between the open water, the grey ice and the 

grey-white ice can be observed in the HV and the VH polarization (Fig. 10d and Fig. 

11d). 

Sea ice and open water exhibit varying intensity features in different polarization 

models and between-class differences fundamentally affect accuracy of segmentation 

methods. As shown in Fig. 8, intensity differences between grey ice and open water in the 

VV polarization are smaller than the other three polarizations and hence causes the worst 

accuracy for all the segmentation methods.  

In our future work, the proposed method would be extended from single-polarization 

to multi-polarization to produce a fused segmentation map. For this purpose, the ICOV 

needs to be extended to a multi-variate form to deal with multi-polarization data which 

can then be used to generate a region-based representation. In addition, the MAP-MRF 

formulation should be adapted to multi-polarization data as well.   
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(b) Segmentation using the pixel-level MRF (c) Segmentation using the IRGS 

(d) Segmentation using the NR-MRF  (e) Segmentation using the EPR-MRF 

(a) Original SAR image 

Figure 13. Segmentation of a SAR image captured over Gulf of Saint Lawrence. 
White regions in (b)-(e) indicate the land, which is not included in the segmentation 
process. 
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The proposed method is further evaluated using a SAR sea ice image shown in Fig. 13a 

which was captured over Gulf of Saint Lawrence on Feb 20, 1998 by RADARSAT-1 in 

ScanSAR C-band mode. The image with the original resolution of 50m has been 

processed by Canadian Ice Service (CIS) using a 2×2 block average which reduced the 

resolution to 100m for operational use. The equivalent number of looks of the SAR image 

is approximately 11. At the bottom of the image is land surrounded by water. The land is 

not included in the segmentation and marked as white regions in Fig. 13b-13e. The bright 

area at the middle of the image is grey ice, inside which the narrow and dark cracks are 

called leads, which contain open water, and the rest of the dark regions are grey-white ice. 

The difficulty with the segmentation task is on the grey-white ice in the right of the image 

where the intensity feature exhibits large variations. Fig. 13b presents the segmentation 

result using the pixel-level MRF. The grey-white ice in the right of the image is 

over-segmented and part of the grey-white ice is falsely classified into the grey ice, which 

is primarily caused by the intra-object variations. Segmentation result using the 

region-level MRF are shown in Fig. 13c to Fig. 13e which have less oversegmentation in 

the grey-white ice and reduced false segmentation, indicating the region-level MRF is 

more capable of dealing with intra-object intensity variations. In such an example with a 

relatively low noise level, the EPR-MRF has not gain a better result over the IRGS. 

C. Computational Time 
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For an image of size M×N, the pixel-level MRF-based segmentation has a 

computational complexity of O(MNJK), where J is the number of iterations in the 

optimization process and K is the number of classes in the image to be classified. For 

SAR sea ice images which are normally of large-size, the computational burden of the 

pixel-level MRF is obviously very heavy. The problem can be substantially alleviated by 

using the region-level MRF, whose computational complexity is reduced to O(RJK) 

where R is the number of regions.  

Table IV lists the number of regions in the NR-based representation and the 

EPR-based representation for testing SAR images with varying sizes and noise levels 

(Fig. 4b, Fig. 8a to 8d, Fig. 13a). In this table it can be seen that the EPR-based 

representation has significantly fewer regions compared to the NR-based representation 

with an average reduction ratio of 44.3%, indicating considerable computational savings. 

Table IV. Number of regions in the NR-based representation and the 
EPR-based representation for the testing SAR images 

 
Number 
of looks 

Image size
The NR-based 
representation 

The EPR-based 
representation 

Reduction 
ratio 

Fig. 4b 2 512×512 27349 11556 57% 

Fig. 8a 1 1410×1410 104755 69957 33% 

Fig. 8b 1 1410×1410 109791 72130 34% 

Fig. 8c 1 1410×1410 117113 71473 39% 

Fig. 8d 1 1410×1410 112641 71561 36% 

Fig. 13a 11 1209×865 86405 28350 67% 
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In specific, the reduction ratio of regions gained by the EPR-based representation is 

inversely proportional to the noise level which is around 35% at 1-look and increases to 

67% at 11-look. 

The segmentation algorithms are implemented with C++ and run on a laptop with 

Dual-Core CPU @ 2.53GHz and 2GB memory. The computational time needed for the 

segmentation of several testing SAR images is list in Table V. The pixel-level MRF takes 

much more time than the region-level MRF on the segmentation due to the huge search 

space. In contrast to the NR-MRF and the IRGS, the EPR-MRF based on largely reduced 

regions further leads to on average 29% computation savings.  

VI. CONCLUSIONS 

Table V. Computational time for Segmenting the testing SAR 
images (in seconds). 

Region-level MRF  
Image size 

Pixel-level 

MRF IRGS NR-MRF EPR-MRF 

Fig. 4b 512×512 61 26 22 11 

Fig. 8a 1410×1410 724 103 84 66 

Fig. 8b 1410×1410 745 90 86 67 

Fig. 8c 1410×1410 749 96 90 66 

Fig. 8d 1410×1410 761 116 86 66 

Fig. 13a 1209×865 356 41 66 28 
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In this paper, an efficient method for the segmentation of SAR sea ice imagery is 

proposed by applying region-level MRF models on the EPR-based representation. The 

segmentation performance of region-level MRFs is closely related to the characteristics 

of underlying region-based image representations. More specifically, the computational 

complexity is proportional to the degree of oversegmentation within homogeneous 

objects, while the segmentation accuracy depends on both the degree of 

oversegmentation and the deviations between object edges and region boundaries. The 

existing region-based representation has not properly taken into account the effect of 

speckle noise and feature variations which suffers serious oversegmentation and 

inaccurate location of object edges. The problem can be alleviated by using the ICOV for 

its accurate location of object edges in the presence of speckle noise as well as its 

multiscale nature appropriate for revealing within-object homogeneity. Our new scheme 

substantially improves the accuracy of region-level MRF approach to SAR sea ice image 

segmentation at high noise level of one-look. In addition, on average 29%  

computational time is reduced as well. For large-size SAR sea ice images, considerable 

computational savings obviously benefits the practical use of the segmentation method. 

Based on the segmentation results of the proposed method, further labeling of sea ice 

types can be achieved by using a clustering algorithm incorporating feature distributions 

of various types of sea ice. 

Two region characteristic metrics, region accuracy and region redundancy, have been 

defined which can be used to guide parameter selection in forming a region-based 
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representation. In the future work, a new metric combining the two metrics would be 

studied for measuring region characteristics in a way consistent with the segmentation 

accuracy.  
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