
Computers & Geosciences 28 (2002) 763–774

Rapid extraction of image texture by co-occurrence using a
hybrid data structure

David A. Clausi*, Yongping Zhao

Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ont., Canada N2T 3G1

Received 2 April 2001; received in revised form 21 September 2001; accepted 25 September 2001

Abstract

Calculation of co-occurrence probabilities is a popular method for determining texture features within remotely

sensed digital imagery. Typically, the co-occurrence features are calculated by using a grey level co-occurrence matrix

(GLCM) to store the co-occurring probabilities. Statistics are applied to the probabilities in the GLCM to generate the

texture features. This method is computationally intensive since the matrix is usually sparse leading to many

unnecessary calculations involving zero probabilities when applying the statistics. An improvement on the GLCM

method is to utilize a grey level co-occurrence linked list (GLCLL) to store only the non-zero co-occurring probabilities.

The GLCLL suffers since, to achieve preferred computational speeds, the list should be sorted. An improvement on the

GLCLL is to utilize a grey level co-occurrence hybrid structure (GLCHS) based on an integrated hash table and linked

list approach. Texture features obtained using this technique are identical to those obtained using the GLCM and

GLCLL.

The GLCHS method is implemented using the C language in a Unix environment. Based on a Brodatz test image, the

GLCHS method is demonstrated to be a superior technique when compared across various window sizes and grey level

quantizations. The GLCHS method required, on average, 33.4% (s ¼ 3:08%) of the computational time required by

the GLCLL. Significant computational gains are made using the GLCHS method. r 2002 Elsevier Science Ltd. All

rights reserved.

Keywords: Texture features; Hash table; Linked list; Co-occurrence probabilities; Remote sensing imagery

1. Introduction

Currently, large volumes of remotely sensed imagery

are captured to study many aspects of the earth’s surface

and atmosphere. As a result, there exist ever increasing

demands to analyze data generated from satellite plat-

forms (e.g. LANDSAT, SPOT, RADARSAT, ERS-1,

JERS-1, etc.) more efficiently and accurately. A popular

technique used to perform spatial analysis in remotely

sensed imagery is texture analysis.

Grey-level co-occurrence matrices (GLCMs), devel-

oped by Haralick et al. (1973), are widely utilized in

image texture feature extraction within remotely sensed

imagery (Barber and LeDrew, 1991; Shokr, 1991;

Baraldi and Parmiggiani, 1995; Soh and Tsatsoulis,

1999). The GLCM technique employs the following

steps. The probability of co-occurrence between two

grey levels i and j given a relative orientation (y) and

distance (d) can be computed for all possible co-

occurring grey level pairs in an image window. The

GLCM stores these probabilities and, as such, is

dimensioned to the number of grey levels available.

Then, selected statistics are applied to the GLCM by

stepping through the entire matrix (i.e. over all

probabilities) to calculate the texture features. For

image segmentation considerations, the texture features

are assumed to belong to the centre pixel of the

subwindow. A primary computational drawback of

*Corresponding author. Tel.: +519-888-4567 x2604; fax:

+519-746-4791.

E-mail address: dclausi@uwaterloo.ca (D.A. Clausi).

0098-3004/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 9 8 - 3 0 0 4 (0 1) 0 0 1 0 8 - X

GLCMs is that they require demanding computational

requirements when applying the statistics, especially

when attempting to segment entire remote sensing

images.

There are a number of approaches to reduce the

computational requirements when calculating texture

features based on co-occurrence probabilities stored in

GLCMs. First, quantization of the image grey levels

reduces the size of the GLCMs and thus reduces the

total computational load when applying the statistics. In

practice, this quantization is always used, often reducing

the number of grey levels from 8 bits (256 grey levels) to

4 or 5 bits (16 or 32 grey levels). Second, when

determining texture features on a pixel-by-pixel basis

throughout an image, shifting the window of interest by

one column does not change many of the co-occurring

probabilities. Only redundant probabilities are retained

and new probabilities (introduced by the new column)

are added. This reduces the number of computations

when determining the co-occurrence probabilities.

Third, it is advised to capture only a minimal number

of texture features based on minimizing the number of

parameters used (orientations, distances, and statistics).

Not only does this reduce the total computational

requirements, but it can also improve the quality of the

feature set since it is recognized that statistical correla-

tions do exist between co-occurrence texture features.

Barber and LeDrew (1991), for example, only recom-

mend using three statistics based on texture analysis of

SAR sea ice imagery. The objective of this paper is to

introduce an algorithm that improves the computational

requirements of determining co-occurrence texture

features so that the user can adjust the parameters to

suit their own needs with significantly less concern to the

overall computational time.

Other methods exist to represent sparse matrices

(Duff et al., 1986). By using a grey level co-occurrence

linked list (GLCLL) to store the co-occurring probabil-

ities, a significant reduction in computational demand is

achieved (Clausi and Jernigan, 1998). This is achieved

since, unlike the GLCMs, the GLCLLs do not store zero

probabilities for co-occurring pairs. However, to effi-

ciently access grey level pairs on the linked list to update

their probabilities, the list is kept sorted. Although

tremendous computational gains over the GLCM are

achieved, the sorting compromises the efficiency of the

GLCLLs. In this paper, a grey level co-occurrence

hybrid structure (GLCHS) based on a hash table and

linked list integrated approach is presented that does not

require sorted lists. This algorithm shows a significant,

consistent improvement in computational performance

relative to GLCLLs. The texture features captured by

the GLCHS, GLCLL, and GLCM methods are

identical for a given set of parameters.

This paper is arranged in the following manner.

Section 2 details existing algorithms used to capture co-

occurrence probability texture features. The GLCHS

method is then described in Section 3. Section 4 provides

computational speed test results and comparisons while

the final section (Section 5) summarizes and concludes

the paper.

2. Existing co-occurrence implementations

Of the 14 original statistics developed by Haralick

et al. (1973) for generating texture features based on co-

occurrence probabilities, only a limited number are used

in practice. Dissimilarity (DIS), uniformity (UNI),

entropy (ENT), contrast (CON), and correlation

(COR), presented in Table 1, are often used in practice

since they are (a) scale and shift invariant and (b)

effective texture discriminators. These five statistics will

be used exclusively in this paper. Each of these five

statistics has a qualitative meaning with respect to the

structure within the GLCM, and as a result, with respect

to the underlying texture. Dissimilarity and contrast

measure the degree of texture smoothness, uniformity

and entropy reflect the degree of repetition amongst the

grey level pairs, and correlation describes the correlation

Table 1

Statistics frequently applied to co-occurrence probabilities for

texture feature generation

Statistics Equations

Dissimilarity

DIS ¼
XG

i;j¼1

Cij ji � jj

Uniformity

UNI ¼
XG

i;j¼1

C2
ij

Entropy

ENT ¼ �
XG

i;j¼1

Cij log Cij

Contrast

CON ¼
XG

i;j¼1

Cijði � jÞ2

Correlation

COR ¼
XG

i;j¼1

ði � mxÞðj � myÞCi;j

sxsy

Cij represents co-occurring probabilities stored inside

GLCM. G represents quantized grey level. Note that (mx, my)

and (sx, sy) represent means and standard deviations for row i

and column j within GLCM.

D.A. Clausi, Y. Zhao / Computers & Geosciences 28 (2002) 763–774764

between the grey-level pairs (Shokr, 1991; Baraldi and

Parmiggiani, 1995).

Within Table 1, element Cij is the grey level co-

occurrence probability for co-occurring pixels with grey

levels i and j given an interpixel distance d and interpixel

orientation y: Thus, for each unique (d; y) pair, a

different GLCM is required. Each GLCM is dimen-

sioned to G; the number of quantized grey levels. In

general, relative interpixel distances are short when

applied to remotely sensed imagery and often only

setting d ¼ 1 is required to generate preferred texture

features (Barber and LeDrew, 1991). The relative

interpixel orientation is usually set to either

{01, 451, 901, 1351} or the average of all four orienta-

tions. Co-occurring pairs oriented at 01 are also oriented

at 1801, which generates a symmetrical GLCM. This

concept extends to 451 and 2251, 901 and 2701, as well as

1351 and 3151. As a result, only the lower triangular

portion of the GLCMs (i.e. only co-occurring pairs

where iXj) needs to be retained.

The generation of co-occurrence probabilities is

illustrated in Fig. 1. Here, given G ¼ 4; y ¼ 01; and d ¼
1 pixel, co-occurring probabilities are generated for a

5� 5 sample window (Fig. 1A) and represented within a

GLCM (Fig. 1B). For example, the co-occurring pair

(2,3) occurs two times in the window. Since there are a

total of 20 possible co-occurring pairs, this generates a

probability of 0.10 at i ¼ 2 and j ¼ 3 in the GLCM.

With increasing G; the matrix becomes more sparse with

a corresponding OðG2Þ increase in the computational

requirements to apply each statistic. If only non-zero

probabilities are stored and used to determine the

statistics, a dramatic improvement in the computational

performance can be obtained. In Fig. 1C, since symme-

trical pairs are considered, only a lower matrix needs to

be stored. In this example y ¼ 01 and 1801, so i ¼ 2 and

j ¼ 3 occurs six times out of a possible 40 leading to a

probability of 0.15. Features generated using a symme-

trical matrix are comparable to the results obtained

using a non-symmetrical matrix.

Instead of using a matrix to store the co-occurrence

probabilities, a linked list structure (Reingold and

Hansen, 1983; Deitel and Deitel, 1994) can be used.

This particular linked list structure is referred to as the

GLCLL (Clausi and Jernigan, 1998). The GLCLL’s

structure is illustrated in Fig. 2 using the image window

indicated in Fig. 1A. The list must be kept sorted to

allow rapid searching for existing (i; j) pairs. These nodes
are sorted with the grey level pairs in ascending order.

Searching begins at the head of the list by looking for

the first instance of the ith grey level. If found, then the

algorithm searches for the corresponding jth grey level.

If the (i; j) pair is found, then the probability stored

inside that node is incremented. If the (i; j) node is not

found at the expected location, then a node must be

entered at that location that stores the appropriate

probability for that grey level pair.

When capturing texture features on a pixel-by-pixel

basis from an image, a sliding window is employed. The

algorithm begins with the window at the top left-hand

2 2 2 3 3

3 2 2 3 3

2 2 2 2 2

3 0 0 2 2

0 0 0 0 2

(A)

 0 1 2 3

0 0.2 0 0.1 0

1 0 0 0 0

2 0 0 0.4 0.1

3 0.05 0 0.05 0.1

(B)

j
i

 0 1 2 3

0 0.2 ¯ ¯ ¯

1 0 0 ¯ ¯

2 0.1 0 0.4 ¯

3 0.05 0 0.15 0.1

(C)

j
i

Fig. 1. (A) 5� 5 image window with four grey levels values (0–3). (B) Corresponding GLCM given d ¼ 1 pixel and y ¼ 01: Full matrix

required. Twenty co-occurring pairs exist. Pair (3,2) occurs only once so its probability is 0.05. (C) Corresponding GLCM given d ¼ 1

pixel and y ¼ 01 and 1801. Only lower triangle matrix required. Forty co-occurring pairs exist. Pairs (3,2) and (2,3) occur together six

times which generate probability of co-occurrence to be 0.15.

(0,0)
0.2

(2,0)
0.1

(3,0)
0.05

tail pointer head pointer

(2,2)
0.4

(3,2)
0.15

(3,3)
0.1

(256,256)
0.0

Fig. 2. GLCLL structure for determining image texture features. To reduce search times, nodes are sorted according to grey level pairs

(i; j). GLCLL is created based on data in Fig. 1A.

D.A. Clausi, Y. Zhao / Computers & Geosciences 28 (2002) 763–774 765

corner of the image. The co-occurring probabilities are

determined for this window and then the features are

calculated using the statistics (Table 1). After the

features are calculated, the window slides one column

to the right. At this point, most of the co-occurring

probabilities remain the same. The grey level pair

probabilities introduced by the new column are then

included in the GLCLL and the probabilities associated

with the column that the window just moved past can be

subtracted from the GLCLL. For new grey level pairs

introduced by the new column, new nodes will be

created. For grey level pairs whose probability reaches

zero as a result of reducing the probability, the

associated nodes are deleted from the linked list. A

similar procedure holds when the window is moved

down a single row when the end of a row is reached. For

even rows, the window is moved from left to right and

for odd rows the window is moved from right to left.

The window moves efficiently in this zig–zag pattern

until the entire image is covered (Fig. 3).

This algorithm spends considerable time maintaining

sorted linked lists. Note that a separate GLCLL is

maintained for every (d; y) pair. The application of the

statistics to calculate the texture features occurs rapidly

by traversing each linked list from head to tail.

3. Hybrid data structure

To improve on the GLCLL, the reliance on main-

taining sorted lists should be removed. A combined hash

table and linked list structure is designed to meet this

criterion. A hash table is a data structure that stores

elements in locations that are easily computed from the

value or representation of the elements (Reingold and

Hansen, 1983). That is, the hash table directly trans-

forms an element into an address where it will be stored.

Since the element itself is used to access the location, the

search order for this data structure is Oð1Þ: The function
that is used to perform the transformation is known as

the hash function. Here, the grey level pairs (i and j)

are used to quickly access the hash table which is

created in the form of a matrix. Each element in the hash

table has a pointer that can point to an element on the

linked list, should that co-occurring pair exist in the

window.

Based on the combination of the hash table and the

linked list, this structure is referred to as the GLCHS.

Using the GLCHS, a two-dimensional hash table struct

is created to point to linked list nodes (Fig. 4). A doubly

linked list is used to allow easy insertion and deletion of

nodes. Both the hash table and the linked list are

necessary. The hash table allows for rapid access of any

node in the linked list, if that node exists. The linked list

allows for rapid application of the statistics by traver-

sing the linked list from head to tail. The C struct

definition for nodes in the linked list is:

In the ListNode struct, four members are defined.

Each instance of the struct represents a node on the

doubly linked list. The two integer members (x1,x2)

store the grey level pairs. Two self-referential pointers

are defined to access previous (*prev) and next (*next)

ListNode nodes. Linked list nodes are defined to

represent the first (head) and the last (tail) nodes. In

the hash table struct, one float member (pr) stores the

grey level co-occurrence probability and the other stores

the linked list pointer (*list ptr). The list ptr points to

the corresponding node on the linked list associated by

the grey level pair.

The following three variables are used throughout the

code and are defined globally.

n

ncols

nrows

number of columns (ncols)
number of rows (nrows)

Fig. 3. Zig–zag window path to determine texture features for

entire image. See text for details.

typedef struct ListNode

{

int x1, x2; //co-occurring grey level pairs

struct ListNode *prev;

struct ListNode *next;

} ListNode;

and the struct definition for nodes in the hash table is

typedef struct HashNode

{

float pr; //co-occurrence probability

struct ListNode *list ptr;

} HashNode;

HashNode **Glchs[MAX]; //pointers of hash table

//structure

ListNode *head[MAX]; //head of linked list

ListNode *tail[MAX]; //tail of linked list

D.A. Clausi, Y. Zhao / Computers & Geosciences 28 (2002) 763–774766

where MAX represents the maximum possible number

of linked lists. The following is the function used to

initialize the hybrid data structure:

(2,0) (3,2) (3,3) (3,0) (2,2) (0,0)

head pointer

tail pointer
doubly linked list

hash table 0 1 2 3

* * 0

* * * 1

* * * * 2

* * * * * 3

double pointers structure
of the hash table

0 1 2 3

0 0 0 0 1 1 2 1 2 3

0.2 0.1 0.1 0.4 0.05 0.15

Fig. 4. GLCHS structure for determining image texture features. GLCHS created is based on sample image in Fig. 1A.

//int ng; no. quantized grey levels

//int na; no. angles

//int nd; no. pixel displacements

//float inc; probability increment

void initialize hybrid (int ng, int na, int nd,

float inc)

{

int i, j, k, inc, nsum;

//nsum=n+(n-1)+(n-2)+?+2+1

nsum=ng*(ng+1)/2.0;

//create Glchs for each (distance,

// orientation) pair

for (i=0; i o nd * na; i++)

{

//allocate sufficient pointers to rows

// in hash table

Glchs[i]=(HashNode **) malloc((size t)

ng*sizeof (HashNode *));

if (Glchs[i]==NULL)

{

fprintf(stderr,

‘‘ERROR:initialize hybrid

(Glchs[i])’’);

exit(0);

}

//allocate memory for entire hash table

Glchs[i][0]=(HashNode *)malloc((size t)

nsum * sizeof(HashNode));

if (Glchs[i][0]==NULL)

{

fprintf(stderr,

‘‘ERROR:initialize hybrid

(Glcms[i][0])’’);

exit(0);

}

k=1;

inc=1;

//assign pointers to rows

for (j=1; jong; j++)

{

Glchs[i][j]=Glchs[i][0]+k;

inc++;

k+=inc;

}

//initialize all nodes in hash table

for (j=0; j o nsum; j++)

{

Glchs[i][0][j].pr=0.0;

Glchs[i][0][j].list ptr=NULL;

}

//initialize head and tail of

// doubly linked list

head[i]=(ListNode*)

malloc(sizeof(ListNode));

if (head[i]==NULL)

{

fprintf(stderr,

‘‘ERROR:initialize hybrid

(head[i])’’);

exit(0);

}

head[i]->next=NULL;

head[i]->prev=NULL;

head[i]->x1=-1;

head[i]->x2=-1;

tail[i]=head[i];

}

}/*end initialize hybrid*/

D.A. Clausi, Y. Zhao / Computers & Geosciences 28 (2002) 763–774 767

In this function, dynamic memory allocation (using

the malloc command) is used to create the hash table.

The total number of entries in the lower triangle of the

hash table is nsum. The double pointer defined by

Glchs[i] is set as a list of pointers to the rows in the hash

table. Sufficient memory to represent the entire lower

triangle of the hash table is created and pointed to by the

first entry in the hash table (Glchs[i][0]). The first loop

(from 1 to ng) indexes the row pointers properly. Then,

for the loop indexing nsum times, all of the nodes are

initialized (pr set to zero and pointer set to NULL).

Finally, the head and tail are initialized to appropriate

values to represent an empty doubly linked list.

The function to include the next co-occurring pair

into the given GLCHS is indicated as follows:

The function first ensures that the co-occurring pair

has the relationship x1Xx2 so that only a lower

triangular hash structure is required. Then, if the hash

table has a zero entry for the particular grey level pair

(x1,x2), then that particular co-occurring pair does not

have a representative node on the linked list. As a result,

a new ListNode is created, its grey level values are set,

and it is inserted at the end of the linked list. The list ptr

is then set to point to this ListNode to establish the

relationship between the HashNode and its correspond-

ing ListNode. If the hash table entry is not zero, then

that HashNode already points to an existing ListNode

on the linked list. Whether or not the ListNode was

created, the probability associated with HashNode is

incremented by inc. A similar function is used to

decrement a probability for a certain grey level pair. In

this situation, if the probability reaches zero, the

ListNode is removed from the linked list and its

associated HashNode’s list ptr is set to NULL.

Fig. 4 illustrates the structural arrangement for the

GLCHS. Nodes from the hash table point to nodes on

the linked list. As a result, the linked list does not have

to be kept sorted, in contrast to the GLCLL. This design

is expected to significantly and consistently reduce the

completion times when determining co-occurrence

probability texture features. To calculate the texture

features, the statistics (Table 1) are applied directly to

the linked list which only stores those co-occurring pairs

with non-zero probabilities.

A flowchart outlining the entire algorithm is pre-

sented in Fig. 5. At the start of the algorithm, the given

image will be read. Also, user-defined parameters such

as the window size (n), grey level quantization (ng),

interpixel distance (d), orientation (y), and statistics

are read in at the start of the program. The zig–zag

process that the window follows to capture texture

features from the entire image is presented in Fig. 3.

To calculate texture features for each window, the

algorithm must loop through all selected angles,

displacements, and statistics. Each statistic is applied

to each separate linked list.

4. Algorithm comparisons

4.1. Order comparison

The computational order of the algorithms is an

important consideration. Table 2 shows the order of

each of the algorithms. Each order estimate is broken

into two components. The first component is the order

for capturing the co-occurring probabilities and the

second component is the order for determining the

statistics. In this table, n represents the window

dimension, s represents the number of statistics, G

represents the number of quantized grey levels, and L

represents the length of the linked lists. In other

words, L represents the number of distinct grey

level pairs found in a window, which is dependent

on G and n as well as the textural characteristics in

that window.

For each algorithm, determining the co-occurring

probabilities is proportional to n: This holds true when a

//int indx; glchs index

//int x1, x2; co-occurring pair

//float inc; probability increment

void find and insert (int indx, int x1, int x2,

float inc)

{

ListNode*x;

int temp;

//to ensure hash table is lower triangular,

//force x1>=x2

if (x1 o x2)

{temp=x1; x1=x2; x2=temp;}

//if zero probability, not yet placed on doubly

//linked list

if (Glchs[indx][x1][x2].pr==0.0)

{

x=(ListNode*) malloc(sizeof(ListNode));

x->x1=x1;

x->x2=x2;

x->next=NULL;

x->prev=tail[indx];

tail[indx]->next=x;

tail[indx]=x;

Glchs[indx][x1][x2].list ptr=x;

}

//increment probability associated with

//co-occurring pair

Glchs[indx][x1][x2].pr+=inc;

}//end find and insert

D.A. Clausi, Y. Zhao / Computers & Geosciences 28 (2002) 763–774768

sliding window is used (Fig. 3) since a new column

introduces new co-occurring grey level pairs, which must

be included in the existing linked lists. Similarly, a

column of grey level pairs must be removed from the

existing linked lists. In the case of the GLCLL, this term

must be multiplied by L to account for searching the

linked list. The application of the statistics also varies

for each method. Since each statistic has a different

order associated with its determination, a generic

estimate of s2 is used. For the GLCM, this term is

multiplied by G2 since the calculations are performed

using the entire co-occurrence matrix. For both the

GLCLL and GLCHS, the s2 term is multiplied by L

since the entire linked list must be traversed to apply

each statistic. Overall, the key differences between the

algorithm orders are: (a) the GLCM must loop through

the entire matrix to calculate the statistics while GLCLL

and GLCHS only have to traverse the linked list and (b)

the GLCLL must search the linked list to create the

probabilities while the GLCM and GLCHS do not. As a

begin

read image

report parameters information

 get parameters (θ, δ, statistics)

start to determine image features
for (row=0;row<nrows–n+1;++row)

row%2=0?

No

update linked
list right

update linked
list down

initialize
linked list

create linked
list

 first sample?

Yes for (col=0; col<ncols–
n+1; ++col)

Yes

col = 0?
Yes No

No

Yes No

for (col=ncols–n;
 col>=0;--col)

update linked
list left

update linked
list down

col =ncols-n?

temp = head[j*angles+k].next

for (j=0; j<displacement; ++j)

for (k=0; k<angles; ++k)

for (i=0; i<statistics; ++i)

Yes

No
 while (temp!=NULL)?

calculate features

temp = temp.next

next angle

next displacement

 end

output features to file

free memory

next sample row

next sample window

Fig. 5. Flowchart of GLCHS routine for determining image texture features.

D.A. Clausi, Y. Zhao / Computers & Geosciences 28 (2002) 763–774 769

result, the GLCHS has the preferred order for calculat-

ing co-occurrence texture features.

4.2. Computational comparisons

Each of the three algorithms (GLCMs, GLCLLs, and

GLCHSs) has been implemented using the C program-

ming language. Tests were performed on a Sun Sparc

Ultra 1 200E (200MHz, 128Mbytes RAM, 322 SPE-

Cint, 462 SPECfp). Each implementation uses the same

programming foundation based on the GLCM code.

For example, each implementation is based on the same

library routines for reading the image data and writing

the texture features, preventing any bias. The only

distinctions between the implementations are the algo-

rithms themselves.

Each algorithm was applied to a multi-class 128� 128

(Brodatz, 1966) image (Fig. 6) which illustrates a

diversity of textural characteristics. The user defined

parameters were set as follows: d ¼ 1; y ¼ 01; 451, 901,
1351; and all the five statistics found in Table 1 (a total

of 20 texture features). Varying window sizes were used

(5, 10, 15, 20, 25, and 30 pixels). The results are

presented using Table 3 (numerical times), Table 4

(percentage ratios of numerical times), Table 5 (average

length of linked lists), and Fig. 7 (graphical plot of

numerical times). Table 3 presents the comparison of the

computational requirements for each of the algorithms.

Each window size produces a different number of

samples from the fixed image size (texture features are

not determined for border pixels). To make proper

comparisons, each result is normalized to determine the

total time (in ms) to capture texture features per window.

Comparisons are made across five quantization levels:

128, 64, 32, 16, and 8 grey levels. Table 4 takes the

results from Table 3 and generates percentage ratios

comparing times for each pair of algorithms. Table 5

represents the average length of the linked lists required

given G and n: Fig. 7 plots the results presented in

Table 3.

The results show that the GLCHS is an improvement

on the GLCLL, which is an improvement on the

GLCM. The GLCHS is always significantly faster than

the GLCLL and orders of magnitude faster than the

traditional GLCM. The relationships with respect to G;
n; and L are now discussed in the context of the Tables

3–5 as well as Fig. 7.

4.2.1. Role of grey level quantization (G)

The greater the number of grey levels, the greater the

improvement of the GLCLL and GLCHS over the

GLCM method (Tables 3 and 4). This is due to the

quadratic order dependence of the GLCM on the

number of grey levels (Table 2). The results show that

there is a square relationship between the number of

grey levels and the total computation time using the

GLCM method (Table 3). That is, for every doubling of

the number of grey levels, the computational speed is

multiplied by four. Varying the number of grey levels

does not change the relative performance between the

GLCLL and GLCHS methods, where the GLCHS/

GLCLL percentage ratio has only minor variations as a

function of G (Table 4).

Table 5 indicates the average length of the linked lists

(identical linked lists are created using GLCLL and

GLCHS) across the grey level quantizations and

window sizes. With additional grey levels, the linked

list lengths are longer and the GLCLL method spends

relatively more time maintaining the sorted list. As a

result, the greater the number of grey levels the better

the performance of the GLCHS with respect to the

GLCLL. For example, given a window size of 30� 30

Table 2

Computational orders to determine image texture features for

GLCM, GLCLL and GLCHS algorithms

Method Order

GLCM OðnÞ þ Oðs2G2Þ
GLCLL OðnLÞ þ Oðs2LÞ
GLCHS OðnÞ þ ðOðs2LÞ

Terms: nFwindow dimension, GFnumber of grey level

quantization levels, s2Fgeneric order to apply statistics,

LFlinked list length.

Fig. 6. Brodatz demonstration image (128� 128 pixels). Four

textures are included. Clockwise from top left-hand corner:

cork (D4), cotton (D77), raiffa (D84), and paper (D57). D**

indicates texture number in Brodatz book.

D.A. Clausi, Y. Zhao / Computers & Geosciences 28 (2002) 763–774770

pixels, the GLCHS method requires 34.3% of the

GLCLL method’s computational time (Table 4) given

a quantization level of 8. At 128 grey levels there is an

increased sorting load for the GLCLL algorithm and

this percentage drops to 28.8%.

4.2.2. Role of the window dimension (n)

The window size has a negligible affect on the

computational performance of the GLCM. This is

because the GLCM spends most of its time calcu-

lating the statistics and the size of the window

Table 3

Average computation time required to determine texture features per window given G and n for each of GLCHS, GLCLL, and GLCM

GLCHS consistently generates lower computational times for all examples

Computational

time (ms)
Grey

level (G)

Window size (n � n)

5� 5

(15 376 samples)

10� 10

(14 161 samples)

15� 15

(12 996 samples)

20� 20

(11 881 samples)

25� 25 5� 5

(10 816 samples)

30� 30

(9801 samples)

GLCHS method 128 29.6 124.3 290.9 496.6 734.1 990.2

64 28.9 113.3 239.3 383.4 536.2 662.2

32 26.0 89.0 158.1 228.1 260.7 303.0

16 20.8 53.7 76.6 98.9 98.9 109.2

8 14.6 27.2 33.5 39.1 42.5 46.4

GLCLL method 128 79.0 351.0 834.5 1547.0 2419.6 3508.8

64 76.1 322.4 717.9 1242.3 1778.4 2354.4

32 69.3 255.6 483.6 702.8 899.1 1048.9

16 55.9 156.8 232.4 287.9 331.5 375.5

8 38.7 74.9 95.0 109.8 122.5 135.2

GLCM method 128 21564.5 21428.9 21713.6 21997.3 22298.4 22410.5

64 5397.0 5479.8 5591.3 5735.2 5888.5 5978.5

32 1373.9 1433.9 1510.1 1544.5 1589.3 1625.3

16 362.3 393.7 417.1 426.7 439.2 451.0

8 101.8 115.1 123.5 129.2 136.8 143.9

Table 4

Percentage ratios based on results in Table 3 for GLCHS vs. GLCLL, GLCHS vs. GLCM, and GLCLL vs. GLCM. GLCHS averages

33.4% of GLCLL computation time

Comparison (%) Grey levels (G) Window size (n � n)

5� 5 10� 10 15� 15 20� 20 25� 25 30� 30

Percentage of GLCHS 128 37.5 35.4 34.9 32.1 30.3 28.2

computational time 64 38.0 35.1 33.3 30.9 30.2 28.1

compared to GLCLL 32 37.5 34.8 32.7 32.5 29.0 28.9

computational time 16 37.2 34.2 33.0 34.4 29.8 29.1

8 37.7 36.3 35.3 35.6 34.7 34.3

Percentage of GLCHS 128 0.1 0.6 1.3 2.3 3.3 4.4

computational time 64 0.5 2.1 4.3 6.7 9.1 11.1

compared to GLCM 32 1.9 6.2 10.5 14.8 16.4 18.6

computational time 16 5.7 13.6 18.4 23.2 22.5 24.2

8 14.3 23.6 27.1 30.3 31.1 32.2

Percentage of GLCLL 128 0.4 1.6 3.8 7.0 10.9 15.7

computational time 64 1.4 5.9 12.8 21.7 30.2 39.4

compared to GLCM 32 5.0 17.8 32.0 45.5 56.6 64.5

computational time 16 15.4 39.8 55.7 67.5 75.5 83.3

8 38.0 65.1 76.9 85.0 89.5 94.0

D.A. Clausi, Y. Zhao / Computers & Geosciences 28 (2002) 763–774 771

affects only the determination of the co-occurrence

probabilities.

On the other hand, the window size has a dramatic

affect on the GLCLL and GLCHS computational

speeds since the greater the window size, the greater

the number of co-occurring probabilities (generally

speaking), and the greater the time spent on determining

statistics (both GLCLL and GLCHS) and determining

the probabilities (GLCLL only). The GLCLL spends

more time sorting during creation of the probabilities

when larger windows are used since the linked lists

become longer. As a result, the GLCHS completion

times improve relative to the GLCLL completion times

with increasing window size (Table 4). For example, for

G ¼ 128 grey levels in Table 4, the ratio between

GLCHS and GLCLL computation times for 5� 5

windows is 37.5% and, with increased window size,

gradually decreases to 28.2% for window size 30� 30.

Fig. 7 illustrates that, with increasing window size, the

GLCLL method increases at a higher rate than the

GLCHS. A linear increase in the window size can lead to

up to a quadratic increase in the number of grey level

Table 5

Average linked list length as function of n and G. This applied to both GLCLL and GLCHS

Grey levels (G) Window Size (n � n)

5� 5 10� 10 15� 15 20� 20 25� 25 30� 30

128 17.4 80.2 183.4 318.9 478.4 653.9

64 16.7 73.4 157.4 253.8 351.2 442.5

32 15.0 57.6 105.4 145.3 175.1 197.1

16 11.8 34.3 49.3 57.9 63.6 68.1

8 7.5 15.2 18.4 20.2 21.4 22.3

0

1000

2000

3000

4000

128 64

 32 16

 8

GLCLL

GLCHS

5 10 15 20 25 30 5 10 15 20 25 30

tim
e

[µ
s]

 (n)

number of grey levels (G)

window size (n x n)

Fig. 7. Graphical plot of GLCHS and GLCLL results from Table 3.

D.A. Clausi, Y. Zhao / Computers & Geosciences 28 (2002) 763–774772

pairs (depending on the underlying texture and the

quantization level). As a result, the GLCHS method is

relatively more efficient for larger windows compared to

the GLCLL method.

4.2.3. Role of the length of the linked lists (L)

The computational time of the GLCLL is propor-

tional to the length of the linked lists and the GLCHS

should have a computational time partially proportional

to L (Table 2). For example, according to Table 5, for

G ¼ 128; an increase in n from 10 to 30 pixels increases

the average L by a factor of 653.9/80.2E8. Using Table

3, the computational requirements for the GLCLL

increase by approximately the same ratio (3508.8/

351.0E10) and the GLCHS is affected to a lesser extent

(990.2/124.3E8) (Table 3), as expected.

With larger images (typical of remote sensing

imagery), the computational impact of using the

GLCHS algorithm is extremely important. Granted,

the computational savings will be a function of the

textural characteristics, window size, number of statis-

tics, and quantization level. However, on average across

all the test cases, GLCHS required 33.4% (s ¼ 3:08%)

of the computational time compared to GLCLL, which

strongly supports the use of the GLCHS algorithm.

Fig. 8 plots the relationship of the average length of

the linked lists (L) with respect to the average computa-

tion time required to calculate texture features for a

single window. Data for all G and n are plotted for each

of GLCLL and GLCHS. Linear regression clearly

shows a linear relationship between L and computation

time. This linear relationship can be used to assist

estimation of the total time required to calculate all of

the texture features in the image. Software can be

written to analyze certain windows distributed across

the image. The amount of time to calculate the texture

features using a variety of grey levels and window sizes is

recorded. After a linear regression of this data is

performed, the equation of the line produced can be

used to predict how long it will take to generate texture

features for the entire image. This would give the user

the opportunity to redefine the parameters to reduce the

overall computation prior to running the GLCHS on the

entire image.

5. Conclusions

Image texture segmentation is often applied to

information extraction from remotely sensed imagery.

Co-occurrence probabilities are frequently used for this

task. The advantage of the GLCHS methodology for

determining co-occurrence texture features relative to

the GLCM or GLCLL method is clearly demonstrated

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600 700

 GLCLL test results GLCHS test results

average length of linked lists (L)

tim
e

[�
s]

GLCHS

GLCLL

Fig. 8. Linear regression plots of average length of linked lists (L) versus computation time (ms) for GLCLL and GLCHS using data

from Tables 3 and 5.

D.A. Clausi, Y. Zhao / Computers & Geosciences 28 (2002) 763–774 773

in the results. For every possible example, the new

GLCHS method is consistently faster than the GLCLL

method and orders faster than the GLCM method. For

any given image, the GLCHS method requires on

average 33.4% of the computation time of the GLCLL

method. Determining co-occurrence texture features for

an entire 1000� 1000 pixel image using a window of

25� 25 pixels, a quantization level of 64 grey levels, and

12 statistics {y ¼ 01; 451, 901, 1351; d ¼ 1; statistics=-

dissimilarity, uniformity, entropy, contrast, and correla-

tion) would require approximately 6min of computation

on a 200MHz computer. Current CPUs with faster

clock speeds would obviously be able to accelerate this

process.

We are currently planning to implement this algo-

rithm into the PCI EasiPacer remote sensing software

environment. This will hopefully lift the current restric-

tion in the EasiPacer environment on the user to

quantize the number of grey levels to 16 when generating

co-occurrence texture features. This methodology will

give more freedom for the user to select their desired

quantization level. This luxury has not been available

using the frequently employed GLCM technique. The

GLCHS is also preferable over the GLCLL technique

especially with respect to using larger window sizes. The

GLCLL method’s computation speed is more dependent

on the window dimension relative to the GLCHS,

allowing the GLCHS to have improved computational

performance with large windows. Since the GLCHS

computation speeds have a linear relationship with the

size of

the linked lists, the total amount of time required by

the algorithm can be estimated for a given image

prior to actually capturing texture features for the entire

image.

Acknowledgements

Support for this project was provided by Geomatics

for Informed Decisions (GEOIDE), (http://www.ula-

val.geoide.ca) and Cryosphere System in Canada

(CRYSYS) (http://www.crysys.uwaterloo.ca/index.cfm).

References

Baraldi, A., Parmiggiani, F., 1995. An investigation of the

textural characteristics associated with Gray level cooccur-

rence matrix statistical parameters. IEEE Transactions on

Geosciences and Remote Sensing 33 (2), 293–304.

Barber, D.G., LeDrew, E.F., 1991. SAR sea ice discrimination

using texture statistics: a multivariate approach. Photo-

grammetric Engineering & Remote Sensing 57 (4), 385–395.

Brodatz, P. 1966 Textures: A Photographic Album for Artists

and Designers. Dover, New York, 112pp.

Clausi, D.A., Jernigan, M.E., 1998. A fast method to determine

co-occurrence texture features. IEEE Transactions on

Geosciences and Remote Sensing 36 (1), 298–300.

Deitel, H.M., Deitel, P.J., 1994. C How to Program, 2nd edn.

Prentice-Hall, Englewood Cliffs, NJ, 926pp.

Duff, I.S., Erisman, A.M., Reid, J.K., 1986. Direct Methods for

Sparse Matrices. Clarendon Press, Oxford, London, 341pp.

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Texture

features for image classification. IEEE Transactions on

Systems, Man, and Cybernetics 3 (6), 610–621.

Reingold, E.M., Hansen, W.J., 1983. Data Structures. Little,

Brown and Company, Boston, 450pp.

Shokr, M.E., 1991. Evaluation of second-order texture para-

meters for sea ice classification from radar images. Journal

of Geophysical Research 96 (6), 10625–10640.

Soh, L.-K., Tsatsoulis, T., 1999. Texture analysis of SAR sea ice

imagery using gray level co-occurrence matrices. IEEE Transac-

tions on Geosciences and Remote Sensing 37 (2), 780–795.

D.A. Clausi, Y. Zhao / Computers & Geosciences 28 (2002) 763–774774

http://www.ulaval.geoide.ca
http://www.ulaval.geoide.ca
http://www.crsys.uwaterloo.ca/index.cfm)

	Rapid extraction of textural by co-occurrence using a hybrid data structure
	Introduction
	Existing co-occurrence implementations
	Hybrid data structure
	Algorithm comparisons
	Order comparison
	Computational comparisons
	Role of grey level quantization (G)
	Role of the window dimension (n)
	Role of the length of the linked lists (L)

	Conclusions
	Acknowledgements
	References

