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Abstract-Typically, the co-occurrence features for image 

processing are calculated by using a grey level co-occurrence 
matrix (GLCM). This method is computationally intensive since 
the matrix is usually sparse leading to many unnecessary 
calculations involving zero probabilities.  An improvement on 
the GLCM method is to utilize a grey level co-occurrence linked 
list (GLCLL) to store only the non-zero co-occurring 
probabilities.  The GLCLL suffers since, to achieve preferred 
computational speeds, the list should be sorted.   

This paper presents a grey level co-occurrence hybrid 
structure (GLCHS) based on an integrated hash table and 
linked list approach.  Texture features obtained using this 
technique are identical to those obtained using the GLCM and 
GLCLL.  Based on a Brodatz test image, the GLCHS method is 
demonstrated to be a superior technique when compared across 
various window sizes and grey level quantizations.  The GLCHS 
method required, on average, 33.4% of the computational time 
(σ σ = 3.08%) required by the GLCLL.  Significant computational 
gains are made using the GLCHS method.   

 
Index Terms-Texture features, hash table, linked list, co-

occurrence probabilities, remote sensing imagery. 
 

 
I.   INTRODUCTION 

 
Grey-level co-occurrence matrices (GLCMs), developed 

by Harali ck et al. [1] are widely used in image texture feature 
extraction for spatial analysis of remotely sensed imagery [2], 
[3], [4]. A primary computational drawback of GLCMs is 
that they require unnecessarily high computational 
requirements when applying the statistics, which leads to an 
overwhelming amount of computation when attempting to 
segment full remote sensing images. 

There are a number of approaches to reduce the 
computational requirements when calculating texture features 
when using GLCMs [5], [6], [7].  For example, the grey level 
co-occurrence linked list (GLCLL) method achieves a 
significant reduction computational requirements [7].    This 
is achieved since, unlike the GLCMs, the GLCLLs use a 
linked list to store only the non-zero co-occurring 
probabiliti es. 

To efficiently access grey level pairs on the linked list to 
update their probabiliti es, the list is kept sorted.  This sorting 
compromises the eff iciency of the GLCLLs.  In this paper, a 
grey level co-occurrence hybrid structure (GLCHS) based on 
an integrated hash table and linked list approach is presented.  
This algorithm shows a significant and consistent 
improvement in computational performance relative to 

GLCLLs.  The texture features captured by each of these 
three methods are identical.  

 
 

II .  EXISTING CO-OCCURRENCE IMPLEMENTATIONS 

 
The GLCM technique employs the following steps.  The 

probabilit y of co-occurrence between two grey levels i and j 
given a relative orientation (θ) and distance (δ) can be 
computed for all possible co-occurring grey level pairs in an 
image window.  The GLCM stores these probabiliti es and, as 
such, is dimensioned to the number of grey levels (G) 
available (Fig. 1).  Then, selected statistics are applied to the 
GLCM by iterating through the entire matrix (ie. over all 
probabiliti es) to calculate the texture features.   

Dissimilarity, contrast, uniformity, entropy, and correlation 
are five statistics widely used among the fourteen original 
statistics developed by Haralick et al. [1].  Several authors 
have discussed their meanings [2], [3].  For each unique (δ, 
θ) pair, a GLCM (or its equivalent) is required (Fig. 1).   

In general, relative interpixel distances are short when 
applied to remotely sensed imagery and often only setting δ = 
1 is required to generate preferred texture features [5].  The 
relative interpixel orientation is usually set to either { 0°, 45°, 
90°, 135°} or the average of all four orientations.  Co-
occurring pairs oriented at 0° are also oriented at 180° which 
generates a symmetrical GLCM.  This concept extends to 45°, 
90°, and 135° as well .  As a result, only the lower triangular 
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Fig. 1.  a. 5 x 5 image window with four grey levels values 
(0-3) 

             b. Corresponding GLCM given δ =1 pixel and θ = 
0° and 180°. Only lower triangle matrix required. 

head pointer  

(2,0) 
0.1 (2,2) 

0.4 
(0,0) 
0.2 (3,0) 

0.05 (3,2) 
0.15 (3,3) 

0.1 (256,256) 
0.0 

tail pointer  

Fig. 2.  GLCLL structure for determining image texture features. To 
reduce search times, the nodes are sorted according to grey 
level pairs (i,j). 
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portion of the GLCMs (ie. only co-occurring pairs where i >= 
j) needs to be retained (Fig. 1b). 

The generation of co-occurrence probabili ties is ill ustrated 
in Fig. 1.  Here, given G = 4, θ = 0°, and δ = 1 pixel, co-
occurring probabiliti es are generated for a 5x5 sample 
window (Fig. 1a) and represented within a symmetrical 
GLCM (Fig. 1b).  For example, the co-occurring pair (2,3) 
occurs three times in the window.  Since there are a total of 
20 possible co-occurring pairs, this generates a probabilit y of 
0.15 at row 3 and column 2 in the GLCM.  With increasing 
G, the matrix becomes sparser with a corresponding increase 
in the computational requirements to apply the statistics.   

Instead of using a matrix to store the co-occurrence 
probabiliti es, a linked li st structure (grey level co-occurrence 
linked list or GLCLL) can be used [7].  In order to allow 
rapid searching for existing (i,j) pairs, the list must be kept 
sorted.  Searching begins at the head of the list by looking for 
the first instance of the ith grey level.  If found, then the 
algorithm searches for the corresponding jth grey level.  If the 
(i,j) pair is found, then the probabilit y stored inside that node 
is incremented.  If the (i,j) node is not found at the expected 
location, then a node must be entered at that location that 
stores the appropriate probabilit y for that grey level pair.  

When capturing texture features on a pixel-by-pixel basis 
from an image, a sliding window is employed.  Since most 
probabiliti es remain the same when the window shifts one 
column, the algorithm only has to include the new 
probabiliti es introduced by the new column and account for 
the probabiliti es that the window has just moved past. The 

window moves efficiently in this zig-zag pattern until the 
entire image is covered (Fig. 3). 

Considerable time is spent maintaining sorted linked lists. 
The application of the statistics to calculate the texture 
features occurs rapidly by traversing each linked li st from 
head to tail.   

 
III .  HYBRID DATA STRUCTURE 

 
To improve on the GLCLL, the reliance on maintaining 

sorted li sts should be removed.  A combined hash table and 
linked list structure is designed to meet this criterion.  Based 
on this combination, the structure is referred to as the grey 
level co-occurrence hybrid structure (GLCHS).  Using the 
GLCHS, a two-dimensional hash table struct is created to 
point to linked li st nodes.  A doubly linked list is used to 
allow easy insertion and deletion of nodes. The hash table 
allows for rapid access of any node in the linked li st, if that 
node exists.  The linked li st allows for rapid application of the 
statistics by traversing the linked li st from head to tail.  The C 
struct definition for nodes in the linked list is:  

 Typedef struct ListNode 
 {  
      int x1,x2;  //  co-occurring grey level pairs 
      struct ListNode *prev; 
      struct ListNode *next; 
  } ListNode; 

and the stuct definition for nodes in hash table is: 
 Typedef struct HashNode 
  {  
       float pr;    //co-occurrence probabili ty 
       struct ListNode * list_ptr; 
  } HashNode; 

In the ListNode struct, four members are defined.  Each 
instance of the struct represents a node on the doubly linked 
li st.  The two integer members (x1,x2) store the grey level 
pairs.  Two self-referential pointers are defined to access 
previous (*prev) and next (*next) ListNode nodes. Linked 
li st nodes are defined to represent the first (head) and the last 
(tail) nodes.   

 In the hash table struct, one float member (pr) stores the 
grey level co-occurrence probabilit y and the other stores the 
linked li st pointer (* list_ptr).  The list_ptr points to the 
corresponding node on the linked list associated by the grey 
level pair.   

Based on the two definitions, the creation of the hybrid 
data structure requires the following steps (Fig. 4). First, 
dynamic memory allocation is used to create the hash table.  
Second, a double pointer is set as a li st of pointers to the rows 
in the hash table and all of the nodes are initialized (pr set to 
zero and pointer set to NULL).  Finall y, the head and tail are 
initialized to appropriate values to represent an empty doubly 
linked li st.  

The co-occurring pair is forced to have the relationship 
x1>=x2 so that only a lower triangular hash structure is 
required.  For a given grey level pair, if the hash table has a 
zero entry, then that particular co-occurring pair does not 

Fig. 4. GLCHS structure for determining image texture features.  
Nodes created in linked list and hash table are based on 
sample image in Fig. 1A. 
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have a representative node on the linked li st.  As a result, a 
new ListNode is created, its grey level values are set, and it is 
inserted at the end of the linked li st.  The list_ptr is then set 
to point to this ListNode to establi sh the relationship between 
the HashNode and its corresponding ListNode.  If the hash 
table entry is not zero, then that HashNode already points to 
an existing ListNode on the linked li st.  Whether or not the 
ListNode was created, the probabilit y associated with 
HashNode is incremented by the given probabilit y.  A similar 
method is used to decrement a probabilit y for a certain grey 
level pair.  In this situation, if the probabilit y reaches zero, 
the ListNode is removed from the linked li st and its 
associated HashNode’s list_ptr is set to NULL.  Fig. 4 
ill ustrates the structural arrangement for the GLCHS.  As a 
result, the linked li st does not have to be kept sorted, in 
contrast to the GLCLL.  This design is expected to 
significantly and consistently reduce the completion times 
when determining co-occurrence probabili ty texture features.   

 
IV.  RESULTS ANALYSIS 

 
All algorithms are implemented using the C language in a 

Unix environment based on the same fundamental code ie. 
the only distinctions between the routines are the algorithms 
themselves.  The tests are performed on the Sun Sparc Ultra 1 
200E (200 MHz, 128 Mbytes RAM, 322 SPECint, 462 
SPECfp) computer Workstation with a multi-class 128 x 128 
Brodatz [8] test image.  Table 1 contains the percentage ratios 
of numerical times in capturing texture features for a single 
window between the two algorithms with the five statistics 
referred in the beginning of Section II [1], [2].  The 
parameters are: δ = 1; θ = 0°, 45°, 90°, 135°; six window sizes 
(5, 10, 15, 20, 25, and 30 pixels); and five quantization grey 
levels (128, 64, 32, 16, and 8). 

The results show that the GLCHS is always significantly 
faster than the GLCLL.  The greater the number of grey 
levels, the greater the improvement of the GLCHS over the 
GLCLL method.  For example, given a window size of 30x30 
pixels, the ratio between GLCHS and GLCLL at 128 grey 
levels is 28.2% while the ratio at 8 grey levels is about 
34.3%. 

The window size impacts the length of the linked li sts 
which in turn affects the computational speeds.  For 
increasing window size, the number of co-occurring 
probabiliti es wil l generally be increased, so the time spent on 

determining statistics (both GLCLL and GLCHS) and 
determining the probabiliti es (GLCLL only) wil l be increased 
either.  For example, when G = 128 grey levels in Table I, the 
ratio between GLCHS and GLCLL for 5x5 windows is 
37.5% and, with increased window size, gradually decreases 
to 28.2% for window size 30x30.  The advantage of GLCHS 
over GLCLL improves with larger window sizes. 

 
V.  CONCLUSIONS 

 
Image texture segmentation is often performed on remotely 

sensed imagery, and co-occurrence probabiliti es are 
commonly used for feature extraction.  The advantage of the 
GLCHS methodology for determining co-occurrence texture 
features relative to the GLCLL method is clearly 
demonstrated in the results (Table 1).  With larger images 
(typical of remote sensing imagery), the computational 
impact of using the GLCHS algorithm is extremely 
important.  Granted, the computational savings wil l be a 
function of the textural characteristics, window size, number 
of statistics, and quantization level.  However, on average 
across all the test cases, GLCHS required 33.4% (σ = 3.08) of 
the computational time compared to GLCLL, which strongly 
supports its use.   
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Window  Size (n x n) Comparison 
[%] 

Grey 
Levels 

(G) 5 x 5 10 x 10 15 x 15 20 x 20 25 x 25 30 x 30 

128 37.5 35.4 34.9 32.1 30.3 28.2 

64 38.0 35.1 33.3 30.9 30.2 28.1 

32 37.5 34.8 32.7 32.5 29.0 28.9 

16 37.2 34.2 33.0 34.4 29.8 29.1 

Percentage of 
GLCHS 

computational time 
compared to 

GLCLL 
computational time 8 37.7 36.3 35.3 35.6 34.7 34.3 

 

TABLE  I 

PERCENTAGE RATIOS BASED ON RESULTS FOR GLCHS VS. GLCLL   
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