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Abstract-Typically, the co-occurrence features for image
processing are calculated by using a grey level co-occurrence
matrix (GLCM). This method is computationally intensive since
the matrix is usually sparse leading to many unnecessary
calculations involving zero probabilities. An improvement on
the GLCM method isto utilize a grey level co-occurrence linked
liss (GLCLL) to sore only the non-zero co-occurring
probabilities. The GLCLL suffers since, to achieve preferred
computational speeds, thelist should be sorted.

This paper presents a grey level co-occurrence hybrid
structure (GLCHS) based on an integrated hash table and
linked list approach. Texture features obtained using this
technique are identical to those obtained using the GLCM and
GLCLL. Based on aBrodatz test image, the GLCHS method is
demonstrated to be a superior technique when compared across
various window sizes and grey level quantizations. The GLCHS
method required, on average, 33.4% of the computational time
(0 =3.08%) required by the GLCLL. Significant computational
gains are made using the GLCHS method.

Index Terms-Texture features, hash table linked ligt, co-
occurrence probabilities, remote sensngimagery.

I. INTRODUCTION

Grey-level co-ocaurrence matrices (GLCMs), devel oped
by Hardlick et d. [1] are widely used in image texture feature
extraction for spatial analysis of remotely sensed imagery [2],
[3], [4]. A primary computational drawback of GLCMs is
that they require unnecessarily high computational
requirements when applying the statistics, which leads to an
overwhelming amount of computation when atempting to
segment full remote sensing images.

There are a number of approaches to reduce the
computational requirements when calculating texture features
when using GLCMs [5], [6], [7]. For example, the grey level
co-ocaurrence linked list (GLCLL) method achieves a
significant reduction computational requirements [7].  This
is achieved since unlike the GLCMs, the GLCLLs use a
linked list to <ore only the non-zero co-ocaurring
probabiliti es.

To efficiently access grey level pairs on the linked list to
update their probabiliti es, the list is kept sorted. This sorting
compromises the dficiency of the GLCLLs. In this paper, a
grey level co-ocaurrence hybrid structure (GLCHS) based on
an integrated hash table and linked list approach is presented.
This agorithm shows a sdignificent and consistent
improvement in computational performance relative to
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Fig. 1. a 5 x5image window with four grey levelsvalues
0-3)

b. Corresponding GLCM given 6 =1 pixel and 6 =
0 and 180. Only lower triangle matrix required.

GLCLLs. The texture features captured by each of these
threemethods are identical.

Il. ExISTING CO-OCCURRENCE IMPLEMENTATIONS

The GLCM technique employs the following steps. The
probability of co-occurrence between two gey levelsi and |
given a relative orientation (8) and digance () can be
computed for al posshle co-occurring gey level pairsin an
image window. The GLCM stores these probabiliti es and, as
such, is dimensioned to the number of grey levels (G)
available (Fig. 1). Then, sdleded statistics are gplied to the
GLCM by iterating through the entire matrix (ie. over al
probabiliti es) to calculate the texture features.

Dissmilarity, contrast, uniformity, entropy, and correlation
are five datistics widely used among the fourteen origina
statistics developed by Haralick et al. [1]. Several authors
have discussed their meanings [2], [3]. For each unique (9,
0) pair, aGLCM (or its equivalent) isrequired (Fig. 1).

In general, relative interpixel distances are short when
applied to remotely sensed imagery and often only setting & =
1 isrequired to generate preferred texture features [5]. The
relative interpixel orientation is usually set to either {0, 45
90, 135} or the average of al four orientations. Co-
oceurring pairs oriented a 0" are also ariented at 180 which
generates a symmetricd GLCM. This concept extendsto 45,
90, and 135 aswell. Asaresult, only the lower triangular
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Fig. 2. GLCLL structure for determining image texture features. To

reduce search times, the nodes are sorted according to gey
leve pairs(i,j).
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Fig. 3. Zig-zag window path to
determine texture features
for entire image.

portion of the GLCMs (ie. only co-occurring pairs wherei >=
j) nealsto beretained (Fig. 1b).

The generation of co-occurrence probabilities is illugtrated
in Fig. 1. Here, given G=4,08 =0, and = 1 pixd, co-
occurring probabilities are generated for a 5x5 sample
window (Fig. 1a) and represented within a symmetricd
GLCM (Fig. 1b). For example, the @-occurring pair (2,3)
occurs three times in the window. Sincethere ae atotal of
20 possble wm-occurring peirs, this generates a probabilit y of
0.15 a row 3 and column 2 in the GLCM. With increasing
G, the matrix becomes garser with a @rresponding increase
in the cmputational requirementsto apply the statistics.

Ingdead of using a matrix to store the @-occurrence
probabiliti es, a linked list structure (grey level co-occurrence
linked list or GLCLL) can be used [7]. In order to alow
rapid seaching for exigting (i,j) pairs, the list must be kept
sorted. Searching begins at the head d the list by looking for
the first instance of the i grey level. If found, then the
algorithm seaches for the @rresponding j" grey level. If the
(i,j) pair is found, then the probability stored insde that node
isincremented. If the (i,j) node is not found at the expeded
location, then a node must be entered at that location that
stores the appropriate probabilit y for that grey level pair.

When capturing texture features on a pixel-by-pixel basis
from an image, a diding window is employed. Since most
probabiliti es remain the same when the window shifts one
column, the agorithm only has to include the new
probabiliti es introduced by the new column and acoount for
the probabiliti es that the window has just moved pest. The
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Fig. 4. GLCHS structure for determining image texture features.

Nodes created in linked list and hash table are based on
sampleimage in Fig. 1A.
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window moves efficiently in this zig-zag pattern until the
entireimageis covered (Fig. 3).

Considerable time is gent maintaining sorted linked lists.
The application of the datistics to calculate the texture
features occurs rapidly by traversing each linked list from
head to tail.

I1l. HYBRID DATA STRUCTURE

To improve on the GLCLL, the reliance on maintaining
sorted lists should be removed. A combined hash table and
linked list structure is designed to med this criterion. Based
on this combination, the structure is referred to as the grey
level co-occurrence hybrid structure (GLCHS). Using the
GLCHS, a two-dimensional hash table struct is created to
point to linked lig nodes. A doubly linked list is used to
allow easy insertion and deletion of nodes. The hash table
allows for rapid accessof any node in the linked list, if that
node eists. Thelinked lig all ows for rapid appli cation of the
statistics by traversing the linked list from head to tail. TheC
struct definition for nodes in the linked list is:

Typedef sruct LisNode

int x1,x2; /| co-ocaurring grey level pairs
struct ListNode *prev;
struct ListNode *next;

} ListNode;

and the stuct definition for nodes in hash tableis.
Typedef struct HashNode

float pr; //co-occurrence probabili ty
struct ListNode *list_ptr;

} HashNode;

In the ListNode struct, four members are defined. Each
instance of the struct represents a node on the doubly linked
list. The two integer members (x1,x2) store the grey level
pairs. Two sdf-referential pointers are defined to access
previous (*prev) and next (*next) ListNode nodes. Linked
list nodes are defined to represent the first (head) and the last
(tail) nodes.

In the hash table struct, one float member (pr) stores the
grey level co-ocaurrence probability and the other stores the
linked list pointer (*list_ptr). The list_ptr points to the
corresponding node on the linked list associated by the grey
level pair.

Based on the two definitions, the creaion of the hybrid
data structure requires the following steps (Fig. 4). Fird,
dynamic memory all ocation is used to crede the hash table.
Second, a double pointer is st asalist of pointers to the rows
in the hash table and all of the nodes are initialized (pr set to
zero and pointer set to NULL). Findly, the heal and tail are
initialized to appropriate values to represent an empty doubly
linked li st.

The co-ocaurring pair is forced to have the relationship
x1>=x2 so that only a lower triangular hash structure is
required. For a given grey level pair, if the hash table has a
zero entry, then that particular co-occurring pair does not



TABLE |
PERCENTAGE RATIOS BASED ON RESULTS FOR GLCHSVS. GLCLL

Comparison Gr Window Size (nxn)

Levels
[%] (6) 5x510x1015x 1£20x 20 25x 25 30 x 30

Percentageof 128 375 354 349 321 303 282

GLCHS
computational time 4 380 351 333 309 302 281
compared to 32 375 348 327 325 290 289
GLCLL 16 372 342 330 344 298 291
computationaltime g 377 353 353 356 347 343

have a representative node on the linked list. As aresult, a

new ListNode is creded, itsgrey level values are set, and it is
inserted at the end o the linked list. Thelist_ptr isthen set
to point to this ListNode to establi sh the relationship between
the HashNode and its corresponding ListNode. If the hash
table entry is not zero, then that HashNode already points to
an exiging ListNode on the linked list. Whether or not the
ListNode was created, the probability associated with
HashNode is incremented by the given probebility. A similar
method is used to deaement a probability for a cetain grey
level pair. In this gtuation, if the probability reaches zero,
the ListNode is removed from the linked list and its
asciated HashNode's list_ptr is st to NULL. Fig. 4
illugtrates the structural arrangement for the GLCHS. As a
result, the linked list does not have to be kept sorted, in
contrast to the GLCLL. This design is expeded to
significantly and consistently reduce the cmpletion times
when determining co-occurrence probabili ty texture features.

IV. RESULTSANALYSIS

All algorithms are implemented using the C language in a
Unix environment based on the same fundamental code ie.
the only distinctions between the routines are the algorithms
themselves. Thetests are performed on the Sun Sparc Ultra 1
20CE (200 MHz, 128 Mbytes RAM, 322 SFECint, 462
SFECfp) computer Workstation with a multi-class 128 x 128
Brodatz [8] test image. Table 1 contains the percentage ratios
of numerical times in capturing texture features for a single
window between the two algorithms with the five statistics
referred in the beginning o Sedion Il [1], [2]. The
parametersare: 5= 1; =0, 45, 90, 135; six window sizes
(5, 10, 15, 20, 25, and 30 pixels); and five quantization grey
levels (128 64, 32, 16, and 8.

The results diow that the GLCHS is always sgnificantly
faster than the GLCLL. The greaer the number of grey
levels, the greater the improvement of the GLCHS over the
GLCLL method. For example, given awindow size of 30x30
pixels, the ratio between GLCHS and GLCLL at 128 gey
levels is 28.2% while the ratio a 8 grey leves is about
34.3%.

The window size impacts the length of the linked lists
which in turn affects the mputational speeds. For
increasing window size, the number of co-ocaurring
probabiliti es wil | generally be increased, so the time spent on
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determining satisics (bah GLCLL and GLCHS) and
determining the probabiliti es (GLCLL only) will be increased
either. For example, when G = 128 grey levelsin Tablel, the
ratio between GLCHS and GLCLL for 5x5 windows is
37.5% and, with increased window size, gradually deaeases
to 28.2% for window size 30x30. The alvantage of GLCHS
over GLCLL improves with larger window sizes.

V. CONCLUSIONS

I mage texture segmentation is often performed on remotely
sensed imagery, and co-occurrence probabilities are
commonly used for feature extraction. The advantage of the
GLCHS methodology for determining co-occurrence texture
features relative to the GLCLL method is clealy
demonsdtrated in the results (Table 1). With larger images
(typical of remote sensing imagery), the computationa
impact of using the GLCHS agorithm is extremely
important. Granted, the computational savings will be a
function of the textural characteristics, window size, number
of satigtics, and quantization level. However, on average
acrossall the test cases, GLCHS required 33.4% (o = 3.08) of
the computationa time ompared to GLCLL, which strongly
supportsitsuse.
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