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ABSTRACT 
W e  recently developed a multiscale recursive estimation 
procedure for  the estimation of large-scale dvnamic sys- 
tems. The procedure propagates multiscale models f o r  
the estimation errors more efficiently than the Kalman 
filter’s propagation of the error covariances, with a re- 
sulting computational complexity of O ( N )  and 0 (N3’ /”) ,  
where N is  the number of variables estimated, for 1- 
D and 2-0 dynamic systems, respectively. To further 
reduce the computational cost, we introduce in this pa- 
per a new class of reduced-order spatially-interpolated 
multiscale models, and demonstrate their use in remote 
sensing. 

1. Introduction 

The statistical estimation of two-dimensional dynamic 
systems is of great interest in many applications, such 
as ocean-height[3] or ocean-temperature (Fig. 1) map- 
ping, where methods for assimilating data with dy- 
namics have hitherto been limited. Even systems gov- 
erned by simple dynamics such as diffusion present a 
challenge, due to the large state-dimensions (compared 
to one-dimensional problems) and to the time-varying 
nonstationary statistics (compared to most static prob- 
lems). 

In our past work [4, 51 we adapted a multiscale 
stochastic modeling and estimation methodology to the 
estimation of l-D and small 2-D dynamic systems. In- 
stead of propagating error covariances over time, like 
the Kalman filter, the multiscale recursive estimation 
algorithm propagates models for the estimation error, 
not covariances, and does so efficiently. 

This paper addresses the challenges encountered in 
larger problems than studied earlier. Specifically, we 
consider a class of reduced-order models and interpola- 
tion methods for estimation of 2-D processes that fur- 
ther reduce the computational cost, and present prelim- 
inary dynamic ocean-temperature estimation results. 
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Fig. 1. Mean ocean temperature and superimposed mea- 
surements. 

2. Dynamic Estimation 

Consider a dynamic system, 

%(t + 1) = A d % ( t )  + W d ( t ) .  (1) 

The form of least-squares time-recursive estimators (which 
includes the optimal Kalman filter) consists of two stages. 
One, the update stage, 

takes the measurements into account, where ?(tlt-l) is 
the estimate of the prediction error x(tlt-1). The mea- 
surement update step is essentially a static estimation 
problem, for which efficient methods are well-studied. 
Much more troubling is the prediction stage: 

which accounts for time. The spatial mixing, intro- 
duced by all but the most trivial dynamics, destroys the 
particular statistical structure which one might wish to 
assume (via sparse matrices, preconditioning, or mul- 
tiscale methods) to gain efficiency in the update stage. 

This paper investigates ways of propagating multi- 
scale models through the prediction step for fast esti- 
mation for large problems. 
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Fig. 2. An example multiscale quad-tree for modeling two- 
dimensional fields. 

3. Multiscale Estimation 

The multiscale recursive estimator in [5] achieves its 
computational efficiency by propagating a model for 
the estimation errors x through time without explic- 
itly calculating or storing the second-order statistics 
P,( t [ t ) .  The error fields are modeled on tree struc- 
tures; one particularly common and useful tree is the 
regular quadtree, shown in Fig. 2, on which each node 
has q = 4 children: 

"(s; .I*) = A(s; * I - ) ~ ( s 7 ;  -1.) + B(s;  * I - ) w ( s ;  *I.). (4) 

a(s;  -1.)  is the state at s, which indexes the nodes of the 
tree, and w(s; -1.) is a white noise process uncorrelated 
with z(0; .I-). From (4) it follows that the q + 1 sub- 
trees connected to node s are conditionally decorrelated 
by the state z ( s ;  .I.), which makes possible an efficient 
scale-recursive estimation algorithm on the tree. 

We are interested in defining the multiscale state a t  
s as a linear function of the process x of interest: 

z ( s ;  .I.) = L(s;  .I.)x(.l.). (5) 

The choice of L(s;  .I-) is not arbitrary. The linear func- 
tionals must satisfy the conditional decorrelation prop- 
erty and reproduce the desired statistical behavior of 
the modeled process. For example, the class of first- 
order Markov random fields can be modeled exactly by 
letting z(s; . I - )  contain subregion boundary pixels, as 
shown in Fig. 3. 

Given (5),  the a priori  model parameters A(s; tit - 
1) and B(s; tit- 1) are determined from the joint statis- 
tics between z(s; t ( t , -1)  and ;c(sy;tlt-l), which them- 
selves follow from P,(tJt - 1). The multiscale estima- 
tion algorithm[2] solves the update step, and allows the 
updated error model parameters A(s; tlt) and B(s ;  tlt) 
to be determined, however the real challenge arises in 
obtaining a model for the predicted error. 

4. Multiscale Prediction 

Except for the most trivial cases, the mixing introduced 
by the dynamics from time t to t + 1 implies that the 
statistics of z(s; t l t )  and z ( s ; t  + lit) are related in a 
non-obvious manner. Specifically, in order to find the 
predicted error model A(s;t+ll t)  and B(s ; t+ l l t ) )  we 
need the joint statistics between 

z ( s ; t  + 1lt) = L(s; t  + l(t)AdX(t(t) ( 6 )  
~ ( ~ 7 ; t  + 1lt) = L(s7 ; t  + Ilt)AdX(t(t) (7) 

which is much more involved than the joint statistics 
between just "(5; tlt) and a(s7;tlt) because of the tem- 
poral dynamics Ad. The details of the specific addi- 
tional joint statistics which are required depend on the 
choice of L(s )  and on the details of the dynamics. In 
principle the joint statistics can be computed for any 
two nodes =(SI; t l t ) ,  z(s2;  t l t ) ;  obviously the number of 
such computed statistics must be limited, since finding 
all of these is equivalent to the brute-force computa- 
tion of the whole posterior covariance - precisely that 
which we want to avoid. 

Even for dynamics that operate locally in space 
(e.g., diffusion), standard state assignments suggested 
by Fig. 2 can be difficult, since many physically proxi- 
mate finest-scale states may distantly separated on the 
tree. However for nearest-neighbor dynamics, a re- 
cently developed non-redundant state assignment, shown 
in Fig. 3, can be highly effective, since all of the pixels 
adjacent to node s lie either on s, its parent, or one of its 
children, which greatly limits the additional joint statis- 
tics which are required. For models whose state dimen- 
sions grow linearly with fl (as is the case in Fig. 3), 
the computational complexity becomes O(N3/ ' ) .  

As an aside, as the predicted error statistics change 
over time, ideally so should the linear functionals L(s ;  . I . ) ;  
however we impose a fixed set of L(s )  for the current 
application, which does imply that the prediction er- 
rors are only approximately realized. 
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5 .  Reduced-Order 2-D Models 

0 0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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0 
Fig. 4. Reduced-order non-redundant linear functionals for 
modeling a 17 x 17 2-D field. The hollow circles indicate 
elements of the field not modeled. Compare with dense- 
boundary functionals in Fig. 3 

Pixel not modeled in any state 

Given the degree of correlation between neighboring 
elements of typical 2-D random fields, a reduced-order 
state that models only a subsampled set of the bound- 
ary points may adequately capture the correlation struc- 
ture of the field and lead to faster estimation. However 
for non-redundant models (as in Fig. 3), where each 
field pixel appears in only one tree state, a subsampled 
state implies that some elements of the field of interest 
do not appear anywhere on the tree. That is, no esti- 
mates or error statistics for these elements are directly 
available, and measurements of these elements cannot 
be placed on the tree. Although it is possible to ignore 
these missing elements for the purposes of static es- 
timation, in performing the prediction step, estimates 
and error statistics will be required. 

Let us denote the boundary points not represented 
in z(s) by C(s). The simplest solution is to linearly 
predict the missing points from each state: 

where 

Although fast, this approach is rather limited in that 
it ignores the 2-D structure of the field and, more sig- 
nificantly, it neglects to use nearby pixels from other 
state elements in the interpolation process. 

A more sophisticated method is to interpolate ((s) 
based on all nearby state elements; that is, a two- 
dimensional interpolation based on elements from the 
parent and all children: 

with the estimation equations following as in (9),(10). 
The advantage of this 2-D interpolation is that it leads 
to better estimates and realized error variances; on the 
other hand, one pays a computational penalty, espe- 
cially during the prediction step, since a greater num- 
ber of joint statistics need to be computed in order to 
compute the model parameters. 

We have found 2-D interpolation for reduced-order 
models to be an effective tradeoff between computa- 
tionally intensive full-state models and statistically ap- 
proximate one-dimensional interpolation. 

(a) Exact Solution 
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Fig. 5. Performance comparison of the optimal FVR of the 
exact solution (a) with suboptimal multiscale steady-state 
estimators; (b), (d) Realized updated error variances. ( c ) ~  
(e) Degradation in multiscale FVR, within about 2% of the 
optimum. 
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Fig. 6. Dynan..: estimation of Pacific surface-temperature, 1-see days apart. 

6. Results 

We will model our dynamics as a diffusion process, 

= V 2 z - ~ . z + + . w ,  
az 
at 
- 

where z is the temperature distribution; w is white 
Gaussian noise, and p and y are constants. Fig. 5 shows 
a 17 x 17 pinned cooling sheet example with four point 
measurements. We compare the realized statistics and 
fractional variance reduction 

(13) 
Var(process) - Var(updated error) 

Var (process) 
FVR = 

of the exact estimator with two multiscale ones - the 
first using dense boundary points and the other sub- 
sampled boundaries with 2-D interpolation. The FVR 
of the full-order estimator is affected only minutely - 
M 0.1% - with respect to the exact solution. The a p  
proximate, reduced-order approach has errors on the 
order of only 1% to 2%. 

Fig. 6 shows a small part of a more ambitious ex- 
ercise - the dynamic estimation of the ocean surface 
temperature over six months. We model the ocean sur- 
face as diffusive (over sufficiently short time steps, here 
of one day); the plotted results are taken from the five- 
month point of the estimated sequence. We see that the 
non-redundant linear functionals work well for model- 
ing estimation errors under a variety of general condi- 
tions, e.g., when and the number and locations of mea- 
surements are time-varying, implying that the problem 
is time-varying and does not attain steady-state. 

Future extensions to the above results include run- 
ning tests for substantially larger domains and applying 
the method to local dynamics other than diffusion. 
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