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a b s t r a c t

An interesting problem in pattern recognition is that of image registration, which plays

an important role in many vision-based recognition and motion analysis applications. Of

particular interest among registration problems are multimodal registration problems,

where the images exist in different feature spaces. State-of-the-art phased-based

approaches to multimodal image registration methods have provided good accuracy but

have high computational cost. This paper presents a fast phase-based approach to

registering multimodal images for the purpose of initial coarse-grained registration.

This is accomplished by simultaneously performing both globally exhaustive dynamic

phase sub-cloud matching and polynomial feature space transformation estimation in

the frequency domain using the fast Fourier transform (FFT). A multiscale phase-based

feature extraction method is proposed that determines both the location and size of the

dynamic sub-clouds being extracted. A simple outlier pruning based on resampling is

used to remove false keypoint matches. The proposed phase-based approach to

registration can be performed very efficiently without the need for initial estimates or

equivalent keypoints from both images. Experimental results show that the proposed

method can provide accuracies comparable to the state-of-the-art phase-based image

registration methods for the purpose of initial coarse-grained registration while being

much faster to compute.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Image registration is the process of matching points in
one image to their corresponding points in another image.
The problem of image registration plays a very important
role in many visual and object recognition and motion
analysis applications. Some of these applications include
visual motion estimation [1,2], vision-based content-
based retrieval [3,4], image registration [5–7,9], and
biometric authentication [10]. In the best case scenario,
the images exist at the same scale, in the same orienta-
tion, as well as represented in the same feature
ll rights reserved.
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space. However, this is not the case in most real-world
applications. There are many situations where the images
exist in different feature spaces. This particular problem
will be referred to as the multimodal registration problem
and is a particularly difficult problem to solve. Examples
of this problem in real-world situations include medical
image registration and tracking of MRI/CT/PET data [11]
and building modeling and visualization using LIDAR and
optical data [12,13].

There are several important issues that make multi-
modal registration a difficult problem to solve. First, many
registration algorithms require that equivalent keypoints
be identified within each image. However, given the
differences between feature spaces in which the images
exist, it is often a very difficult task. The significant
differences between feature spaces also make it imprac-
tical to perform direct intensity matching between the
two images. In recent years, an effective approach to

www.sciencedirect.com/science/journal/sigpro
www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2008.10.028
mailto:alexanderwong@einfodaily.com,
mailto:a28wong@engmail.uwaterloo.ca
mailto:pfieguth@uwaterloo.ca
mailto:pfieguth@uwaterloo.ca


ARTICLE IN PRESS

A. Wong, P. Fieguth / Signal Processing 89 (2009) 724–737 725
multimodal registration has been proposed that utilizes
local phase [14,15]. This state-of-the-art approach evalu-
ates the mutual information between the local phase of
two images to determine the optimal alignment and has
been shown to be very effective at matching multimodal
medical image data, outperforming existing multimodal
registration methods [14,15]. However, this approach is
computationally expensive (OðN6

Þ for the mutual informa-
tion evaluation process). As such, a registration method
that is able to take advantage of local phase information to
determine point correspondences between images while
being computationally efficient is highly desired for the
purpose of initial coarse-grained registration.

The main contribution of this paper is fast phase-based
registration algorithm for aligning multimodal images.
The proposed method is designed to provide a fast
alternative to the phase-based registration algorithm
proposed by Mellor et al. [15]. It is important to note that
the main contributions of this paper reside in the methods
for keypoint detection and dynamic sub-cloud extraction,
as well as the method for simultaneous phase correspon-
dence evaluation and feature transformation estimation,
not in the outlier pruning scheme. Furthermore, the
proposed method is designed for fast initial coarse-
grained matching and by no means guarantee the
smoothness of the global data correspondence problem.
A fine-grained matching method can be used after the
initial matching to provide improved alignment based on
global smoothness constraints.

2. Multimodal registration problem

The multimodal registration problem can be defined in
the following manner. Suppose there exist two images f

and g, where points in f and g are represented using two
different feature spaces, respectively. For every point in f ,
the goal of registration is to determine a corresponding
point in g such that the highest degree of correspondence
can be found between f and g. This problem can be
alternatively be formulated as finding the optimal trans-
formation T that maps all points from f to the points from
g such that the highest degree of correspondence can
be achieved. The relationship between f and g can be
defined as

gðxgÞ ¼ f ðTðxf ÞÞ, (1)

where xf and xg are coordinate vectors corresponding to f

and g, respectively, and T is a transformation that maps
points from f to g.

Based on the above relationship, the multimodal
registration problem can be formulated as a minimum
distance optimization problem, with the distance repre-
senting the degree of data correspondence between two
images expressed as

T ¼ argmin
T
½DðgðxgÞ; f ðTðxf ÞÞÞ�, (2)

where D is the distance function that is inversely
proportional to the degree of correspondence between
feature points. Low values of D indicate a high level of
correspondence between the images.
3. Previous work

A large number of methods have been proposed for the
purpose of image registration. In general, current methods
can be grouped into four main types:
(1)
 Methods based on relative distances [16–19].

(2)
 Methods in the frequency domain [20–22].

(3)
 Methods based on direct comparisons [6–9,23–27].

(4)
 Methods based on extracted features [14,15,28–36].
Methods based on relative distances exploit the spatial
relationships between neighboring pixels within an image
to determine the best match between two points. These
algorithms are based on the assumption that if a point in
image f , pf ;0, has a corresponding point in image g, pg;0,
then there exist other points in f , fpf ;1;pf ;2; . . . ; pf ;ng, that
have a corresponding points in g, fpg;1;vg;2; . . . ; pg;ng, such
that the distance between pf ;0 and point pf ;k is equal to the
distance between pg;0 and point pg;k. Methods based on
relative distances are primarily useful for situations where
the transformation between the images consists only of
translations and rotations.

Methods in the frequency domain [20–22] exploit the
frequency characteristics such as phase to estimate the
transformation between two images. A common frequency
domain registration method is phase correlation, where the
Fourier coefficients calculated from image f are divided by
that calculated from image g. Performing the inverse
transform on the result yields a single peak indicating the
translation that matches the two images. This technique has
been extended to account for global rotations and scale by
Reddy et al. [21]. As such, frequency domain methods are
only suited for globally rigid point correspondences.

Methods based on direct comparisons [6–9,23–27]
attempt to find data point correspondences between two
images by performing point matches directly in their
respective feature spaces. Many techniques in this group
make use of feature information from neighboring data
points to determine the similarity between two data
points. Some common similarity metrics used in direct
comparison methods include maximum likelihood [5],
correlation [23,26], and mutual information [6–9]. Of
particular interest in recent years are techniques based on
mutual information, which attempt to match data points
by finding the mutual dependence between the images.
The key advantage of techniques based on mutual
information is that it allows images existing in different
feature spaces to be compared in a direct manner.
However, such techniques also require good initial match
estimates to produce accurate results as they are very
under-constrained in nature. Furthermore, techniques
based on mutual information are computationally expen-
sive and may not be practical for certain situations where
computational speed is important. A comparison between
the computational complexity of mutual information-
based techniques and the proposed method will be
discussed later on in the paper.

In methods based on extracted features [14,15,28–36],
the images are compared indirectly using extracted
features that exist in a common feature space. Common
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features used in such methods include contours [29,30],
invariant moments [34,35], orientation [33,36], and shape
properties [28]. By comparing methods using derived
features in a common feature space, this allows such
techniques to match images existing in different feature
spaces in cases where similar features can be extracted
from both images.

In recent years, an effective approach has been
proposed for the purpose of multimodal registration that
evaluates the mutual information between the local phase
of images to determine optimal point correspondences
[14,15]. This state-of-the-art approach improves mutual
information performance by reducing feature non-homo-
geneities and accentuating structural information, and has
been shown to be very effective at finding correspon-
dences between medical imaging data acquired using
different medical imaging modalities. However, this
approach suffers from the same computational cost issues
associated with mutual information-based methods. The
primary goal of this paper is to provide a fast approach to
phase-based image registration that provides comparable
accuracy at a significantly reduced computational cost.

4. Proposed registration algorithm

The proposed approach to phase-based image registra-
tion can be divided into three main parts. First, keypoints
are selected and sub-clouds are extracted using a multi-
scale phase-based keypoint extraction method, as de-
scribed in Sections 4.1 and 4.2. A simultaneous globally
exhaustive phase correspondence evaluation and feature
space transformation estimation scheme is performed
between the phase sub-clouds from one image over
all translations and local rotations of the other image,
as described in Sections 4.3 and 4.4. A simple outlier
pruning scheme based on resampling is used to remove
erroneous matches and the transformation that maps
data points from one image to the other, as described in
Section 4.5. The main contributions of the proposed
framework is a novel multiscale phase-based keypoint
and sub-cloud extraction scheme, as well as a novel
simultaneous globally exhaustive phase sub-cloud corre-
spondence evaluation and feature space transformation
estimation scheme.

4.1. Keypoint detection and sub-cloud size estimation

In conventional keypoint-based registration algo-
rithms, a set of keypoints fpg;10; pg;20; . . . ; pg;n0g are ex-
tracted from each image to construct sub-clouds
fCðpg;10Þ;Cðpg;20Þ; . . . ;Cðpg;n0Þg of a certain size [35]. This is
done for several reasons. First, it is computationally
expensive to match every data point in one image to
those in the other image. As such, it is much more
computationally efficient to select a subset of points
within each image that can be used to estimate the overall
mapping between the two images. Second, it can be said
that a majority of points within a image cannot be
uniquely distinguished from other points based on its
neighboring points. As such, these non-unique points can
result in false point correspondences. Therefore, it is
intuitive that only points that are distinctive be consid-
ered in the registration process.

One of the issues encountered in many registration
methods is that they require that equivalent keypoints be
identified within each image. What this means is that for
every keypoint selected from image f , there must exist a
corresponding keypoint selected from image g for a valid
keypoint match to occur. While it is relatively easy to
determine equivalent keypoints in cases where the images
exist in the same feature space, it is considerably more
difficult to do so in cases where the images exist in
significantly different feature spaces. If equivalent keypoints
are not selected in both images, correct keypoint matches
will not be found. The proposed algorithm removes the
need for equivalent keypoints by looking at the problem
from a different perspective. Suppose that a distinctive
keypoint pg is detected in image g. Ideally, there exists a
corresponding keypoint pf in image f that is distinctive
based on its neighboring points. In such a situation, it is
intuitive that pf will likely be found if pg is compared with
all points in f . Therefore, if every point in f is selected as a
keypoint, a correct keypoint match will theoretically be
found for every distinctive keypoint in g. In the proposed
algorithm, every point in f is selected as a keypoint.

There are several advantages to this approach. First, it
ensures that a correct keypoint match for a keypoint in g

is possible. This is in contrast to methods that attempt to
determine keypoints in both images independently, which
does not guarantee a correct match is possible. Second,
since only distinctive keypoints are selected from g, the
presence of non-distinctive keypoints in f will have a
lesser impact on the accuracy of keypoint matches.
Finally, since only a small set of points are selected as
keypoints from g, the computational complexity is
significantly lower than an exhaustive evaluation between
all possible point pairs between the two images.

Another issue that must be dealt with during the
keypoint detection stage is determining the size of
individual sub-clouds centered around each keypoint.
The size of a sub-cloud should be adjusted in an adaptive
manner to account for the feature characteristics of the
underlying image. For example, smaller sub-clouds should
be used in situations where the feature characteristics
around a keypoint are most distinctive at a finer scale.
Conversely, larger sub-clouds should be used in situations
characterized by feature characteristics that are most
distinctive at a larger, coarser scale. Therefore, a method
for determining the size of individual sub-clouds is
desired.

Various algorithms have been proposed for the pur-
pose of keypoint detection [37,39–44]. However, there are
drawbacks to these techniques. Most commonly used
keypoint detection algorithms such as that proposed by
Harris et al. [41], the DoG maxima method used by Lowe
et al. [37], and the wavelet-based method proposed by
Fauqueur et al. [39] are highly sensitive to data non-
homogeneities, where the same data content is repre-
sented by different data point values due to certain
conditions. For example, in the case of MRI data volumes,
RF inhomogeneity conditions can result in significant data
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non-homogeneities in the constructed data volume [38].
Furthermore, many of these techniques utilize Gaussian
pre-filtering to suppress noise in the image, which can
also significantly reduce the distinctiveness of data
characteristics for the purpose of keypoint detection.

A better approach to keypoint detection that addresses
the issue associated with data non-homogeneities can be
developed based on the feature significance measure
introduced by Kovesi [44], which uses local phase
characteristics obtained from complex-valued wavelets.
By utilizing only the phase information, this measure of
feature significance is largely invariant to data non-
homogeneities. Furthermore, this measure is highly
robust to noise without the need for pre-filtering, provides
improved localization over existing measures, and ac-
counts for variations due to orientation. The proposed
method builds upon this measure of feature significance
to create a novel keypoint detection and sub-cloud size
estimation algorithm.

The proposed keypoint detection and sub-cloud size
estimation scheme can be described as follows. The local
amplitude and phase at each point in image g is computed
over multiple scales and orientations using complex-valued
wavelets such as logarithmic Gabor wavelets. The local
amplitude and phase at a particular point x at wavelet scale
n is computed based on a pair of even-symmetric and odd-
symmetric wavelets He

n and Ho
n at scale n,

AnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgðxÞ � He

nÞ
2
þ ðgðxÞ � Ho

nÞ
2

q
, (3)

fnðxÞ ¼ tan�1 ðgðxÞ � He
nÞ

ðgðxÞ � Ho
nÞ

� �
. (4)

The local phase coherence at point x, orientation y, and over
a range of N scales can then be computed as

rðx; yÞ ¼
PN

n Wðx;yÞbAnðx; yÞDFðx; yÞ � TcP
nAnðx; yÞ þ �

, (5)

DFðx; yÞ ¼ cosðfnðx; yÞ � f̄ðx; yÞÞ

� j sinðfnðx;yÞ � f̄ðx;yÞÞj, (6)

where W represents the frequency spread weighting factor,
An and fn represent the amplitude and phase at wavelet
scale n, respectively, f̄ represents the weighted mean
phase, T represents the noise threshold and � is a small
constant used to avoid division by zero. The parameters
used to compute local phase coherence is the same as that
described in [44]. The feature significance at point x can
then be computed as the minimum moment of local phase
coherence mðxÞ based on the local phase coherence rðx; yÞ at
different orientations fy1;y2; . . . ; ylg,

mðxÞ ¼ 1

2

X
y

rðx; yÞ2

þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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P
y
ðrðx; yÞ sinðyÞÞðrðx; yÞ cosðyÞÞ

 !2

�
P
y
½ðrðx; yÞ cosðyÞÞ2 � ðrðx; yÞ sinðyÞÞ2�

 !2
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.

(7)
The feature significance increases with the increase of m.
Once the minimum moment of local phase coherence has
been determined, the keypoint locations of g are deter-
mined at the local minimum moment maxima using non-
maximal suppression.

Once the keypoints of g have been selected, it is
necessary to identify the dominant scale, s, at which the
keypoint is most distinctive. This is achieved by comput-
ing the minimum moment of local phase coherence ms at
each keypoint pg;i0 over a fixed range of scales fs1; s2 . . . ; szg

and finding the maxima of minimum moment of local
phase coherence over the scales,

sðpg;i0Þ ¼ argmax
s
ðmsðpg;i0ÞÞ. (8)

The radius of an individual sub-cloud centered at keypoint
pg;i0 can then be determined as

rðpg;i0Þ ¼ lsðpg;i0Þ�1rmin, (9)

where l is the scale size and rmin is the minimum radius
size. During testing, l ¼ 1:5 and rmin ¼ 10 was found
to provide good results and so are used for testing
purposes. However, these parameters can be tuned
specifically based on a particular application for improved
performance.

4.2. Phase sub-cloud extraction

Once the keypoints fpg;10; pg;20; . . . ; pg;n0g have been
detected from g, a set of phase sub-clouds fCðpg;10Þ;

Cðpg;20Þ; . . . ;Cðpg;n0Þg of neighboring points is extracted
around the keypoints. This is based on the assumption
that if a keypoint in g, pg;i0, corresponds to a keypoint in f ,
pf ;i0, then its neighboring data points in g will have
corresponding points in f such that the distances between
pg;i0 and its neighboring points fpg;i1; . . . ;pg;img will be
equal to the distances between pf ;i0 and the corresponding
points fpf ;i0; . . . ; pf ;img, where m is the number of neighbor-
ing points. This assumption is very similar to that made in
methods based on relative distances. However, by select-
ing a phase sub-cloud of neighboring points, the assump-
tion is only made from a local perspective. This leads to a
second assumption:

The relative distances between a keypoint pg;i0 and its
neighboring points fpg;i1; . . . ; pg;img within a sub-cloud in g

is approximately equivalent to the relative distances
between its corresponding keypoint pf ;i0 and its neighbor-
ing points fpf ;i1; . . . ; pf ;img within a sub-cloud in f . How-
ever, the relative distances between a keypoint and
all other points in g is not equivalent to the relative
distances between its corresponding keypoint and all
other points in f .

The second assumption implies that, under geometric
distortions, the spatial relationships between local neigh-
boring points are largely maintained but variations in
global spatial relationships between points can still occur.
Without this assumption, it would not be feasible to
match keypoints based on its neighboring data points.

For the proposed algorithm, the intermediate phase
sub-cloud Eðpg;00Þ of a keypoint pg;00 is determined as all
points fpg;i1; . . . ; pg;img that is bounded by a circle centered
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at pg;00 and radius rðpg;00Þ (as determined during
the keypoint detection and sub-cloud size estimation
process),

rðpg;00Þ
2
¼ ðx� xpg;00

Þ
2
þ ðy� ypg;00

Þ
2. (10)

To take better advantage of the spatial relationships
between neighboring points while reducing the amount
of non-distinctive points within a phase sub-cloud, the
proposed algorithm constructs dynamically shaped phase
sub-clouds fCðpg;10Þ;Cðpg;20Þ; . . . ;Cðpg;n0Þg based on key-
point triplets. Suppose that a keypoint triplet is con-
structed from an arbitrary keypoint in g, pg;10, and its two
nearest neighbor keypoints pg;20 and pg;30. A larger phase
sub-cloud Cðpg;10Þ may be formed from the keypoint
triplet by combining the individual phase sub-clouds
fEðpg;10Þ; Eðpg;20Þ; Eðpg;n0Þg formed around each of the three
keypoints. Therefore, the combined phase sub-cloud
Cðpg;10Þ can be expressed as

Cðpg;10Þ ¼
[3
j¼1

Eðpg;j0Þ. (11)

An example of this combined sub-cloud is illustrated in
Fig. 1. This combined phase sub-cloud will be referred to
as a triplet phase sub-cloud. The key advantage of this
triplet phase sub-cloud is that it preserves the distinc-
tiveness of the individual phase sub-clouds while taking
better advantage of the spatial relationships between
keypoints. As such, a triplet phase sub-cloud is extracted
for each keypoint. It is important to note that the overall
shape of a triplet phase sub-cloud may vary from keypoint
to keypoint as it depends on the spatial relationship
Fig. 1. Combined phase sub-clou
between a keypoint and its two nearest neighbor key-
points.
4.3. Simultaneous sub-cloud matching and feature space

transformation estimation

Once a set of triplet phase sub-clouds fCðpg;10Þ;

Cðpg;20Þ; . . . ;Cðpg;n0Þg have been extracted, sub-cloud
matching is performed between each keypoint pg in g

and every point pf in f . Since triplet phase sub-clouds
were not explicitly extracted from f , it is intuitive to
vary the triplet phase sub-cloud Cðpf Þ for a point in f based
on the shape of the triplet phase sub-cloud CðpgÞ in g

with which it is being evaluated against. Therefore, a
different triplet phase sub-cloud Ciðpf ;jÞ is dynamically
formed for the point in f for each triplet phase sub-cloud
Cðpg;iÞ it is matched against in g. This concept is illustrated
in Fig. 2.

As stated earlier, the use of mutual information to
evaluate the similarity of local phase information, as
proposed by Mellor et al. [14,15], has very high computa-
tional complexity and is impractical in certain situations.
Therefore, a faster approach that produces comparable
results is highly desired.

Instead of using mutual information, the proposed
algorithm evaluates the similarity between triplet
phase sub-clouds using a simple sum of squared distance
metric. The similarity between a triplet phase sub-cloud
Cðp

g;i
Þ at p

g;i
and a triplet phase sub-cloud Ciðpf ;j

Þ at p
f ;j
¼

ðp
g;i
� tÞ may be expressed as the sum of squared distan-

ces between the local phase ff and fg within
d from keypoint triplets.
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the sub-clouds,

DðtÞ ¼
X

x

ðff ðx� tÞ � fgðxÞÞ
2kðxÞ, (12)

where

kðxÞ ¼

1

8pðrðpmin;gÞÞ
2

exp
1

2

x� xðpmin;g Þ

2ðrðpmin;gÞÞ

 !2
0
@

2
4

þ
y� yðpmin;g Þ

2ðrðpmin;gÞÞ

 !2
1
A
3
5; x 2 Cðp

g;j
Þ;

0; xeCðp
g;j
Þ;

8>>>>>>>>>><
>>>>>>>>>>:

(13)

where pmin;g is the keypoint in the triplet closest to x.
Therefore, the minimum distance optimization problem
between a triplet phase sub-cloud Cðp

g;i
Þ over all

triplet phase sub-clouds fCiðpf ;j
Þ ¼ Ciðpg;i

� tjÞg can be
expressed as

ti ¼ argmin
t

X
x

ðff ðx� tÞ � fgðxÞÞ
2CiðxÞ

" #
, (14)

where ti is an optimal translation vector between key-
point p

g;i
and its corresponding point p

f ;i
. By finding ti, the

location of p
f ;i

can be determined as

xf ;i ¼ xg;i � ti. (15)

The biggest issue with this basic similarity evaluation
formulation between triplet phase sub-clouds is that,
while using local phase alleviates much of the problems
associated with data non-homogeneities inherit within an
image, the local phase values of images with significantly
different feature spaces are often not directly comparable.
This is because the local phase of features in significantly
different feature spaces can exist in different feature
spaces themselves. Therefore, the basic formulation is
poorly suited for situations characterized by images with
significantly different feature spaces. Mellor et al. address
this issue through the use of mutual information, which
can be seen as a statistical approach to implicit feature
space transformation, as the feature space changes
depending on the alignment of the images. However, this
approach is computationally expensive, particularly for
large images.

In the proposed algorithm, a fast polynomial approx-
imation approach to implicit feature space transformation
is used instead to find the correspondence between phase
sub-clouds. Rather than dynamically changing the feature
spaces of both phase sub-clouds, the proposed algorithm
attempts to determine a feature space transformation
function that transforms the feature space of a triplet
phase sub-cloud in f to that of a triplet phase sub-cloud it
is being evaluated against in g. As such, a different feature
space transformation function is implicitly computed for
each pair of phase sub-clouds being evaluated.

The proposed algorithm models the feature space
transformation function between two phase sub-clouds
as a polynomial function,

Wðx; a0; . . . ; anÞ ¼
Xn

i¼0

aiff ðx Þ
i, (16)

where ai is the ith coefficient of the polynomial. Integrat-
ing the nth-order feature space transformation function
into the sum of squared distance similarity function yields
the following expression:

Diðt; a0; . . . ; anÞ ¼
X

x

ðWðx� tÞ � fgðxÞÞ
2CiðxÞ. (17)

Given this new combined phase sub-cloud similarity
evaluation and feature space transformation estimation
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function, the minimum squared distance problem must
also account for the coefficients fa0; . . . ; ang. The modified
minimum distance optimization problem between a
triplet phase sub-cloud Cðp

g;i
Þ over all triplet phase sub-

clouds fCiðpf ;j
Þ ¼ Ciðpg;i

� tjÞg can be expressed as

fti; ai0; . . . ; aing ¼ argmin
ft;a0 ;...;ang

½Diðt; a0; . . . ; anÞ�. (18)

By combining the phase sub-cloud similarity metric and
feature space transformation model into a single com-
bined metric, both phase sub-cloud matching and feature
space transformation estimation processes are evaluated
in a simultaneous manner.

One aspect that has not been accounted so far is the
effect of local rotations on phase sub-cloud matches.
While the assumptions made about local spatial relation-
ships still hold true, the coordinates of the data points
being compared within each phase sub-cloud are no
longer the same. One method of improving the robustness
of the proposed algorithm to local rotations is to introduce
additional sub-clouds by rotating the sub-cloud boundary
for a sub-cloud at different angles. The sub-cloud
boundary of the new sub-clouds at keypoint pg;i can be
expressed as

Ci;yðxÞ ¼ RyCiðxÞ, (19)

where Ry is the rotation matrix for y. What this means is
that a triplet phase sub-cloud within f must also be
compared to the newly introduced phase sub-clouds
within g as well. Integrating local rotations into (18)
produces the following problem formulation:

fti; yi; ai0; . . . ; aing ¼ argmin
ft;y;a0 ;...;ang

½Di;yðt; a0; . . . ; anÞ�, (20)

where Di;y is the similarity between a sub-cloud in f and a
sub-cloud in g created by rotating its sub-cloud boundary
by y. For testing purposes, a first-order polynomial feature
transformation model and a discrete sub-sampled set of
local rotations was used as it was found to provide good
accuracy for the testing data under evaluation. The
experimental results using this configuration can be seen
in Section 6. These parameters can be increased depend-
ing on the type of images being evaluated.

4.4. Solving the simultaneous matching and feature space

transformation estimation problem in the frequency domain

As the underlying goal of the proposed method is to
present a faster alternative to the phase mutual informa-
tion method proposed by Mellor et al. [14,15], a very
important factor that must be considered in solving the
simultaneous matching and feature space transformation
estimation problem is performance. While the underlying
sum of squared distance formulation is simple and fast to
compute compared to mutual information, the fact that
the problem must be minimized over translation, rotation,
and polynomial coefficient parameters can make it
computationally expensive to solve in a direct manner.
Therefore, it is necessary to further reduce the computa-
tional complexity of the problem so that an efficient
implementation can be achieved.
To significantly reduce the computational complexity
of the proposed combined phase sub-cloud matching and
feature space transformation estimation problem, we
propose re-formulating the problem in a way that can
be evaluated efficiently in the frequency domain. This
approach has been used in other forms to reduce the
computational complexity of computing correlation-
based distances [23,26,45]. We extend this basic approach
so that it can be used to evaluate our combined sub-cloud
matching and feature space transformation estimation
problem.

Suppose that a first-order polynomial model is used to
estimate the feature space transformation. At an arbitrary
rotation y, the similarity between a triplet phase sub-
cloud Cðp

g;i
Þ over all triplet phase sub-clouds fCiðpf ;j

Þ ¼

Ciðpg;i
� tjÞg can be expressed as

Di;yðt; a0; a1Þ ¼
X

x

ða1ff þ a0 � fgÞ
2Ci, (21)

where ff represents ff ðx� tÞ, fg represents fgðxÞ, and Ci

represents CiðxÞ. The similarity equation in (21) can be
rewritten such that all terms involving t can be expressed
as convolutions with respect to t,

Di;yðt; a0; a1Þ ¼ a2
1ðf

2

f � CiÞðtÞ þ 2a0a1ðff � CiÞðtÞ

� 2a1ðff � ðfgCiÞÞðtÞ þ a2
0

X
x

Ci

� 2a0

X
x

fgCi þ
X

x

f2
g Ci, (22)

where ff ðxÞ ¼ ff ð� xÞ. The convolution terms can be
solved efficiently in the frequency domain as multi-
plications while the non-convolution terms can be solved
directly in an efficient manner. Therefore, the final
similarity equation becomes

Di;yðt; a0; a1Þ ¼ a2
1F�1
ðFðf

2

f ÞFðCiÞÞðtÞ þ 2a0a1ðFðff ÞFðCiÞÞðtÞ

� 2a1F�1
ðFðff ÞFðfgCiÞÞðtÞ

þ a2
0

X
x

Ci � 2a0

X
x

fgCi þ
X

x

f2
g Ci, (23)

where F and F�1 is the fast Fourier transform (FFT) and
IFFT, respectively. This solves the similarity and feature
space transformation estimation function for all transla-
tions simultaneously and is significantly faster than
solving it in a direct fashion. Furthermore, it is important
to note that the values Fðf

2

f Þ and Fðff Þ are independent of
y and Ci. Therefore, both of these values need only be
calculated once during the entire phase sub-cloud
matching and feature space estimation process. By
caching the results of Fðf

2

f Þ and Fðff Þ for subsequent
uses, computational complexity is significantly reduced as
the number of forward FFTs that need to be performed for
all matches and feature space transformation estimations
beyond the initial match is reduced by half. The
polynomial coefficients a0 and a1 can then be determined
efficiently by solving for the minimum of the parabolic
form analytically for each translation.
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4.5. Outlier pruning through resampling

The sub-cloud matching and feature space transforma-
tion estimation process produces a set of keypoint
matches between the images f and g. However, due to
the difficulty of matching sub-clouds that are represented
by different feature spaces, it is inevitable that false
keypoint matches will occur. These false keypoint
matches can significantly reduce the performance of the
point transformation parameter estimation. The popular
least squares parameter estimation methods are particu-
larly sensitive to outliers. To improve the robustness of the
parameter estimation process, it is necessary to remove
potential outliers from the set of keypoint matches.

The outlier pruning problem can be viewed as a
classification problem involving two classes: (i) inliers
and (ii) outliers. In general, the sample distribution for the
outlier and inlier classes are not known a priori.
Furthermore, it is often the case that the sample
distribution of the classes cannot be well characterized
using known distributions such as a Gaussian distribution.
As such, statistical methods such as maximum a posteriori
(MAP) and parametric methods such as generalized
Euclidean distance (GED) classifiers are not well suited
for this type of problem. One approach that is useful for
this situation is to construct a classifier ensemble through
resampling. Popular robust statistics techniques that
utilize resampling include the random sample consensus
(RANSAC) algorithm [47] and least median of squares
(LMS) [48]. There are several advantages to using
resampling methods. First, no assumptions are made
about the class distributions, but are based on actual data
samples. As such, it is very robust in situations where
parametric assumptions about the data distributions
cannot be made. Furthermore, resampling methods are
conceptually simple in nature and can be implemented
effectively.

It is important to first define the classifiers used in the
classifier ensemble. Given a set of N matched keypoint
pairs, suppose that each matched keypoint pair consists of
two data points xg and xf . Let T̂ denote an estimated
transformation matrix produced using a subset of
matched keypoint pairs such that

x̂g ¼ T̂xf . (24)

Assuming that T̂ is the estimated transformation
matrix for all keypoint pairs within the sample set, a
keypoint pair may be considered an outlier based on the
distance between x̂g and xg . Therefore, a distance-based
classifier can be defined by the following likelihood
function:

lðxf ; xgÞ ¼ ðT̂xf � xgÞ
2

4� outlier;

o� inlier;

(
(25)

where � is a threshold value separating outliers and
inliers. As such, training the above classifier is equivalent
to estimating the transformation matrix T̂ based on a
subset of matched keypoint pairs.
Given N keypoint pairs, a classification ensemble can
be constructed using the above distance-based classifier
in the following manner:
(1)
 By drawing randomly (with replacement) from the N

keypoint pairs, create K data sets consisting of R

keypoint pairs, where R is the number of keypoint
pairs needed to estimate T̂.
(2)
 Learn a classifier for each data set to produce K

classifiers.

(3)
 Classify the N keypoint pairs using the K classifiers.

(4)
 Select the top M classifiers with the highest number of

inliers.

(5)
 If the number of pairs identified as inliers for each of the

selected classifiers is greater than r or L iterations has
been reached, then a final set of inliers is determined as

Ifinal ¼
[

j2M0
Ij, (26)

where Ij is the set of pairs classified as inliers by
classifier j, and M0 is a subset of classifiers in M that
satisfies the following:

supfninliers;m : m 2 Mg � ninliers;kot, (27)

where ninliers;k is the number of pairs classified as inliers
by classifier k, and t is a threshold used to prevent poor
classifiers from being used in the combination process.
(6)
 If the number of pairs classified as inliers for each of
the selected classifiers is less than r, go to Step 1 and
repeat the process.
The value of r should be selected based on the estimated
probability that a keypoint pair in the total set of matched
keypoint pairs is an inlier. For the purpose of testing,
r ¼ 0:85N, t ¼ 0:05 supfninliers;m : m 2 Mg, K ¼ 20, M ¼ 2,
and L ¼ 100.

Once the final set of inlier matched keypoint pairs have
been found, point transformation parameter estimation is
performed to determine a transformation function that maps
the data points in f to their corresponding data points in g.
This can be accomplished using least squares transformation
estimation techniques such as those described in [49–51].

4.6. Algorithm outline

Based on the theory presented, the registration algo-
rithm can be outlined as follows:
(1)
 Given two images f and g:

(2)
 Extract a set of keypoints fpg;10; pg;20; . . . ; pg;n0g from g

using the keypoint detection scheme proposed in
Section 4.1.
(3)
 Extract a set of phase sub-clouds fCðpg;10Þ;Cðpg;20Þ; . . . ;

Cðpg;n0Þg for each keypoint in g using the scheme
proposed in Section 4.2.
(4)
 For each phase sub-cloud Cðpg;i0Þ detected from g,
perform the simultaneous sub-cloud matching and
feature space transformation estimation scheme
proposed in Section 4.4 to obtain a set of keypoint pairs.
(5)
 Perform outlier rejection on the set of sub-cloud
matches using the resampling method described in
Section 4.5.
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(6)
Tabl
RMS

Test

Test

Test

Test

Test

Test

Test

Test

The
Using the final set of keypoint pairs, perform point
transformation parameter estimation to find the
alignment between the two images.
e 1
E results for multimodal image data.

set RMSE

Manual selection NMI PMI [15] Proposed

1 2.6562 10.8123 3.0959 2.6720

2 3.1804 7.0775 3.5697 3.2097

3 2.7876 8.8763 3.6461 2.8215

4 2.0163 3.2437 3.0860 2.7925

5 1.2538 2.8418 2.3655 1.5963

6 2.5170 2.9920 2.6068 2.5342

7 2.6403 3.1478 2.8311 2.8915

RMSE is computed as the average of 10 test trials.

Fig. 3. Registration results from Test 2 test set; Top-left: optica
5. Computational complexity analysis

It is helpful to put the computational complexity
reduction gained from using the proposed method into
perspective. Supposed that the two images f and g being
matched are each of size N � N. As a simplification,
suppose that the orientation of both images are the same.
If the two images were compared in a direct manner for a
single translation, the computational complexity of the
comparison is OðN2

Þ. Since there are N2 possible transla-
tions, the computational complexity to perform an
exhaustive comparison is OðN4

Þ. Taking the two poly-
nomial coefficients a0 and a1 from (21) into account, the
computational complexity grows to OðN6

Þ.
If the two images were compared using the efficient

approach presented in Section 4.4, the computational
complexity of performing an exhaustive comparison for
l data; Top-right: LIDAR data; Bottom: registered result.
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all possible integer translations is reduced to OðN2 log NÞ.
The computation of the polynomial coefficients a0 and a1

using the efficient approach has a computational com-
plexity of OðN2

Þ. Therefore, the overall computational
complexity of the efficient approach is OðN2 log NÞ,
compared to OðN6

Þ for the direct approach. To put the
computational complexity differences between the pro-
posed method and the phase mutual information method
proposed by Mellor and Brady [15] into perspective,
the computational complexity of the mutual information
evaluation process for all N2 possible translations is OðN6

Þ

if computed using a direct approach. With the use of a
fast mutual information estimation method such as
that proposed in [46], the computational complexity of
the mutual information evaluation process is reduced to
OðN4
Þ, which is still significantly higher than the proposed

method. As such, the proposed method has significantly
lower computational complexity, which is very important
in situations where large images needs to be compared.
6. Experimental results

The effectiveness of the proposed algorithm was tested
by applying it to a range of multimodal image data. The
Fig. 4. Registration results from Test 3 test set; Top-left: Landsat 7 ETMþ
sub-cloud matching problem has a total of five degrees of
freedom (two for translation, one for rotation, and two for
the polynomial coefficients for the first-order polynomial
feature space transformation model). The proposed algo-
rithm was tested using real-world multimodal data sets
obtained from Intermap Technologies Inc., the Visible
Human Project, and the U.S. Geological Survey (USGS)
Global Visualization Viewer project. A description of each
test set is described below.
(1)
da
Test 1: Pair of LIDAR DEM and orthorectified air-
photo data of Highlands Ranch, CO, NW quad, 1 m
resolution. This test set was provided by Intermap
Technologies Inc.
(2)
 Test 2: Pair of LIDAR DEM and orthorectified air-photo
data of Highlands Ranch, CO, NE quad, 1 m resolution.
This test set was provided by Intermap Technologies Inc.
(3)
 Test 3: Set of satellite imaging data pair from USGS
project, 240 m resolution. Data 1: Sensor: Landsat 7
ETMþ; Band: 3. Data 2: Sensor: Landsat 4–5 TM,
Band: 5.
(4)
 Test 4: Set of medical imaging data pair from Visible
Human project, 1 mm resolution. Data 1: Sensor:
T2-weighted MRI, Axial Cranial Slice. Data 2: Sensor:
CT, Axial Cranial Slice.
ta; Top-right: Landsat 4–5 TM data; Bottom: registered result.
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(5)
 Test 5: Set of medical imaging data pair from Visible
Human project, 1 mm resolution. Data 1: Sensor: T1-
weighted MRI, Axial Cranial Slice. Data 2: Sensor: CT,
Axial Cranial Slice.
(6)
 Test 6: Set of medical imaging data pair from Visible
Human project, 1.875 mm resolution. Data 1: Sensor:
T2-weighted MRI, Coronal Torso Slice. Data 2: Sensor:
PD-weighted MRI, Coronal Torso Slice.
(7)
 Test 7: Set of medical imaging data pair from Visible
Human project, 1.875 mm resolution. Data 1: Sensor:
T2-weighted MRI, Coronal Pelvis Slice. Data 2: Sensor:
PD-weighted MRI, Coronal Pelvis Slice.
Of particular difficulty are the test sets Tests 1 and 2
involving pairs of LIDAR and optical data, as the feature
space used to represent LIDAR data is significantly
different than that used to represent optical data. For all
test sets, a total of 100 keypoints was automatically
selected from image f and the range of rotations is set to
iterations of 5�. To quantitatively evaluate the perfor-
mance of the proposed algorithm, each test set is
subjected to 10 random affine transformations and the
average root mean squared error (RMSE) is calculated on a
unit distance scale based on 20 gold standard keypoint
pairs manually selected from the images. For example, if
the data is at a 1 m resolution, the unit distance is 1 m. As
a comparison, another 20 gold standard keypoint pairs
were manually selected from the images and used to
estimate a transformation function. Furthermore, an
implementation of image registration by maximization
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of normalized mutual information, as well as the state-of-
the-art phase mutual information method proposed by
Mellor et al. [14,15] was also used for comparison. It is
important to note that all the algorithms are set up for
coarse-grained registration purposes for a fair comparison
since the purpose of the proposed method is for perform-
ing coarse-grained registration. As such, all algorithms are
evaluated on a pixel level basis as opposed to a sub-pixel
basis, thereby significantly reduces computational com-
plexity. In practice, the results obtained from coarse-
grained registration is used to initialize the fine-grain
registration process to obtain the final registration
between two images.

The RMSE for each test set is summarized in Table 1. It
can be observed that the average RMSE realized using the
proposed algorithm is lower than that achieved using the
maximization of mutual information method for all test
sets. Furthermore, it can be observed that the average
RMSE realized using the proposed algorithm is compar-
able to that achieved by the transformation function
produced using gold standard keypoints for all test sets.
This is important as the manual selection of keypoints is a
very complex and tedious process, and so is highly
undesired when compared to automated methods
that provide comparable registration performance. More
importantly, it can be observed that the average RMSE
realized using the proposed algorithm is comparable to
that achieved using Mellor’s method in Tests 6–7 and
noticeably lower in Tests 1–5, while having significantly
lower computational complexity. The proposed method is
particularly effective compared to the other methods in
Tests 1–3, which consists of images with highly complex
characteristics. It can also be observed that the accuracy of
the proposed method has not been reduced despite the
complexity of these test cases compared to the other test
cases. Examples of images are presented in Figs. 3–6. It
can be seen from the results that the proposed algorithm
provides a fast approach to phase-based matching of
multimodal images while achieving good accuracy.
7. Conclusions and future work

In this paper, we have introduced a fast approach to
phase-based registration algorithm for multimodal image
data. A novel multiscale phase-based feature extraction
method was proposed for determining both the location
and size of the dynamic phase sub-clouds being extracted.
Furthermore, a fast method for simultaneously perform-
ing both globally exhaustive dynamic phase sub-cloud
matching and polynomial feature space transformation
estimation in the frequency domain using the fast Fourier
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transform (FFT) was introduced. Experimental results
showed that good registration accuracy between images
existing in different feature spaces can be achieved when
compared with the state-of-the-art phase mutual infor-
mation method, while having significantly lower compu-
tational complexity. Future work includes investigating
the effect of different sub-cloud extraction methodologies
and alternative similarity metrics on the registration
performance of the proposed algorithm. Furthermore,
since the proposed framework is designed primarily for
the purpose of initial coarse-grained registration, it would
be of interest to combine the proposed method with a
fine-grained registration approach to achieve improved
registration accuracy.
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