

Extracting High-Level Intuitive Features (HLIF) For Classifying Skin Lesions Using Standard Camera Images

Robert Amelard,
Alexander Wong, David A. Clausi
Vision and Image Processing Group
University of Waterloo

Motivation

- Melanoma: deadliest skin disease
- Early detection
 - 5-year survival rate
- Dermatologists
 - Time-constrained
 - 82.6% correct malignant*
 - 70.0% correct benign*

Outline

- Clinical/Research Background
- Features
- Experiments
- Conclusions and Future Work

Clinically: ABCD

Asymmetry
 Border Irregularity
 Colour Patterns
 Diameter

- High-Level Intuitive Features (HLIFs)
 - Modeled from human-observable phenomena
 - Quantitatively describe ABCD

Clinical Decision Support System

Segmentation

Malignant Benign

Classification

Asymmetry

Border Irregularity

Colour Patterns

Diameter

Prior Work

- Dermoscopic images
 - Most prominent in literature
 - Limited clinical use*

Source: www.medilor.be

- Standard images
 - Very new
 - Low barrier to adoption
 - Technical challenges

What is State of the Art?

- 52 low-level features*
 - Abstract mathematical/statistical descriptions
- Computationally complex
- Sub-optimal results

Proposed Features: Asymmetry

$$f_1^A = \max_{\theta} \left\{ \frac{1}{2} \sum_{i=1}^{nbins} |H_1^{\theta}(i) - H_2^{\theta}(i)| \right\}$$

Proposed Features: Asymmetry

$$f_1^A = \max_{\theta} \left\{ \frac{1}{2} \sum_{i=1}^{nbins} |H_1^{\theta}(i) - H_2^{\theta}(i)| \right\}$$

WATERLOO

Example

$$f_1^A = 0.5300$$

$$f_1^A = 0.0960$$

UNIVERSITY OF WATERLOO

Proposed Features: Asymmetry

$$f_2^A = \frac{area(S_{low} \oplus S_2)}{area(S_{low} \cup S_2)}$$
 (Updated)

UNIVERSITY OF **WATERLOO**

Proposed Features: Asymmetry

$$f_2^A = \frac{area(S_{low} \oplus S_2)}{area(S_{low} \cup S_2)}$$
 (Updated

(Updated)

Example

$$f_2^A = 0.0801$$

Proposed Features: Asymmetry

$$f_3^A = (A_1 - A_2)/A$$
 with respect to L_1 ,
 $f_4^A = (A_1 - A_2)/A$ with respect to L_2 ,
 $f_5^A = (A_1 - A_2)/A_2$ with respect to L_1 ,
 $f_6^A = (A_1 - A_2)/A_2$ with respect to L_2

- 206 images from Dermatology Information System & DermQuest
- Linear Support Vector Machine
 - Sensitivity: % malignant cases identified
 - Specificity: % benign cases identified

Description	# features	Sensitivity	Specificity
Cavalcanti (Asym)	11	71.43%	58.62%
Proposed (Asym)	6	79.83%	68.97%

- 206 images from Dermatology Information System & DermQuest
- Linear Support Vector Machine
 - Sensitivity: % malignant cases identified
 - Specificity: % benign cases identified

Description	# features	Sensitivity	Specificity
Cavalcanti (Asym)	11	71.43%	58.62%
Proposed (Asym)	6	79.83%	68.97%
Cavalcanti	52	84.87%	78.16%

- 206 images from Dermatology Information System & DermQuest
- Linear Support Vector Machine
 - Sensitivity: % malignant cases identified
 - Specificity: % benign cases identified

Description	# features	Sensitivity	Specificity
Cavalcanti (Asym)	11	71.43%	58.62%
Proposed (Asym)	6	79.83%	68.97%
Cavalcanti	52	84.87%	78.16%
Cavalcanti Modified	48	86.55%	75.86%

- 206 images from Dermatology Information System & DermQuest
- Linear Support Vector Machine
 - Sensitivity: % malignant cases identified
 - Specificity: % benign cases identified

	Description	# features	Sensitivity	Specificity
	Cavalcanti (Asym)	11	71.43%	58.62%
>	Proposed (Asym)	6	79.83%	68.97%
	Cavalcanti	52	84.87%	78.16%
	Cavalcanti Modified	48	86.55%	75.86%
	New Feature Set	54	91.60%	80.46%

(Updated)

Conclusions

- High-level intuitive features (HLIFs) result in understandable, low-dimensional feature spaces
- Adding HLIFs to low-level features generates very high success metrics
- HLIFs are generalisable!

Future Work

- Design HLIFs to describe Border Irregularity,
 Colour Patterns
- Test on larger data set, more statistical meaning
- Diagnosis can be "queried" by doctor for rationale
- Saving more lives through early detection

Thank You!

ramelard@uwaterloo.ca

http://vip.uwaterloo.ca

UNIVERSITY OF WATERLOO

Sources of Error

Missed malignant cases

Missed benign cases