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Motivation

e Melanoma: deadliest skin disease
e Early detection

— 5-year survival rate

* Dermatologists
— Time-constrained
— 82.6% correct malignant*
— 70.0% correct benign*

*Morton & Mackie 1998
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Clinically: ABCD

* Asymmetry
Border Irregularity
Colour Patterns
Diameter

* High-Level Intuitive Features (HLIFs)

— Modeled from human-observable phenomena
— Quantitatively describe ABCD

*All images courtesy of www.dermis.net unless noted



http://www.dermis.net/

UNIVERSITY OF

WATERLOO
Clinical Decision Support System
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Prior Work

* Dermoscopic images
— Most prominent in literature
— Limited clinical use*

e Standard images
— Very new
— Low barrier to adoption
— Technical challenges

*Engasser & Warshaw 2010
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What is State of the Art?

e 52 low-level features*

— Abstract mathematical/statistical descriptions
 Computationally complex
e Sub-optimal results

*Cavalcanti et al. 2011
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Proposed Features: Asymmetry
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Example

% of pixels
W =

f* = 0.5300

Normalized Histogram Normalized Histogram

£ = 0.0960
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Proposed Features: Asymmetry

= Original Boundary
——2-Frequency Reconstruction
~—5-Frequency Reconstruction

area(Siy, B S2)
area(Sipe U S2)  (Updated)

fi' =



UNIVERSITY OF

WATERLOO

Proposed Features: Asymmetry
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Example

= Original Boundary
= 2-Frequency Reconstruction
- h-Frequency Reconstruction

= Original Boundary
——2-Frequency Reconstruction
~——5-Frequency Reconstruction

£t =0.1199 f3 = 0.0801
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Proposed Features: Asymmetry

QOriginal Lesion Major Axis (L,I) Minor Axis (Lz)

f = (A, — Ay)/A with respect to Ly,
f! = (A; — As)/A with respect to Lo,
f2 = (A; — As) /A, with respect to Ly,
f = (A; — Ay)/A, with respect to Ly
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Results

e 206 images from Dermatology Information
System & DermQuest

* Linear Support Vector Machine
— Sensitivity: % malignant cases identified
— Specificity' % benign cases identified

Cavalcanti (Asym) 71.43% 58.62%
Proposed (Asym) 6 79.83% 68.97%

(Updated)
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e 206 images from Dermatology Information
System & DermQuest

* Linear Support Vector Machine
— Sensitivity: % malignant cases identified
— Specificity' % benign cases identified

Cavalcanti (Asym) 71.43% 58.62%
Proposed (Asym) 6 79.83% 68.97%
Cavalcanti 52 84.87% 78.16%
Cavalcanti Modified 48 86.55% 75.86%
—2> New Feature Set 54 91.60% 80.46%

(Updated)
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Conclusions

* High-level intuitive features (HLIFs) result in
understandable, low-dimensional feature

spaces

 Adding HLIFs to low-level features generates
very high success metrics

 HLIFs are generalisable!
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Future Work

Design HLIFs to describe Border Irregularity,
Colour Patterns

Test on larger data set, more statistical
meaning

Diagnosis can be “queried” by doctor for
rationale

Saving more lives through early detection



Thank Youl!

ramelard@uwaterloo.ca

http://vip.uwaterloo.ca
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Sources of Error

Missed benign cases



