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Abstract. The most commonly used shape similarity metrics are the
sum of squared differences (SSD) and the sum of absolute differences
(SAD). However, Maximum Likelihood (ML) theory allows us to relate
the noise (differences between feature vectors) distribution more gener-
ally to a metric. In this paper, a shape is partitioned into tokens based
on its concave regions, invariant moments are computed for each token,
and token similarity is measured by a metric. Finally, a non-metric mea-
sure that employs heuristics is used to measure the shape similarity. The
desirable property of this scheme is to mimic the human perception of
shapes. We show that the ML metric outperforms the SSD and SAD met-
rics for token matching. Instead of the ML metric based on histograms
for PDF approximation, which suffer from being sensitive to choices of
bin width, we propose a Parzen windows method that is continuous and
more robust.

1 Introduction

In recent years, content-based image retrieval (CBIR) has become a major re-
search area due to the increasing number of generated images every day [1].
CBIR uses generic image features such as color, texture, and shape to interpret
the content of images. In this work, we are interested in using shape descriptors
in CBIR. Given a query image, we would try to obtain a list of images from a
database of shape images, which are most similar to the query image. This prob-
lem can be solved in two stages. Firstly, a feature vector represents the shape
information of the image. Then, a similarity measure computes the similarity
between corresponding features of two images.

A desirable property of a similarity measure is that it should mimic the
human perception of shapes. In fact, it has been verified that metric distances
between feature points are not suited to model perceptual similarity between
shapes [2]. This fact is illustrated in Fig. 1, where shapes a and b are similar,
i.e., d(a, b) is small. Similarly, d(b, c) is small. Whereas shapes a and c are very
different, i.e., d(a, c) is large. So, d(a, b) + d(b, c) < d(a, c), which violates the
triangular inequality. Therefore, the perceptual distance measure is non-metric.
On the other hand, a metric distance has the desirable properties, i.e., symmetry,
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Fig. 1. Example of the triangular inequality failure. See text for explanation.

linearity, and triangularity, which make it efficient in determining the distance
between two feature vectors.

In this paper we evaluate and compare shape retrieval efficiency using dif-
ferent metrics as the similarity measures for tokens. Each shape is partitioned
into tokens in correspondence with its concave regions. Then, seven invariant
moments are computed for each token, which are invariant to translation, scale,
and rotation. A metric distance is used to measure the similarity between to-
kens. Three metric distances are considered, namely, SSD, SAD, and ML. A
non-metric distance that employs heuristics is used to measure the similarity
between shapes. It is chosen to be the majority vote, that is, a query shape
is considered most similar to the shape in the database that shares the largest
number of similar tokens with the query shape.

2 Shape Representation and Feature Extraction

Shape representation techniques can be categorized as structural versus global
[3]. The main advantages of structural representations are the spatial localization
of features and handling multi-object shapes. In the other hand, global repre-
sentations are compact and, therefore, classical pattern recognition techniques
can be applied. However, these global descriptors are imprecise to describe com-
plex shapes. In order to take the advantages of both representations, a complex
shape is decomposed into simpler shapes or tokens using a structural approach
and global descriptors are obtained for the tokens.

2.1 Convex Hull
A non-convex shape can be analyzed by describing its concave regions. These
can be identified by computing the difference between the convex hull of the
shape and the shape itself. Borgefors and Baja proposed a technique to find
the convex hull of a shape by repeatedly filling local concavities [4]. A good
approximation of the convex hull can be achieved using 5 × 5 neighborhood of
the shape’s boundary elements. More precisely, the algorithm works as follows:

1. Each boundary pixel, i.e., a background pixel with at least one shape pixel
neighbor, is labeled with the number of its shape pixel neighbors.

2. Boundary elements labeled more than 4, together with border elements la-
beled 4 and having at least one neighbor labeled more then 2 are changed
to grey.

The above algorithm is repeated until all concavity regions are filled. The
resulted grey envelope that includes the shape represents the convex hull as
shown in the example of Fig. 2.
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Fig. 2. Result of the concavity filling algorithm: (a) original image, and, (b) the ap-
proximation of its convex hull.

2.2 Invariant Moments

The use of invariant moments to affine transformations (translation, scale, ro-
tation, and skewness) is the most popular method for shape description. For a
digital image, the moments are approximated by:

mpq =
∑

x

∑
y

xpyqf(x, y) (1)

Where the order of the moment is (p + q), x and y are the pixel coordinates rel-
ative to some arbitrary standard origin, and f(x, y) represents the pixel bright-
ness. To make the moments invariant to translation, scale, and rotation, first the
central moments are calculated:

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y)

x̄ = m10
m00

, ȳ = m01
m00

(2)

Then, the normalized central moments are computed:

ηpq =
µpq

µλ
00

, s.t. λ = 1 +
p + q

2
and (p + q) ≥ 2 (3)

From these normalized parameters a set of invariant moments, found by Hu [5],
can be calculated, which contain terms up to third order:
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3 The Proposed Technique

An overview of the proposed system for shape retrieval is shown in Fig. 3. As can
bee seen in the figure, two distinct measures of distance have been used: token
(metric) and shape (non-metric) distances. The shape distance is obtained by
combining token distances in order to derive a global measure of shape similarity.
It is chosen to be the majority vote, that is, a query shape is considered most
similar to the database shape that shares the largest number of similar tokens
with the query shape. This measure is simple and, to some extent, mimics the
human perception. Another desirable property of this scheme is that it provides
means for partial matching.

Fig. 3. The proposed system for shape retrieval.

All shapes in the database as well as a query shape are partitioned into tokens
by subtracting each shape from its convex hull. To obtain a compact and dis-
criminative description of these tokens, seven invariant moments are computed
for each token. Then, for each query token, the database tokens are sorted using
a metric. The metric matching in the tokens level results in a number of candi-
date shapes according to the user preference of the number of retrieved shapes.
In the final stage, the candidate shape that shares the largest number of similar
tokens with the query shape is considered the best match.

4 Maximum Likelihood Approach

In this section, three metrics that are used in the metric matching stage are
viewed and explained. The difference vectors between each query token and all
tokens in the database can be viewed as a noise with certain PDF. Sebe et al.
showed how ML theory is used to relate the noise distribution to a metric [6].
Specifically, given the noise distribution, the metric that maximizes the similarity
probability is:

M∑

i=1

ρ (ni) (5)



Where ni represents the ith bin of the discretized noise distribution, M is
the number of bins, and ρ is the maximum likelihood estimate of the negative
logarithm of the probability density of the noise. In the case where the noise is
Gaussian distributed, the PDF satisfies:

P (ni) ∝ exp
(−n2

i

)
(6)

Substituting (6) in (5) results in the so-called SSD or L2 metric:

L2(x, y) = −
M∑

i=1

log (P (ni)) =
M∑

i=1

(xi − yi)
2 (7)

Similarly, for the two-sided exponential noise:

P (ni) ∝ exp (− |ni|) (8)

Substituting (8) in (5) results in the so-called SAD or L1 metric:

L1(x, y) =
M∑

i=1

|xi − yi| (9)

If the noise is Gaussian distributed, then (7) is equivalent to (5). Therefore,
in this case the corresponding metric is SSD. In the same way, if the noise
is exponential, then (9) is equivalent to (5) and the corresponding metric is
SAD. However, if the noise distribution is neither Gaussian nor exponential, a
metric can be extracted directly from the PDF of the noise, called the maximum
likelihood metric, using (5):

LML(x, y) = −
M∑

i=1

log (P (xi − yi)) (10)

In practise, the probability density of the noise can be approximated as the
normalized histogram of the differences between the corresponding feature vector
elements [7]. For convenience, the histogram is made symmetric around zero by
considering pairs of differences (e.g., x−y and y−x). Nevertheless, the histogram
approach for approximating the PDF of the noise suffers from being sensitive
to the choice of the bin width (shift variant) and discontinuous. To overcome
these drawbacks, Parzen windows method is employed where each noise point
contributes linearly to the approximated PDF in the small proximity around
that point using a given kernel function. Expressly, the approximated PDF is
given by:

P (n) =
1
M

M∑

i=1

1
hn

φ

(
n− ni

hn

)
(11)

Where M is the number of training points or kernels, φ(.) is the kernel
function, and hn is the width of the kernel function. Too small width results in
a noisy P (n), where as too large width over-smoothes it.



5 Results and Discussions

In the following, the retrieval efficiency of the proposed system is evaluated
with more emphasis on role of the metric matching of tokens on the overall
performance of the system. Each training image in the database is partitioned
into tokens based on its concavity regions and the seven invariant moments are
computed for each token. The result is a token database of labeled feature vectors
of fixed size. Then, the query image is partitioned in the same way as training
images and each query token is matched to its closest tokens from the database
using a metric. Three metrics are used for token matching, SSD, SAD, and ML.
The similarity between two shapes is measured based on the largest number of
the shared similar tokens.

A database of 216 images of 18 shapes (12 images per subject) is used to
test our system as shown in Fig. 4. Two experiments are performed to evaluate
the retrieval accuracy using different metrics. In the first, the aim is to test the
system ability to retrieve the correct shape among a certain number of retrieved
database shapes. In other words, the precision is plotted versus the number
of retrieved shapes. The intention in the second experiment is to evaluate the
system’s ability to learn from few examples, i.e., the retrieval accuracy as the
number of training images per subject changes.

Fig. 4. The shape database used to test our system.

The results of the first experiment are shown in Fig. 5 (a). A retrieved shape
is considered correct only if it belongs to the same subject of the query shape.
So, similar shapes are not considered correct matches as long as they belong to
different subjects. As can be seen in the figure, the ML metric outperforms both
SSD and SAD metrics. Fig. 5 (b) shows the outcome of the second experiment.
It can be noticed that the accuracy of the system does not improve significantly
when more than five training images per subject are used, which means the
system is able to learn from few examples. As in the first experiment, the ML
metric does better than other metrics.

Finally, χ2 test is used to prove whether the noise distribution follows Gaus-
sian or exponential distributions or not. For χ2 goodness-of-fit computation, the
test statistic is defined as:



χ2 =
M∑

i=1

(Oi − Ei)
2

Ei
(12)

Where Oi is the observed frequency and Ei is the expected frequency for bin
i. The hypothesis that the data are from a population with the specified distri-
bution is rejected if χ2 > χ2

(α,k), where χ2
(α,k) is χ2 percentage point function

with k degrees of freedom and a significance level of α. The results of χ2 test are
shown in Fig. 6. It can be deduced that the noise distribution is not Gaussian
nor exponential, although the exponential fit is better than the Gaussian. These
findings justifies the outcomes of the previous experiments where the SAD met-
ric performed better than SSD metric and the ML metric outperforms both SSD
and SAD metrics.
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Fig. 5. Accuracy of retrieval using different metrics versus (a) the number of retrieved
images using one-third of the database for training and two-thirds for testing, and, (b)
the number of training images per subject using three retrieved images.

6 Conclusions

In this paper, a scheme for shape retrieval is proposed. The used shape similarity
measure is non-metric and, roughly, mimics the human perception of shapes.
However, it makes use of the advantages of the metric similarity measures in
the tokens matching. The problem of finding the appropriate metric to use for
token matching is addressed. From the experiments, the SSD and SAD metrics
are not justified because the similarity noise distribution is not Gaussian nor
exponential, respectively. The ML metric, extracted directly from the noise PDF,
outperformed both SSD and SAD metrics. Parzen windows method was used
to approximate the noise PDF. It is more robust than the histogram method,



which is sensitive to the choice of the bin width. In the other hand, the main
drawback of the ML metric is that, like most nonparametric approaches, it is
computationally expensive. In applications where the speed is not a priority, the
ML metric is a suitable choice.

Fig. 6. Results of χ2 test of the goodness-of-fit of the noise to the Gaussian and expo-
nential distributions.

References

1. Berretti, S., Bimbo, A., Pala, P.: Retrieval by shape similarity with perceptual
distance and effective indexing. IEEE Transactions on Multimedia. 2 (2000) 225–
239

2. Berretti, S., Bimbo, A., Pala, P.: Retrieval by shape using multidimensional indexing
structures. ICIAP. (1999)

3. Zhang, D.S., Lu, G.: Review of shape representation and description techniques.
Pattern Recognition 37 (2004) 1–19

4. Borgefors, G., Sanniti di Baja, G.: Analyzing non-convex 2d and 3d patterns. CVIU.
63 (1996) 145–157

5. Hu, M.: Visual pattern recognition by moment invariants. IRE Trans. On Informa-
tion Theory. 8 (1962) 179–187

6. Sebe, N., Lew, M.S., Huijsmans, D.P.: Toward improved ranking metrics. IEEE
Trans. On PAMI. 22 (2000) 1132–1141

7. Sebe, N., Lew, M.S.: Maximum likelihood shape matching. ACCV. (2002) 713–718


