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ABSTRACT

The extraction of contours using deformable models, such
as snakes, is a problem of great interest in computer vision,
particular in areas of medical imaging and tracking. Snakes
have been widely studied and many methods are available.
In most cases, the snake converges towards the optimal con-
tour by minimizing a sum of internal (prior) and external (im-
age measurement) energy terms. This approach is elegant, but
frequently mis-converges in the presence of noise or complex
contours.

To address these limitations, a novel discrete snake is pro-
posed which treats the two energy terms separately. Essen-
tially, the proposed method is a deterministic iterative statis-
tical data fusion approach, in which the visual boundaries of
the object are extracted, ignoring any prior, employing a Hid-
den Markov Model (HMM) and Viterbi search, and then ap-
plying importance sampling to the boundary points, on which
the shape prior is asserted. The proposed implementation is
straightforward and achieves dramatic speed and accuracy im-
provement compared to other methods.

Index Terms— Snake, Curvature guided importance sam-
pling, HMM, Viterbi Algorithm, Statistical data fusion

1. INTRODUCTION

Locating the exact boundaries of objects has many applica-
tions in object tracking [1], content based image and video re-
trieval systems [2], robotics and biomedical engineering [3].
Energy minimizing splines, such as deformable snakes or ac-
tive contours, are the key approaches in the computer vision
literature for such boundary extraction problems. The princi-
pal idea in active contour modeling is to minimize the sum of
internal (prior) and external (image-based) energies to obtain
an optimum boundary. The internal energy typically asserts a
first- or second-order smoothness constraint on the boundary,
whereas the external energy applies a “force” on the bound-
ary, creating an attractive force towards areas of high gradi-
ent. Since the original development of snake methods [1],
many modifications have been attempted to overcome vari-
ous shortcomings, primarily concentrated on altering the ex-
ternal energy, such as pressure based balloon force [3], dis-

tance transformed image gradient [4, 2], and gradient vector
flow [5].

Traditional snakes have two problems. First, if the initial
position is too far from the object boundary then the snake
requires many iterations (and thus a long time) to converge, a
particular concern in tracking or real-time problems. Second,
standard snake algorithms do not guarantee convergence and
tend to be very sensitive to noise and false weak edges. Both
of these difficulties have seen considerable research attention,
such as Gradient Vector Flow snake (GVFS) and the distance-
transform based snake (DTS) of Cohen [4], or a balloon based
pressure force [3] has been proposed which attracts active
contours towards strong gradients, seeking to avoid noise and
false gradients. However, in both cases there remain a number
of parameters for the user to tune, parameters which vary from
image to image.

In this paper, a novel deformable model for the accurate
localization of object boundaries is introduced. Instead of
minimizing the total energy of a snake, like most existing
methods, our method performs coordinate descent, alternately
maximizing the external energy within a specified region, then
applying the prior constraints to force the boundary to sat-
isfy required smoothness. The adaptivity of the method to
sharp corners is satisfied by importance sampling the snake
boundary points on the basis of curvature. Although our ap-
proach is parametric, users do not need to tune parameters for
each image as the parameters are derived implicitly from im-
age curvature and gradient. This proposed technique dramat-
ically reduces computation time and improves the quality of
the boundary solution compared to published snake methods
irrespective of boundary geometry, image intensity and noise.

The rest of paper is organized as follows. Section 2 briefly
addresses conventional snakes. Section 3 explains the pro-
posed method, results of which and comparisons to other
methods are given in Section 4.

2. BACKGROUND
A deformable model or snake is a spline

v(s) = [z(s),y(s)l,s € [0, L] (1)



where s is the arclength along the snake and L is the total
length of snake. The “Energy” of a given snake is given by
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where we see two terms, an internal energy function which be-
haves like a prior model, a smoothness constraint on the snake,
and a second energy term F..;, which is the external image
force, generally assigned as the negative gradient of image in-
tensity (—V ). The desired solution is found by minimizing
Es1q1, normally by discretizing the arclength s, representing
the snake contour by some number of spline points.

3. PROPOSED METHOD

This proposed method involves the three iterative steps of op-
timal curve finding based on image gradients, snake point re-
sampling, and snake estimation with prior constraints. Each
of these steps is briefly described below.

3.1. Viterbi algorithm

We first seek a local perturbation to the current snake which
gives the strongest fit to the image gradients. We are able
to find the optimum local solution by formulating the prob-
lem as a Hidden Markov Model (HMM) and using a Viterbi
search [6]. The discrete snake is defined in terms of ¢ — 1
straight line segments, parameterized by ¢ discrete points, as
illustrated in Fig 1(a). We search for image gradients nor-
mally to the snake curve at each of the ¢ locations, such that
each normal has p nodes distributed along its local length, also
plotted in Fig 1(a). Each node represents a potential solution
along that normal and, as a result, across all normals there
are p? potential solutions. Given measurements of F.,; for
each of the p? points, our goal is to find the best sequence
of states which will maximize the probability function along
the selected curve. The Viterbi algorithm computes the partial
probability of each node in the trellis and identifies the most
likely occurring path.

3.2. Curvature guided importance sampling

Due to image noise, the absence of prior constraints, the use of
a local search, and the implicit first order Markov assumption,
the optimal snake of the Viterbi method is typically not the
desired snake. We will wish to assert constraints on the snake;
in general, prior models for active contours choose first or sec-
ond order constraints, which may cause problems for objects
having high-curvature boundaries.

Therefore we propose a novel method to generate snake
points using importance sampling of the local curvature (K)

along the snake which will ensure more samples in high cur-
vature regions, as illustrated in Fig 1(e). The density of sam-
ples is made proportional to the absolute value of curvature,
but with a modified rejection approach to enforce upper and
lower limits on the sample density, to avoid high-density sin-
gularities, and to avoid long under-sampled curves.

3.3. Statistical estimation

The prior constraints need to be accounted for and a trade-
off between the strength and significance of the image gradi-
ents versus the smoothness desired by the prior must be es-
tablished. To directly incorporate prior shape models into the
Viterbi approach is very difficult, even for relatively simple
second-order constraints. For this reason that we have pro-
posed a divided approach, allowing us to set up a prior-free
Viterbi optimization, followed by a measurement — prior fu-
sion step, here. Measurements of image gradient are taken at
each resampled location,such that a measurement weight (es-
sentially a measurement variance) is assigned to each sample
based on the strength of the local gradient. The measurement
— prior fusion proceeds as regular linear least squares [7].
where we assume a second-order prior, P, with measurements
in M and the measurement weights (variances) in R.

Z=(C'R7'C+ P Y IC'R'M 3)
4. RESULTS AND CONCLUSIONS

We haved tested the proposed method on both synthetic and
standard, published images (Face [8], disc [2], starfish [9], and
thin u [5]). Experiments were performed on 2.6GHz AMD
Athlon dual core machine.

For comparison purposes, published MATLAB code for
the Gradient Vector Flow (GFV) snake, Traditional snake,
Balloon Force (BF) snake and Distance Transformed Force
(DTF) snake were acquired. For our method, the sampled
points were constrained to be between 0.5 and 3.0 pixels
apart. Parameters for the other four methods were set accord-
ing to [5] and fixed for all test sets.

The results are shown in Fig. 3 and Fig. 4.In our proposed
method, the snake parameters are guided by curvature and im-
age gradients alone; as a result, the proposed method works
effectively for all four images without adjusting any parame-
ters. In contrast, the four comparative methods are sensitive
to fixed parameters and no other method can effectively iden-
tify the necessary boundary for all test images. In particu-
lar, only our proposed method found the appropriate bound-
ary for the starfish (B) and Face (D) image, which have com-
plex boundary and also have an intensity that is highly non-
uniform. The disc (C) poses challenges with a variety of edge
strengths throughout the image and two of the methods (DTF
snake and BF snake) did not converge for this image.

Fig 4 shows that the proposed method gives the best per-
formance for both speed and MSE for all images across all
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Fig. 1. Ilh(lz;)tration of one iterati((?r)l of proposed metho(g)on a U-shaped obje(c(? (a) A circle (grey (leizle) shows the initial(gositions of the
snake, the jagged line shows a potential snake solution, and the small circles shows the nodes of Viterbi trellis. (b) The grey line shows the
optimal snake after a Viterbi search. (c) Absolute value of curvature of the curve obtained using Viterbi search (X -axis arc length, Y -axis
curvature). (d) CDF of absolute value of curvature on which importance sampling is carried out (e) Small circles are the particles generated
using importance sampling on curvature of optimal Viterbi snake. (f) The grey line shows the estimated snake as the initial snake to start the

next iteration.
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Fig. 2. Nature of convergence pattern of proposed method at various initial snake positions and geometry of object. White line and gray dots
inside white line of Figure 2(a), (b), (c) and (d) are initial circular and final snake respectively. (e) shows the rate of convergence and remaining
depth of hole (Y — axis) as a function of hole ’V-angle’ (X -axis).

snake algorithms. Clearly, the proposed method is robust to
noise relative to its peers Fig 3 (c), since the proposed method
is the only method to successfully identify the diamond at all.
GVFS, Traditional snake and Balloon force snake works well
for image of Fig 3 (c), when the size of image is (64) and
higher value of 0 = 5 is used for denoising, but, in this pa-
per the size of the u-shaped object is 512 x 512. On average,
the proposed method is found to be 7 times faster with a 45
percent reduction in MSE.

In terms of sensitivity to concave shape, Fig. 2 shows four
"V’ shape concave object and their successful convergence us-
ing the proposed method. In contrast, the balloon force (BF)
snake requires that the initial snake be placed fully within the
solution boundary [5]. Also, the Traditional snake requires an
initial snake close to its solution to encourage speed of con-
vergence and accuracy [5]. Further, slower convergence speed
is a consistent concern for the GVF snake method.

In terms of parameter settings, a thorough experiment has
been conducted to understand the effect of parameter estima-
tion on the final solution for each of the five methods. That
the final solution of our proposed method does not vary sig-
nificantly for a wide range of parameters within the domain of
our test case has been observed. However, for the other meth-
ods proper values of parameters are important for the snake
to converge to the true solution. A test case showing how the
convergence rate and difficulty in converging to very high cur-
vature object is depicted in Fig. 2 (e), there we have plotted ra-
dial angle (an indicator of curvature) against convergence rate
and remaining depth of gap for proposed snake.

We have proposed a novel deformable contour estima-
tion method that is faster and more accurate than existing
approaches. The method converges for a wide variety of diffi-
cult images, and is comparatively insensitive to initialization
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and parameter settings.
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Fig. 3. Column 1 shows initial circular snake. Column 2 shows snake generated using proposed method. Columns 3 to 6 show results using
four other snake techniques [1, 3, 4, 5]. Black lines bounded by yellow lines are final contours. All four rows show images (A, B, C and D)
obtained from [2, 5, 8, 9]. The proposed method is the only one that can properly identify the object boundary for each image. Some test cases
did not converge (DNC).

> JP b ae d method
ailed to converge - ailed to conver_ia roposed metho
N Ok x >
D % $ Traditiona shake
—~ w0 T T T
(V) ‘ d§ 8
- 10} ECI D 1 g 10 @ @ B g 1 3 Distance force snake
o2l $ -8 I:I
> @ g O |> Ballon force snake
g O O 210 A ‘ ‘ ‘
T N e 2 ®  ® (© O GvF snake
(A (BI)m © O 2 Images
ages
(@) (b) (c)

Fig. 4. Performance indices in terms of MSE and Execution time (sec). (a) MSE for each method across all four test images. (b) Execution
time (in seconds) for each method across all four test images. (c) Symbols associated with each method.



