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Abstract- Tools are required to assist the identification
of pertinent classes in SAR sea ice imagery. Texture mod-
els offer a mean of performing this task. The texture in-
formation in SAR sea ice imagery can be characterized
by two Markov random field models: the Gauss model
for conditional distribution of the observed intensity im-
age and the discrete model for the underlying texture label
image. The segmentation can be implemented as an opti-
mization process of maximizing a posteriori distribution
in a Bayesian framework.

1. INTRODUCTION

The interest in sea ice properties and behavior derives from
their roles in areas such as navigation, offshore oil explo-
ration, and climate modelling. With the development of re-
mote sensing techniques, a vast amount of SAR sea ice im-
agery is being provided by satellite platforms. As an impor-
tant aspect of measurement, monitoring, and understanding of
sea 1ce evoluton during the seasons, the generation of ice type
maps is a fundamental step in the interpretation of these data.

The abundant texture information in SAR imagery is use-
ful for segmentation of the pertinent ice types. Statistically
based co-occurrence probabilities have been used to classify
ice types in SAR imagery for years. This method suffers from
having to select quantization, displacement, orientation val-
ues as well as the window size for building the gray level co-
occurrence matrix. To explore a coherent theoretical frame-
work to support more robust and more powerful algorithms is
appealing. When model-based Markov random fields (MRFs)
are used for texture analysis, they are demonstrated to have
different abilities from the co-occurrence method [1]. Using
MRFs methods, texture 1s analyzed as having preferred rela-
tions and interactions that can be articulated mathematically,
and then a Bayesian framework can be employed to make in-
ferences. Encouraging results have been obtained using MRFs
for unsupervised Brodatz texture segmentation [2].

Sea ice is a complex and dynamic material. Its representa-
tion in a SAR image is dependent on many variables including
SAR sensor properties, prevailing weather conditions, and ge-
ographical conditions. Many texture analysis papers use Bro-
datz imagery for testing [3] . Unfortunately, the texture ap-
pearance of a consistent ice type is not as regular as a Brodatz
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texture. Trained human operators often need ancillary infor-
mation m order to properly segment a SAR sea ice imagery.In
this case, the design of texture models and accurately estimat-
ing the model parameters will become a key concern for a
successful segmentation.

2. IMAGE MODELS IN MARKOV RANDOM FIELDS

Observing an image, if it is not a random noise image, we can
notice that the intensity value of a pixel is highly dependent
on the intensity values of its neighborhood pixels. This phe-
nomena can be called local similarity. In fact, in image pro-
cessing, the notion of near neighbor dependence is pervasive.
MRFs provide a mathematical tool to model this dependence.

The Hammersley-Clifford theorem [4] gives MRFs the abil-
ity to model global properties using local constraints. Because
of this, MRFs models are commonly used priors in tmage pro-
cessing. Let X (4, j) be a random variable at a site (4, j) on the
N x N lattice system S. For convenience, X (¢, j) can be la-
belled as X,, s = 1,2,..., M where M = N?, Thesiter is a
neighbor of s if P(X,|X1, X2, -+, X 1, Xsy1, - Xn)
depends on X,. Associated with each pixel is a set of ran-
dom variables representing the states of the corresponding at-
tributes of pixel s. For texture segmentation, we can define
the image X = {XT, XL} where X7 is the observed inten-
sity image, and X7 is the texture label image corresponding
to the intensity image where each label gives the texture type
of the associated pixel.

Under this definition for the image X, our observation is
not complete: we observe the mtensity image, which can be
called the degradation model, but not the label image. Our
segmentation purpose is then to estimate the label image based
on the degradation model and our prior information about the
degradation model and the label image. Incorporating the
prior information about the image X here means to select the
appropriate MRFs models to describe the underlying structure
of the intensity image and the label image. Viewing the liter-
ature, many models using MRFs are presented for various im-
age processing problems. Krishmanachari and Chellappa [2]
have demonstrated the applicability of using Gauss-Markov
random fields (GMRFs) and pairwise interaction models to
model the mtensity image and label image respectively.
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Fig. 1. Neighborhood structure of GMRF.

2.1. Pairwise Interaction Model

The local conditional probability of the label image can be
modelled as [2]:

L L _ CiCP{ﬂU(ls)}
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where v, is the neighborhood set of a pixel s in the label im-
age, and each pixel carries a class label ,, 1, € {1,2,---, L}.
U(ly) is the number of neighbors in 4, that belong to same
class as [,.

2.2. Gauss Markov Random Field Model

Let 7, represent the neighborhood set of a pixel s in the inten-
sity image. The structures of the GMRF model for different
neighborhood orders are shown in Fig. 1. The vector # con-
tains the parameters shown in Fig. 1. If X7 is a GMRF, then
the intensity value of a pixel can be written as [2]:

X! = Z 6. X, +e, @
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where ¢, is a zero mean, Gaussian noise. The conditional
density of the intensity image X7 at site s which carries a
class label I, can be written as[2]:
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where ¢ is also a parameter of the GMRF model.

3. SEGMENTATION IN A BAYESIAN FRAMEWORK

Based on the definition of image X, segmentation can be for-
mulated as an optimization process involving maximizing a
posteriori:

P(XT|XE)P(XT)

p(xL|xIy — PXT)
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Fig. 2. Original and synthesized textures (a) Original cotton
texture (b) Synthesized cotton texture (c) Original ripple tex-
ture (d) Synthesized ripple texture.

This approach is also called a MAP estimate: given the ob-
served intensity image X7, choose the most likely label im-
age X~ which maximizing the posteriori distribution Eqn.4.
Searching all the possible configurations of label image for a
global optimum is computationally infeasible. To overcome
the computational difficulty, the optimal solution can be ob-
tained using a local optimization approach: the iterated con-
ditional mode method ICM [5]:
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The distribution for P (X! |X%) and P(XL| XL, r € p,) have
been described in the previous section. Finally maximizing
Eqn.5 is equivalent to assigning a label to each pixel to mini-
mize [2]:
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Minimizing Eqn.6 involves three tasks: model order deci-
sion, model parameters estimation, and pixel based segmen-
tation. Model order is one of the most important concerns
for a successful segmentation. Usually, the more complicated
the texture, the higher order model should be used. Although
using MRF models to describe the structure of the texture is
theoretically appropriate, accurate estimation of the model pa-
rameters using the observed data is still an open issue. In our
case, the parameters for the two image models mentioned in
the previous section should be estimated. For pairwise inter-
action model, the only parameter 3 characterizes the binding
between textures of the same class. In our experiment, 3 is
set between 1 and 3. There are many existing methods for
estimating the GMRF parameters, but none of them can guar-
antee both consistency and stability. The least squares esti-
mate is selected, which can provide appropriate estimates for
segmentation purpose and computational efficiency.The final
step in the segmentation algorithm is pixel based deterministic
relaxation which is an optimization processing by minimizing
Eqn.6. This algorithm, called iterated conditional mode, was
first proposed by Besag [5].
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Fig. 3. (a) Synthesized textures and segmentation result (b)
Brodatz textures and segmentation result.

4. RESULTS AND DISCUSSION

Some preliminary results are reported in this section. First the
parameter estimation method is tested by synthesizing some
GMRFs textures using the parameters estimated from texture
images with known parameters as well as from observed im-
ages without knowing the parameters. The typical results of
texture synthesis from the observed Brodatz images are shown
i Fig.2. The cotton texture is synthesized using fifth order
model while the second order model is more suitable for rip-
ple texture. Fig.3 shows the segmentation results of synthe-
sized and Brodatz textures. The Brodatz texture segmentation
result is obtained using a third order model. In our exper-
iment, the second order model cannot distinguish the middle
texture from the others, and the fourth order model is very sen-
sitive to the small local variation in the same texture. The sea
ice data is extracted from X-band, HH polarization, STAR-1
SAR imagery of Mould Bay [6]. The ice types include first-
year rough(FYR) and multi-year(MY) ices. The segmentation
result is shown in Fig.4. Comparing the result with Brodatz
texture, this algorithm dose not work currently well for ice
1magery. We are working on obtaining a consistent estimation
of model parameters for SAR sea ice imagery.

The underlying structure of texture determines the kind of
MRF models that should be used for texture analysis purposes.
The Gauss model has been successfully used in simulation,
classification and segmentation of textures with structures can
be modelled within a limited spatial range of pixel interac-
tion. However, the larger order GMRF model cannot be used
in practice because of the computational burden. In practice,
it is also difficult to choose the most suitable model size for
a given type of texture. Kashyap and Chellappa presented
an algorithm [3] for quantitatively deciding the GMRF model
structure. But one has to explore all the possible models to
find an appropriate size, which is a process with combinato-
rial complexity.

Fig. 4. (a) SAR sea ice image (b) Segmentation result.

5. CONCLUSIONS

Unsupervised segmentation of texture imagery is a difficult
problem in computer vision. An algorithm for sea ice unsu-
pervised segmentation using MRFs technique has been pre-
sented in this paper. This model-based MRFs method can be
a candidate approach for sea ice segmentation. The main dif-
ficult of using this method is that the model structure and its
parameters are unknown and need to be estimated from the
given image before segmentation. For a robust application,
more research needs to be performed in obtaining an appro-
priate model estimation method.
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