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Abstract

With the development of remote sensing techniques, a vast amount of SAR sea

ice imagery is being provided by satellite platforms. As an important aspect of mea-

surement, monitoring, and understanding of sea ice evolution during the seasons,

the generation of ice type maps is a fundamental step in the interpretation of these

data. The abundant texture information in SAR imagery is useful for segmentation

of the pertinent ice types. Many texture analysis approaches have been proposed

in the literature which can be identified into three categories: geometrical-based,

statistical-based and model-based. Among these methods, to explore a coherent

theoretical framework to support robust and powerful algorithms for sea ice seg-

mentation is necessary.

This thesis will focus on two methods: gray level co-occurrence probability

(GLCP) method and Markov random field (MRF) method. GLCP method can

extract texture features with different frequencies along different directions in the

image space. Using MRF method, texture is analyzed as having preferred rela-

tions and interactions that can be articulated mathematically, and then a Bayesian

framework can be employed to make inferences. Quantizations, displacement, ori-

entation, window size and texture statistics are important parameters in GLCP

method. Accurate estimation of the texture models is an important concern for a

successful segmentation using MRF method. In this thesis, the potential of these

two methods for texture analysis and unsupervised segmentation are investigated

and tested using synthetic, Brodatz and SAR sea ice images, and their texture

distinguishing abilities are also compared.
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Chapter 1

Introduction

The remotely sensed image in its digital form, whether the image be a photomicro-

graph, an aerial photograph, or a satellite image, is stored in the computer as a 2-D

or n-D array if the image is multi-spectral. These images contain a vast amount of

information about objects within a scene, e.g. relative brightness, spatial proxim-

ity, size etc. The computer vision branch of the field of artificial intelligence, such

as image coding, restoration, enhancement, and segmentation, is then employed to

develop algorithms for analyzing the content of the image.

Human beings are adept at visually interpreting images produced by remote

sensing devices. When visually interpreting a remotely sensed image, a person

synergistically takes into account the characteristics of the data such as context,

edges, texture and tonal variation. However, it is practically impossible for the

computer-assisted segmentation algorithm to incorporate all these characteristics

simultaneously. One could ask: why try to mimic and improve on the capability of

human using a computer? Jensen summarizes several reasons [32]:

1. There are certain thresholds beyond which the human interpreter cannot de-

1



CHAPTER 1. INTRODUCTION 2

tect just-noticeable-differences in the image. It is commonly known that the

human vision system can discriminate only 8 to 16 shades of grey levels when

interpreting continuous-tone black-and-white remote sensing images. If the

data were originally recorded with 256 grey levels, which is usually the case

of most remotely sensed data, there may be more subtle information present

in the image than the interpreter can extract visually.

2. The results obtained by computer are almost always repeatable, whereas,

those of interpreters are subject to variability, making the interpretations

generally unrepeatable. The interpretations also vary from person to person.

3. When tracking of a great amount of detailed quantitative information, the

computer is much more adept and efficient at storing and manipulating such

tedious information and possibly making a more unbiased conclusion.

Early image segmentation algorithms are based only on the use of tonal infor-

mation, i.e. the intensity value of the image [32]. Thus, it is not surprising that

there has been considerable activity in trying to incorporate other characteristics

into the digital segmentation procedure. One of the successful explorations in this

area is the work of Haralick and Galloway et al beginning from the 1970’s [44, 25].

They demonstrated the power of texture information in image segmentation. From

then on, using texture in image segmentation became of interest in the literature.

Image segmentation can be defined as a process that partitions a digital image

into disjoint regions [8]. For our purpose, a region is a connected set of pixels.

The segmentation can be performed using either of two methods: supervised or

unsupervised. In a supervised segmentation, the identity and location of some of

the object types in the image are known a priori through a combination of field

work, analysis of maps, and personal experience. The analyst attempts to locate
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specific sites in the remotely sensed image that represent homogeneous examples

of the known land-cover types. These areas are commonly referred to as training

sites because the spectral characteristics of these known areas are used to train

segmentation algorithms for eventual land cover mapping of the remainder of the

image. In an unsupervised segmentation, the identities of land cover types to be

specified as classes within a scene are not generally known a priori because ground

truth is lacking or surface features within the scene are not well defined. The

computer is required to group the pixels into different classes according to some

statistically determined criteria. It is then the responsibility of the analyst to label

these clusters. The unsupervised segmentation obtains statistical features from

the given image instead of from the training sites, this makes it more difficult to

compute statistical features of a class accurately.

1.1 Problem Statement

Satellites have flown for about four decades, and the polar regions have been the

subject of their routine surveillance for more than half that time [22]. Our ob-

servations of polar regions have evolved from spot explorations and icing records

to routine global records obtained by various satellites. Thanks to such abundant

data, scientists now know a great deal about the ice-covered seas, which constitute

about ten percent of the Earth’s surface. Just as Carsey et al state in [6]: “We are

now already at a point of transition in sea ice studies: we are concerned less about

ice itself and more about its role in the climate system.” In this system, the sea

ice cover has been placed in an unique position. Its degeneration is regarded as the

key predictor of global warming.

Canada is considered to be a polar nation, with vast tracts of arctic land and
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ocean areas. More than 170, 000 km of shoreline are above 60◦N and a further

6800 km of maritime shoreline are affected by ice for some part of the year, which

results in more than ninety percent of Canada’s maritime shoreline being affected

by ice [20]. Realizing the importance of sea ice study, the CRYSYS (a Canadian

led interdisciplinary science investigation in the NASA earth system enterprise and

earth observing system program [15]) research project has clearly identified its first

scientific goals as to develop capabilities for improved satellite-based measurement,

monitoring and understanding of cryospheric variables over a range of spatial and

temporal scales for the coming decade [21].

Using synthetic aperture radar (SAR) images for sea ice measurement, moni-

toring and interpretation is now an important research area. Historically, sea ice

reconnaissance, in support of Arctic resource exploration and shipping operations,

was one of the primary factors that drove the development of SAR technology in

Canada [22]. As early as the mid-1970s, SAR was recognized as a potentially suit-

able sensor class for all weather sea ice mapping, but the understanding of sea ice

properties that could be observed by radar systems was not consistent. Because the

SARs of that period were not calibrated instruments, quantitative measurements,

made on the ice surface or acquired by calibrated, non-imaging sensors, were treated

as auxiliary data by the sea ice image interpreter.

Ice reconnaissance continues to this day and is one of the major commercial

uses of SAR technology. As research has progressed, SARs have become calibrated

instruments and quantitative measurements made by these systems are becoming

increasingly important in sea ice research. With the more powerful SARs becoming

operational, they will provide an unprecedented volume of imagery. This wealth of

SAR data could cause a serious problem if the method for interpretation of these

data is not improved. Computer-assisted, semi-automated or automated methods
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for evaluations of sea ice data are necessary research directions. As one research

area included in CRYSYS scientific objectives, this thesis will focus on exploring

the computer-assisted automated texture segmentation algorithm for identifying

different sea ice types in SAR imagery.

1.2 Thesis Objectives

The following are the objectives of this thesis:

• Present background knowledge on SAR systems and sea ice properties related

to SAR sea ice interpretation. The topic will focus on the relationship of the

physical properties of sea ice to the corresponding backscatter characteristics

on the SAR sea ice image.

• Review the texture analysis techniques related to image segmentation in the

literature.

• Present the statistical-based grey level co-occurrence probability (GLCP) ap-

proach for texture features extraction, investigate the feasibility of using the

extracted features for texture image and SAR sea ice image segmentation.

• Explore the potential of using Markov random field (MRF) models for tex-

ture analysis. Present methods used to synthesize MRF textures and model

parameter estimation.

• Present a texture segmentation algorithm using Markov random field model

coupled with a Bayesian framework.
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• Investigate the texture distinguishing ability of the GLCP texture features

and the GMRF models. Compare the segmentation performance of the GLCP

and MRF methods for synthetic, Brodatz, and SAR sea ice images.

1.3 Thesis Organization

Chapter 2 will present the background knowledge about SAR systems, sea ice prop-

erties as well as the texture definitions assumed in the following chapters. In Chap-

ter 3, the popular statistical-based texture analysis methods are reviewed first,

followed by the detailed demonstration of GLCP method used for texture image

segmentation. Chapter 4 will cover the topics on MRF theory, MRF model esti-

mation and texture synthesis. A methodology using MRF technique coupled with

the Bayesian framework for texture segmentation will also be developed. Several

research questions about the separability of GLCP texture features and GMRF

models will be analyzed in Chapter 5. And the segmentation results of synthetic

texture image, Brodatz texture images and SAR sea ice images are also demon-

strated. Chapter 6 provides research conclusions and gives some suggestions for

future work.



Chapter 2

Background

This chapter will first present some background knowledge on SAR systems. This

will be followed by a discussion on sea ice properties related to sea ice interpretation.

Texture definition, from the image processing perspective, follows. The challenges

involved in sea ice segmentation are discussed in the final section.

2.1 Introduction of SAR System

“Remote sensing is broadly defined as collecting and interpreting information about

a target without being in physical contact with the object [50].” Different from pas-

sive remote sensing system such as thermal IR, which detects the available energy

reflected or radiated from the earth surface, a radar system sends and receives

its own energy. It operates in the radio and microwave bands of electromagnetic

spectrum ranging from one meter to a few millimeters in wavelength. The system

“illuminates” the terrain with electromagnetic energy, detects the energy returning

from the object, called radar return, and records it as an image. Without depending

7
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on outside illuminating energy, a radar system operates independently of lighting

and weather conditions. In addition, the system can control the “look” direction

so as to “illuminate” the terrain in the optimum direction and enhance features

of interested . Fig. 2.1 illustrates the geometric characteristics of radar imagery

acquired by a side-looking radar. The range or look direction is the direction of the

radar illumination that is at right angles to the direction the aircraft is traveling

and parallel to the horizontal plane of the Earth.

The two basic radar systems are real aperture radar and synthetic aperture

radar, i.e. SAR, which differ primarily in the method each uses to achieve resolution

in the azimuth flight direction. In [50], Sabins provides a detailed description about

the properties of radar systems and terrain that can determine the intensity of the

radar return. The following paragraphs are a brief summary from [50].

The relative elements that determine the intensity of the radar return can be

categorized into two aspects: radar system properties and terrain properties. The

radar system properties include: wavelength, depression angle, spatial resolution

and polarization. Terrain properties include: dielectric property, surface roughness

and feature orientation.

Radar systems typically operate at one of four different wavelengths: Ka-band

(0.86 cm ∼ 1.1 cm), X-band (2.4 cm ∼ 3.8 cm), C-band (3.8 cm ∼ 7.5 cm) and L-

band (15 cm ∼ 30 cm). As the wavelengths increase, the penetrability of the radar

signal through the objects on the Earth increases, but the resolution decreases.

Using filters, the radar antennas selectively send and receive polarized energy. The

pulse of energy sent out by the antenna may be vertically or horizontally polarized,

and the backscattered energy can also be recorded in the vertical and horizontal

directions. Considering the sending and receiving directions together, there are four

kinds of radar images: HH, VV, HV and VH. The ability of a radar system to record
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Figure 2.1: Geometric characteristics of radar image acquired by side-looking radar.

different types of polarized energy results in valuable earth resource information for

certain applications [50].

Resolutions in the range and azimuth direction are determined by the engineer-

ing characteristics of the radar system. The combination of range resolution and

azimuth resolution determines the dimension of the ground resolution cell, which

in turn determines the spatial resolution of a radar image. An important charac-

teristic that can affect range resolution of the SAR image is the depression angle

(γ), defined as the angle between a horizontal plane and a beam from the antenna

to a target on the ground. The near-range depression angle (γn) and far-range

depression angle (γf ) are shown in Fig. 2.1. The equation for range resolution of



CHAPTER 2. BACKGROUND 10

SAR is

SARr =
c τ

2 cos γ
(2.1)

where τ is the pulse length, c is the speed of light (c = 3× 108m/s). According to

Eqn. 2.1, one method for improving range resolution is to shorten the pulse length.

But one cannot infinitely do so because of two reasons: (1) shortening the pulse

length results in the reduction of the total amount of energy in each transmitted

pulse, and the energy cannot be reduced below the level required to produce a

sufficiently strong return from the terrain; (2) the physical limitation of the radar

antenna. The equation for the azimuth resolution of SAR is

SARa =
D

2
(2.2)

where D is the antenna length. Because the coherent nature of the SAR signal

produces speckle in the image, to remove the speckle, the image is usually processed

using several looks, i.e. an average takes place. In this case, the azimuth resolution

is adjusted as following:

SARa = N
D

2
(2.3)

where N is the number of looks. It is interesting to notice that the azimuth res-

olution of a SAR system is independent of range distance, i.e., the distance from

antenna to the target.

The backscatter of the terrain is a quantitative measure of the intensity of radar

energy returned to the antenna. Physical properties of terrain that influence the

backscatter include dielectric property, surface roughness and feature orientation.

Each of them will be discussed below.

The dielectric constant is a physical characteristic of matter, which is used

to measure the matter’s interaction with electromagnetic energy. With increas-
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ing moisture, the dielectric constant of the object increases, and causes increased

backscatter, which in turn indicates an increasing brightness in image tone. For sea

ice, different ice types each with different dielectric constant lead to various bright-

nesses on SAR sea ice image, which could be utilized in sea ice type’s identification.

Radar backscatter is also strongly influenced by the surface roughness. Surface

roughness is measured using distance units and is determined by relative roughness

of the ground to the radar wavelength. The average surface roughness within a

SAR ground resolution cell determines the intensity of the radar return from that

cell. In practice, the Rayleigh criterion is used to indicate whether a surface is

considered smooth or rough. A surface is said to be smooth if

h <
λ

8 sin γ
(2.4)

where h is the vertical relief of the surface, λ is the signal wavelength, and γ is

the depression angle. The smooth surface reflects all energy away from the radar

system. The surface with intermediate roughness reflects part of the energy and

scatters the remainder. The rough surface diffusely scatters all energy, causing a

relatively strong backscattered component that produces a bright signature on the

image. For a side-looking radar system, the slant distance, i.e. the distance from

target on the terrain to antenna, can also affect the smooth and rough criteria. For

example, a surface with vertical relief h in the far range has a smaller depression

angle than that in the near range area with the same vertical relief h, according to

2.4, the surface in the far range will appear smoother to the radar signal.

The geometric relationship between the preferred orientation and the look di-

rection also influences the radar signature. Usually, features trending normal to the

look direction are enhanced by highlights and shadow. Feature trending parallel

with the look direction produces no highlights or shadows and are suppressed in an
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Figure 2.2: Radarsat operational modes (adapted from [48]).

image.

Some of SAR sea ice images used in this thesis are captured by Radarsat

ScanSAR wide mode beam. Launched in November 1995, Radarsat is a sophis-

ticated Earth observation satellite developed by Canada to monitor environmental

change and the planet’s natural resources. With 25 operating modes, it can pro-

vide useful information to scientific users in the fields of agriculture, cartography,

hydrology, forestry, ice studies and coastal monitoring.

Fig. 2.2 shows the 25 image modes that Radarsat can apply [48]. Each image

mode corresponds to one beam position. From the figure, it is clear that Radarsat is

a side-looking imaging system, and the captured images are on the right side of the

track. For each Radarsat beam mode, its image products are processed to different

levels of geometric accuracy and radiometric calibration. The ScanSAR wide mode

data has already been converted to ground range image, and the direction of the

image is the same as the direction of the satellite track. For reference, Radarsat

Parameters and Operational Modes are described in Appendix A.
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2.2 Sea Ice Types and Its Physical Properties

According to the World Meteorological Organization, ice can be categorized into

four main types: new ice, young ice, first year ice and old ice [13]. Lewis et al and

Weeks et al give a very detailed description of various sea ice types as well as their

physical properties in [51] [20]. This section just provides a brief introduction on

these topics based on their description.

Initial ice formation begins at the water surface at the beginning of winter,

where the heat loss is greatest. The sea ice growing at this very beginning stage is

called new ice, which usually is less than 10 cm thick. With continued freezing, the

new ice begins to form a solid cover from 10 cm to 30 cm thick called young ice. At

the end of the winter, the sea ice after one winter’s growth becomes the first year

ice, usually more than 30 cm thick . When summer season comes, sea ice undergoes

dramatic changes. The most obvious change is the large decrease in salinity. Some

first year ice survives the summers, and becomes old year or multi-year ice. The

detailed descriptions for various ice types are tabulated in Appendix A.3.

SAR systems record the backscattering of the radar signal reflected by the ob-

jects on the Earth. When illuminating the objects, the microwave signal can be

reflected, scattered, transmitted. The transmitted signal can again be reflected,

scattered and transmitted by the lower surfaces of the target. For sea ice, the pres-

ence of moisture and salinity on the ice surface and inside the ice can significantly

increase radar reflectivity and decrease its transmission. Scattering depends upon

the surface roughness and inhomogeneities within ice. Spatial variations in the

dielectric properties also contribute to the magnitude of the scattering.

The electromagnetic properties of the ice sheet are heavily dependent on the

distribution of liquid brine and gas within the ice, and they are extremely important
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Figure 2.3: Sea ice samples (L: sea ice pictures, R: Radarsat ScanSar wide mode

images, adapted from [1]). (a) Young ice. (b) First year ice. (c) Multi-year ice.



CHAPTER 2. BACKGROUND 15

with regard to radar return. Usually, young ice and first year sea ice are relatively

saline with a loose structure containing many air bubbles which make it difficult

to penetrate with microwave energy. As a result, most of the energy is reflected.

Old ice is a low dielectric substance because of little brine content which permits

significant penetration by microwave energy.

Surface appearances of different ice types are quite different. Fig. 2.3 shows

some sea ice samples of young ice, first year ice and multi-year ice (the pictures

and images are provided by Dr. Roger De Abreu of Canadian Ice Service [1]).

The left column shows the ice pictures. The grey ice are fractures with ragged

edges, usually without floe structure or ridging, and the grey-white ice are stronger,

thicker ice sheet than grey ice. Surface topography of first-year ice is generally

sharp and angular with moderate relief. Un-deformed first-year ice is flat with

little freeboard. When it has been deformed, the ridges consist of very distinct

collections of angular blocks. The surface of multi-year ice is undulating with

smooth and rounded features, often with significant vertical relief. Multi-year ice

typically has a rolling hummocky appearance. Un-deformed multi-year floes have a

surface relief of 10 cm to 20 cm as a result of differential melting. The undulating

surface of old ice is easily identified from an aircraft if there is little snow cover.

Multi-year ridges are also distinct from first-year ridges because they are weathered

and rounded, with little or no sign of the original block structure evident. The

densities of multi-year ice are lower than those of first-year ice in the upper layers.

This reflects the increase in porosity of multi-year ice due to the evacuation of brine

inclusions and the enlargement of brine cavities and drainage channels during the

melt season.

The Radarsat ScanSAR wide mode sea ice image samples are shown on the

right column in Fig. 2.3. The grey ice usually has light grey tone and spongy
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texture in the absence of floes and ridges. The grey-white ice appears dark grey

with straight-edged floes and angular fractures. The first year ice usually has grey

or dark tone with some bright ridge lines, floes are often angular, floe size may be

large. For the multi-year ice, it has bright tone in winter sense, and much less tone

in melt scenes, floes are often rounded with mottled texture.

Sea ice is a dynamic, complicated target in SAR image, its appearance changes

with weather, season and location. For example, although usually there is big

difference in the backscattering character of first year and old ice, this difference

can be concealed by various facts which can either change the surface smoothness

or the dielectric constant of the ice, such as periodic warming, snow cover, free

water intrusion [13]. The general introduction of this section, however, is not nec-

essarily representative of all practical cases, and care should be exercised in their

interpretation.

2.3 Texture Analysis

From 1970’s, the importance of texture information for object recognition and clas-

sification has been explored by many researchers and their studies show the fact

that incorporation of texture information is crucial [44, 25, 30, 26, 7]. In his precur-

sory paper about textural features for image classification, Haralick defined fourteen

textural features based on grey level spatial dependencies, and illustrated their ap-

plication in category identification tasks of several different kinds of image data.

More than eighty percent test set identification accuracy was obtained. The results

successfully indicated that textural features had a general applicability for a wide

variety of image classification applications [44].
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2.3.1 Texture Definitions

The word texture originally referred to the appearance of woven fabric. In the

image processing field, there is still no universally accepted definition for texture.

Part of the difficulty is the extremely large number of texture attributes that people

would like to subsume under a definition. Various definitions are given which rep-

resent the same basic ideas. “Texture is the local change in intensity of the colour

within some defined spatial region [52].” “Texture is concerned with the spatial

(statistical) distribution of grey tones [44].” “Texture is the frequency of change

and arrangement of tones on an image. Fine, medium, and coarse are some terms

used to describe texture [50].” “Texture is defined as the spatial variation of digital

numbers within an image [53].”

According to the above definitions, if the grey level is constant everywhere in

the object, or nearly so, one can say that the object has no texture. If the grey level

varies significantly within the object, then the object has texture. When there is no

spatial pattern and the tone variation between features is wide, a surface with fine

texture will dominate the image, and as the spatial pattern becomes more definite

and involves more and more resolution cells, a coarser texture results.

Texture contains important information about the structural arrangement of

surfaces and their relationship to the surrounding environment. An example given

in Fig. 2.4 can show the importance of texture in object recognition. If one perceives

a object in an isolated visual field (i.e. with no surrounding clues), one would be

hard pressed to determine if this object was the texture of a fire or the leaf of

a beautiful tree during autumn based on tone alone. However, if texture was

considered, then the distinction would become a trivial one since the leaf image

would appear very fine in its tone while the surface of the fire would be much more
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Figure 2.4: Illustration of the functionality of textures in pattern recognition of

human vision system. (a)Texture of leaf. (b)Texture of fire.

coarse. In this case, although both objects in Fig. 2.4 have the same shape, one can

still tell their difference based on their different style of grey level distribution. This

variation in grey tone that constitutes the monochromatic image derived features

are called textures.

2.3.2 Texture Methods

Tone and texture information are used simultaneously by the human observer for

visual interpretation of the scene although at times one can dominate the other.

When the ranges of tones in an area of interest are comparable to the ranges of

tones in the entire image, human interpretation draws heavily on textural appear-

ance. When seeking to measure texture, one attempts to quantify the nature of

the variation in grey level within an object as texture features. Normally, a texture

feature is independent of the object’s position, size and shape. There are many ap-

proaches to extract the texture features in the literature, they can be identified into
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three major categories: geometrical, statistical, and model-based texture analysis

[14] [10].

Geometrical texture analysis assumes that the texture pattern is a spatial ar-

rangement of texture primitives, which may be of varying or deterministic shapes,

such as circles, hexagons, or dot patterns. The texture image is formed from the

primitives by placement rules which specify how the primitives are oriented with

respect to each other. Texture feature extraction then becomes the task of locat-

ing the primitives and quantifying their spatial arrangement. Examples of such

textures include tiling of the plane, cellular structures such as tissue samples, and

a picture of brick wall [14]. Because sea ice does not have this kind of primitive

structures, this method is not applicable to sea ice image interpretation.

Statistical based texture analysis can be broken down into two branches: spec-

tral and spatial based. In spectral based approach, the texture features are ex-

tracted in frequency domain by applying the Fourier transform or the multi-channed

filters to the original image. The power spectrum, Gabor filter and wavelet trans-

formation are among the commonly used methods in this area. The power spec-

trum of the image is the Fourier transform of the autocorrelation function, and the

multi-channel filters are essentially a set of band-pass filters in frequency domain.

Theoretically, the Gabor filter can be regarded as a special wavelet function, and

both of them belong to the latter method. The spatial or pixel based approach ex-

tracts texture features based on the pixel’s grey level of the original image [8] [32].

The texture features of each pixel are the measurements such as smooth, coarse,

complex, regular for a local region in the original image. The texture images from

the above measurements, also called texture feature maps, can then be used as

other“features” in the segmentation process.

Model-based texture analysis is a mathematical process which can synthesize
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or describe the texture image. The numerical parameters of the model can be

used to establish the distribution law of a texture pattern in a variety of relaxation

segmentation processes, or simply used as features to classify the textures.

There is a fundamental difference between model-based and statistical texture

analysis. In a model-based study, the texture model has the capability to generate

the texture which matches the observed texture; using a statistical method, the

texture features are measured without an ideal or representative texture in mind,

and the texture features extracted from the image cannot be used in general to

synthesize a texture image.

In [13] [12], Clausi explored deeply the power spectrum, Gabor filter and grey

level co-occurrence probability method (referred as GLCP, which is a spatial based

statistical method). Several guiding conclusions obtained by the author. First,

power spectrum texture features has poorer classification ability compared to the

co-occurrence texture features. Second, the co-occurrence and Gabor features, each

can generate a local estimate of the directional frequency, are strongly correlated.

Third, the segmentation capabilities of Gabor filters and GLCP are different. The

Gabor filters are able to capture information in a multi-resolution manner, whereas

the co-occurrence features are unable to capture the multi-resolution features if

an image contains patterns with different texture resolution. But in the texture

classification point of view, the Gabor filters are not ideal candidates since their

inherent multi-resolution ability is not utilized for fixed sized samples. According

to the author, the Gabor filters are a better approach for image segmentation, and

the GLCP is better suited for supervised classification than Gabor filters.

The GLCP is currently the most widely used method for the SAR sea ice type

identification in the literature. Compared to the spectral based method, there are

fewer publications exploring systematically the relative classification ability between
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it and the model-based method in the literature by now. So, the topic of this thesis

will focus on the spatial based statistical texture analysis and model-based texture

analysis approaches.

2.4 Challenge of Sea Ice Segmentation

Sea ice is a complex and dynamic material. Its representation on SAR image can be

determined by many variables as mentioned in section 2.1 and 2.2 as well as weather

and geographical conditions. The latter include temperature, wind condition, rate

of freezing and salinity of sea water etc. All these variables make the sea ice in

SAR image show a very complicated appearance. It is difficult even for human to

make an interpretation sometimes. The difficulties for auto-distinguishing of sea

ice types using computer can be summarized as following:

1. The surfaces of same ice type might have different degree of smoothness be-

cause of their different distances to SAR sensor, which results in their different

tone representations on SAR image.

2. Tracing the boundary between different ice types is an unsolved problem.

Different types of sea ice mix up with each other along the boundary areas

which makes the segmentation problem complicated.

3. The scale of each ice type is different, one ice type may stretch from several

meters to several kilometers. It is difficult to decide the neighbourhood size

for algorithms based on neighbourhood analysis (i.e. analyzing one region’s

characteristics based on the characteristics of its neighbourhood regions).
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Statistical Texture Analysis

A review of the statistical texture analysis techniques, intended to provide a general

framework of this field, as well as the algorithm of GLCP approach for texture

segmentation are represented in this chapter.

3.1 First Order Methods

For some images, image segmentation could be easily implemented using only the

intensity value of each pixel. In such cases, no high order texture features are

needed. But most of the time, the identification of class types in the image can

not be done so easily based only on the grey levels of the pixels. Then the texture

features become an helpful information in the segmentation process. The simplest

approach of texture analysis method in statistical category is known as first or-

der methods [32]. The statistics are based on individual pixel values, not on the

relationship between pixels. Texture features such as mean, variance, standard

deviation, gradient, and skewness are usually extracted from the image [32].

22
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Before the 1990s, the first order statistical texture analysis was widely used in

SAR image processing. Shuchman et al analyzed the X-band (HH) SAR data of

sea ice (resolution 15 m, collected in March and April 1987) with respect to dis-

criminating open water, new ice, first year ice, and multi-year ice [43]. The authors

stated that mean versus variance could segment out open water and first year ice,

and skewness versus modified skewness could segment the new ice and multi-year

categories. As the conclusion, it was stated that GLCP method generated very

similar result to the mean and standard deviation analysis. However, [43] is short

of further explanation on the similarity criteria and what GLCP texture statistics

were used. Burns and Kasischke [7] investigated the application of a simple texture

extraction technique based on the calculation of local grey level variance statistics.

In order to indicate the performance of their technique, second order statistical

texture analysis method was also used for comparison purpose (discussed in Sec-

tion 3.2). They found that the latter one performed slightly better on the data

set than their variance technique for classifying first year and multi-year ice types.

They concluded that the simpler variance technique would be preferable in an op-

erational ice mapping system given the considerations of accuracy and timeliness.

Barber et al used the average grey tone signatures from X-band HH polarized SAR

sea ice image in a supervised classification scheme [16]. As the authors expected,

the classification results were poor. Classification accuracies were 51 and 33 per-

cent for the training and test data sets respectively. The authors analyzed that the

reasons for high classification error lie in the large variability of grey levels of the

first year rough class.
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3.2 Second Order Methods

If an image shows regions with equal first order statistics, then second order statis-

tics should be used. As with the first order approach, the second order texture

analysis also makes use of the grey level of each image pixel. The main difference

between these two is that in the second order approach the texture features are

extracted from an intermediate relationship matrix which is calculated using the

pixels within a pixel’s neighborhood and used to save some statistical relationships

between each pixel and its neighbours. Whereas in the first order method, the

texture features are extracted directly from the gray levels of the image. There are

several commonly used methods in this category [47]: grey level difference (GLD),

grey level run length (GLRL), and grey level co-occurrence probability (GLCP).

GLD method tends to indicate the presence and direction of “edges” within an

image [46, 47]. The location and presence of edge information is a clue to the visual

system in the recognition process and has been shown to contribute to increase

classification accuracy. Let f(m,n) be the image, for any given displacement value

η(∆m, ∆n), let

fη(m,n) = |f(m,n)− f(m + ∆m,n + ∆n)|

where ∆m, ∆n are integers. Let pη be the probability density of fη(m,n), that is

pη(i|η) = p(fη(m,n) = i).

If there are k grey levels, pη will be a k-dimensional vector whose ith element is

the probability that fη(m,n) will have value i. Given the displacement value η, a

texture is said to be coarse when η is smaller comparing to the texture element size.

The pη value of coarse textures tend to concentrate near i = 0. Whereas, for a fine

texture, the grey levels with separation η(∆m, ∆n) are usually different, then pη will
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be more spread. In this way, the values in pη can tell the coarseness information

about the texture. For various magnitudes of η, several texture features, called

contrast, entropy, angular second moment, inverse difference moment etc, can be

calculated from pη.

GLRL statistics represents contiguous occurrences of identical grey level values

in an image [47]. In this method, the GLRL matrix R(i, j|θ) whose element r(i, j|θ)
denotes the number of occurrences of a particular grey level i of a specified run

length j along orientation θ is constructed. For a coarse texture, for each grey level

i, longer run lengths are expected in R(θ), and for fine texture, grey levels change

with higher frequency, the shorter run lengths are obtained. So, for texture with

different coarseness, the distribution of their R(θ) is different. Based on r(i, j|θ),
several texture features, called short run emphasis, long run emphasis, grey level

distribution, run length distribution, and run percentages, etc., can be calculated.

The GLCP method can measure textural characteristics such as homogeneity,

grey level linear structure, contrast, entropy, and image complexity [13]. They are

estimated based on the two dimensional joint probability matrix p(i, j|δ, θ) called

grey level co-occurrence matrix (GLCM). Each element in the GLCM is the number

of occurrences of a pairwise combination of grey levels i and j, given that the

displacement δ and the orientation θ. A different GLCM is required for each (δ, θ)

pair. The GLCM can be regarded as a data structure which is used to store the

relationship information between pixels, and then the GLCP texture features can

be extracted from it. The detailed implementation of this method will be described

in section 3.4.
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3.3 The Comparison of Second Order Methods

Among the three approaches introduced in the last section, GLCP is the one that

is most commonly used. The reason is detailed in this section.

A comparison between GLD, GLRL and GLCP is needed since the first choice

a researcher faces is the selection of the method to be used. Among many publica-

tions, Weszka et al [31] and Conners [47] explored this problem more directly and

clearly using different approaches. The metric of comparison employed by Weszka

is a classification comparison. Such a procedure has three drawback:

1. A large data base is needed to obtain a high confidence level in the result.

2. The results are data dependent, i.e. the comparison results may not be in-

dicative to relative power of each algorithm for some texture types other than

the textures used in the experiment.

3. This method cannot be used to determine whether the set of texture statistics

defined in each method is inadequate or the method itself does not contain

all the important texture information needed to do the discrimination.

Conners provided a more systematical and theoretical comparison. The com-

parison procedure was designed to compare the relative loss of important texture

context information experienced in going from the digital image to the intermediate

relationship matrices of each of the algorithms considered, where the matrices are

the grey level difference density pη(i|η), the grey level run length matrix R(i, j|θ),
and the grey level co-occurrence matrix p(i, j|d, θ). A texture algorithm is said

to experience a loss of important texture context information if there exist two

visually distinct textures which cannot be discriminated by this algorithm. To
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determine whether an algorithm experiences a loss of important texture context

information, they found out whether the intermediate relationship matrices con-

tain information which will allow the discrimination of these two textures. If the

corresponding matrices extracted from the two visually distinguishable textures are

equal, an information loss is experienced. The detailed demonstration can be find

in [47].

The textures used by Conners are similar to the ones used by perceptual psy-

chologist B. Julesz in his investigations of human texture perception [33]. In order

to show how well each algorithm can sense pattern changes, the textures used in

his study also have the same first order distribution, i.e., the same mean, variance,

and skewness. The conclusions of the research can be summarized by Fig. ??.

Figure 3.1: A summary of the relative merits of the GLRL, the GLD, and the

GLCP (adapted from [Conners 80]).
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The area without texture pattern stands for the set of texture pairs that can not

be distinguished by all methods. One important conclusion can be drawn from this

figure. Over the classes of textures GLCP is more powerful than GLRL and GLD,

i.e., the texture pairs which can be distinguished by GLRL and GLD methods are

a proper subset of the set of texture pairs which can be discriminated by GLCP

method. These theoretically derived results agree very well with the experimentally

performed comparison done by Weszka et al [31].

3.4 GLCP Texture Features

GLCP texture features extract discriminating information from GLCM with dif-

ferent frequencies along different directions in the image space. Commonly used

orientations are shown in Fig. 3.2: 0◦, 45◦, 90◦, and 135◦. The orientations of 180◦,

225◦, 270◦ and 315◦ are redundant to the previous four directions.

3.4.1 GLCM

Figs. 3.3 and 3.4 show an example about the generation of GLCM from a five by

five sub-image window with θ = 90◦ and δ = 1. Suppose there are six intensity

levels (4, 5, 6, 7, 8, 9) in the image. To determine the GLCM, the program will scan

the sub-image window and count the occurrences of each pair of pixel. For example,

the first co-occurring pixel pair is (4, 5). The second is (6, 5), and so on. The un-

normalized GLCM can be obtained by accumulating the number of occurrences of

each relationship defined by (δ, θ). For example, the (5, 7) occurs twice, and the

(8,9) occurs once. Therefore the (5, 7) element in the un-normalized co-occurrence

matrix is set to two while the (8, 9) element is set to one. Note that such a GLCM is
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Figure 3.2: Eight directions for the creation of GLCM of pixel s.

asymmetric. In order to consider 90◦ and 270◦ orientation together, the asymmetric

co-occurrence matrix above is added by its transpose. To obtain the normalized

GLCM in Fig. 3.4, it is just needed to divide each element in the un-normalized

co-occurrence matrix by the number of total pairs used to build it, which is also

the sum of all the elements in the un-normalized co-occurrence matrix as follows:

P (i, j|δ, θ) =
C(i, j|δ, θ)

∑9
i,j=4 C(i, j|δ, θ) (3.1)

where C(i, j|δ, θ) is the element in the un-normalized co-occurrence matrix.

The notation GLCM mentioned in this thesis refers to the normalized GLCM.

Let P is the probability element in GLCM of Fig. 3.4, it is clear that

9∑

i,j=4

P (i, j|δ, θ) = 1. (3.2)

If the full dynamic range of an typical image is used, each GLCM is a 256× 256
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Figure 3.3: Sub-image window from the texture image

matrix (65536 entries). If the sub-image window size is ten by ten, then there are

only 2 × (10 × 9) = 180 entries in the matrix. In this case, a GLCM can be quite

sparse. In order to have a GLCM that adequately reflects the joint probability

distribution, it must contain a reasonably large average occupancy level. To solve

this problem, the quantization method should be used. The decision that one has

to make is how many intensity levels are needed to represent a set of texture suc-

cessfully. In [36], Soh and Tsatsoulis extracted sample sites from test images with

different textural contexts. They devised a test using six texture statistics and six

different uniform quantization levels: 8, 32, 64, 128 and 256. The displacement is

set to one and orientations to 0◦, 45◦, 90◦ and 135◦. The different values of quan-

tization level are evaluated using five measurements based on Euclidean distance

along each textural feature between each pair of sample sites. The objective of the

Euclidean distance measurements is to provide a visual presentation of the trend

between the differences among each successive pair of quantization schemes. Based

on their results, they found that the 8-level quantization scheme should not be used

because of its poorer distinguishing ability compared to other four schemes.
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Figure 3.4: Calculation of the GLCM
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Figure 3.5: The GLCMs of different textures. (a) Intensity values of high texture.

(b) Intensity values of low texture. (c) GLCM of a. (d) GLCM of b.

The distribution of the non-zero elements in GLCM is expected to characterize

the texture of the image. For example, the degree of dispersion that the elements

in GLCM have about the diagonal characterizes the texture of the sub-image. A

small dispersion along the diagonal means that the texture is coarse compared to

the size of sub-image window (the texture elements are larger than the window,

and within the area of window, the texture is smooth). The GLCM of high texture

region Fig. 3.5 a and low texture region Fig. 3.5 b are shown in Fig. 3.5 c and Fig.

3.5 d. The different element distributions of these two GLCMs illustrate the above

explanation.
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3.4.2 Texture Feature Extraction from GLCM

Based on the GLCM, a number of texture statistics can be applied. Haralick sug-

gested 14 statistics [44]. Conners and Harlow then showed that the information

contained within the GLCM is not adequately captured by any single statistic [47].

Barber and LeDrew further demonstrated that some of the statistics are highly

correlated and others are not. Based on the separability analysis using univari-

ate (signal GLCP texture statistics for discriminating class types) and multivariate

(several GLCP texture statistics together for discriminating class types), they con-

cluded that the best discrimination could be achieved from a set of three texture

features considered simultaneously [2]. Later on, based on the correlation analysis

and experiment results using Brodatz, Limex and SAR sea ice image, Clausi sug-

gested the following three co-occurrence texture statistics [13]:

Dissimilarity:
N−1∑

i,j=0

P (i, j|δ, θ)|i− j| (3.3)

Correlation:
N−1∑

i,j=0

P (i, j|δ, θ)(i− µi)(j − µj)

σiσj

(3.4)

Entropy:

−
N−1∑

i,j=0

P (i, j|δ, θ)logP (i, j|δ, θ) (3.5)
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Figure 3.6: Original texture image

where N is the grey level of the image, (µi, µj) and (σi, σj) is the standard deviation

of row i and column j of P (i, j|δ, θ) defined as follows:

µi =
N−1∑

i,j=0

P (i, j|δ, θ)i (3.6)

σi =
N−1∑

i,j=0

P (i, j|δ, θ)(i− µi)
2 (3.7)

The above feature extraction methods are also called grey level shift invariant

statistics [13]. The segmentation based on these statistics will not be a function of

pixel intensity values. Applying the texture statistics to GLCM, the texture feature

maps can be obtained for each pixel of the image. The texture feature maps of a

texture image shown in Fig. 3.6 are given in Fig. 3.7. The window size is five by

five (left column) and fifteen by fifteen (right column).
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Figure 3.7: The GLCP texture features extracted from the texture image shown in

Fig. 3.6 (δ = 1, θ = 45, window size: Left column: 5× 5, Right column: 15× 15).

(a) Dissimilarity. (b) Correlation. (c) Entropy.
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Observing the texture feature maps in Fig. 3.7, and analyzing the above equa-

tions at the same time, several conclusions can be drawn:

1. Dissimilarity measures the amount of local variation in the image along a

certain orientation and displacement. It is high when the region within the

sample window has a high contrast. In image (a), the boundary areas between

the bright flower and the dark background have higher values.

2. Correlation measure the linear dependency of grey levels of neighbourhood

pixels along a certain orientation and displacement. When the scale of local

texture is much large than the sub-image window, correlation is typically high,

and when the local texture has a scale similar or smaller than the window

size, there will be low correlation between pairs of pixels.

3. Entropy measures the degree of disorganization in the local window along a

certain orientation and displacement. It is high when the elements in GLCM

have relatively equal values, which means that no pair of intensity values

dominates within the sample window.

Besides the texture statistics, there are a number of other parameters that the

user should set when using the GLCP method. Since the dimension of the GLCM

is determined by the grey levels of the image, the first parameter needed to set is

the quantization level. If the quantization level is large, the GLCM will be large

and the computation is burdensome. Conversely, if the quantization level is too

small, some texture information will be lost. The window size of the sub-image is

another important parameter. It will determine how many neighbourhood pixels

are involved to build the GLCM for the pixel concerned. If the window size is

too small, no sufficient statistical information from the pixels in the window could
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be obtained, if the window size is too large, some unrelated neighbourhood pixels

could interfere the statistics. For the segmentation problem, generally speaking,

coarse textures require relatively smaller windows, and smooth texture can have

larger window size for a consistent measurement. Comparing the texture feature

maps on the left column and right column in Fig. 3.7, one can see the clear

boundary obtained from five by an five by five window size is blurred when using

an fifteen by fifteen window size. The selection of θ is data dependent. For the

texture images that do not have dominate orientation, several orientation can be

averaged together [36]. As with the window size selection, the selection of δ should

be considered together with the scale of the texture in the image: small δ for fine

textures and larger δ for coarse textures.

3.5 Statistical Second Order Texture Analysis for

Sea Ice Segmentation

Reviewing the literature on second order statistical texture analysis methods ap-

plied in SAR sea ice type interpretation, GLCP method is the most preferred algo-

rithm currently used [16] [42] [43]. The popularity of this method are just consistent

with what Conners and Harlow proved in [47].

Holmes et al used X-band SAR sea ice image with three by three meter resolution

and HV polarization for sea ice classification [42]. The texture measurements are

entropy and contrast which are obtained by considering the average of orientations.

According to the authors, the intensity range of different ice type has a better

separation in entropy and contrast texture feature maps than in the original image.

The classification is based on the intensity thresholds of each ice type which are
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setup from the texture feature maps of training data. There are several uncertainties

in this paper. First, as the authors said the reason for using the average entropy

and average contrast was to obtain texture measures which are insensitive to the

orientation of the sensor. By doing this, they had already made an assumption

that the orientation of the sensor is not important for the textures in sea ice image.

Second, the separation of ice types by intensity thresholds is quite image dependent

and not robust, different image types (e.g. different polarization) may have different

thresholds.

Barber and LeDrew [2] explored five co-occurrence texture statistics of GLCP

method using an X-band HH SAR image. The five statistics are uniformity, correla-

tion, entropy, dissimilarity and contrast. Classification accuracy based on different

orientations, texture statistics and displacements are compared. Significantly better

results were obtained at θ = 0◦ than other orientations. The improved accuracies

were obtained from the several texture statistics rather than signal one.

In 1999, L. K. Soh and C. Tsatsoulis [36] explored the potential of GLCP tex-

ture features in SAR sea ice classification. The authors evaluated parameters of

GLCM (δ, θ, quantization level) quantitatively to determine which texture statis-

tics (including energy, contrast, correlation, homogeneity, entropy, autocorrelation,

dissimilarity, cluster shade, cluster prominence, maximum probability) were best

for mapping sea ice texture. They tested different choices for δ = 1, 2, . . . , 32, θ

= 0, 45, 90, 135, and quantization levels = 8, 16, 32, 64, 128, 256 by examining the

effects of applying the texture maps to a Bayes classifier. They showed that a

complete grey level representation of the images was not necessary for texture seg-

mentation, and the displacement in texture measurements was more important

than orientation. The experiments concluded that the best GLCP implementation

in representing sea ice texture was one that utilizes a range of displacement val-
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Orientation Displacement Texture Quantization
(θ) (δ) statistics level

Brodatz (0◦, 45◦, 90◦, 135◦) 1, 3 dissimilarity, 16
correlation, entropy

Sea Ice average of 1, 2 dissimilarity 16
(0◦, 45◦, 90◦, 135◦) correlation, entropy

Table 3.1: GLCM parameters of Brodatz and SAR sea ice images used in this thesis.

ues such that both micro-textures and macro-textures of sea ice can be adequately

captured.

In GLCP method, one of the most important parameters, which most re-

searchers chose arbitrarily is the window size for calculating the GLCM for each

pixel. [36] used 64 x 64, [2] used 25 x 25, and [17] used 32 x 32 and 64 x 64. By now,

no one provides definite criteria to decide the window size. The selection has to

be a compromise between being large enough to provide stable estimates yet small

enough not to severely distort the values computed for the small isolated patches

of some ice types. Some general considerations need to be taken for choosing the

window size: the resolution of the SAR image, the scale of the texture and the

displacement value used. The finer the texture, the smaller the window size should

be.

Based on the suggestions given in [36] and [13], the parameters used to build

GLCM for Brodatz texture images and SAR sea ice images in this thesis are listed

in Table 3.1. A k-means classifier is used for segmentation. The parameters used

for the synthetic texture images is the same as the Brodatz texture images. Because

the textures of sea ice do not seem to have obvious directional tendency, the texture

features along four directions are averaged.



Chapter 4

Model-based Texture Analysis

Different images have different natures. An image processing or analysis technique

only applies well for certain kinds of images. Thus it is important for the designer

of such techniques to be able to characterize, i.e., to model, the image that is to

be processed. Once the model of the image is obtained, it will serve to explain the

dominant statistical characteristics of the given data, and the subsequent processing

of the images can be efficiently done using the model. In this regard, any analytical

expression that explains the nature and extent of dependency of a pixel intensity

on intensities of its neighbours can be said to be a model [9].

Image models were used by some researchers even in the early years, but the

awareness of their importannce was enhanced at the end of the 1970s by a work-

shop on image modelling held in Chicago in August, 1979 [49]. Since then, the

research activities in the image modelling area have increased considerably. Two-

dimensional time series and random field models probably are the most common

classes of image models which focus on the attempt to characterize the relation-

ship among the neighbouring pixels. Owing to the cross-fertilization of ideas from

40
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image processing, spatial statistics, and statistical physics, the last two decades

have witnessed a significant amount of research activity in image modelling with

special emphasis on Markov random fields (MRFs) [49]. The philosophy of mod-

elling images through the local interaction of pixels as specified by MRF models is

intuitively appealing due to the following reasons:

1. One can systematically develop algorithms for a variety of problems based on

sound principles rather than ad hoc heuristics [28].

2. It is easy to derive quantitative performance measures for characterizing how

well the image analysis algorithms work [39].

3. MRF models can be used to incorporate prior contextual information or con-

straints in a quantitative way [27].

4. The MRF-based algorithms tend to be local which permits parallel updating

of the pixel sites, and tend to parallel hardware implementation in a natural

way (the full parallel potential is realized by assigning one processor to each

site of the intensity process)[27].

The practical use of MRF models is largely ascribed to the equivalence between

MRFs and Gibbs distributions established by Hamersley and Clifford in 1971 and

further developed by Besag in 1974 for the joint distribution of MRFs [5]. This en-

ables us to model vision problems by a mathematically sound yet tractable means

for the image analysis in the Bayesian framework. From the early 1980s, a plethora

of papers has appeared on various aspects of MRF models including application

in texture synthesis [14], image classification and segmentation [19] [35] [41], im-

age restoration and artificial neural networks [27] [39]. Issues such as parameter

estimation and hypothesis testing in MRF models also have been addressed [5] [57].
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The following two sections will provide a detailed description of MRF theory as

well as Markov-Gibbs Equivalence theorem.

4.1 Markov Random Fields

4.1.1 Neighbourhood System and Clique

Let X represent an image. Then X(i, j) represents a random variable at a site (i, j)

on the M × M lattice system S. For convenience, X(i, j) can be indexed as Xs,

s = 1, 2, ..., M2. A label is an event that may happen to a site in the image defined

on S. Let L be a set of labels, in the discrete case, a label Ls assumes a discrete

value in a set of G labels {l1, l2, . . . , lG}. The labeling problem is to assign a label

from the label set L to Xs). For example, L can be a discrete set {0, 1, . . . , 255}
which represents the quantized intensity value of a pixel site s ∈ S , where elements

in S index the image pixels. In segmentation problems, Xs is assigned a label

from the set L = {class1, class2, , classL}. The set {X1, X2, . . . , XM2} is called a

configuration of the sites on S in terms of labels in L.

The inter-relationship between the label of one pixel and the labels of its sur-

rounding pixels are maintained by a so-called neighbourhood system. A neighbour-

hood system for S is defined as

N = {Ns|s ∈ S} (4.1)

where Ns is the set of sites neighbouring s. The neighbouring relationship has the

following properties:

1. A site is not neighbouring to itself: s /∈ Ns;
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2. The neighbouring relationship is mutual: s′ ∈ Ns ⇔ s ∈ Ns′ .

In the first order neighbourhood system, also called the four-neighbourhood

system, every (interior) site has four neighbours, as shown in Fig. 4.1 (a) where s

denotes the considered site. In the second order neighbourhood system, also called

the eight-neighbourhood system, there are eight neighbours for every (interior)

site, as shown in (b). The numbers a = {1, . . . , 5} shown in (c) indicate the

outermost neighbouring sites in the ath order neighbourhood system. The order

of a neighbourhood reflects its extent. The shape of neighbourhood set may be

described as a hull enclosing each site in the set, and the hull can be thought

of as a type of interface which can separate the site from the outside world, i.e.

the existence of the site only relies on its neighbourhood comprised in the hull.

The first order and second order system denoted here are different from the same

terminologies used in statistical texture analysis of the previous chapter. In MRF

texture analysis, they are the terminologies used to describe the neighbourhood

size of a pixel. In statistical texture analysis, they are used to differentiate the

complexity of the statistical methods applied to an image.

The pair (S,N) constitutes a graph in the usual sense where S contains the

pixels and N is the neighbourhood system of S. A clique c for (S,N) is defined as

a subset of sites in S in which every pair of distinct sites are neighbours. It consists

either of a single site c = {s}, or of a pair of neighbouring sites c = {s, s′}, or of

a triple of neighbouring sites c = {s, s′s′′}, and so on. Let C1, C2 and C3 denote

the collections of single-site, pair-site and triple-site cliques respectively. So the

collection of all cliques for (S, N) is C = C1 ∪ C2 ∪ C3 . . ., where “. . . ” denotes all

possible sets of large cliques.

The type of a clique is determined by its size, shape and orientation. (d)-(h)
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in Fig. 4.1 show clique types for the first and second order neighbourhood systems

for a lattice. The cliques of first order neighbourhood system are shown in (d) and

(e). The clique types for the second order neighbourhood system include (d) and

(e) as well as (f), (g) and (h). Obviously, the number of cliques grows rapidly with

the order and so do the involved computational requirements.

Figure 4.1: Neighbourhood systems and cliques

4.1.2 Markov Random Field Definition

After defining the neighbourhood system, configuration problem, and clique, the

definition of MRF can be presented. Observing an image, if it is not a random noise

image, one can notice that neighbouring pixels typically have similar brightness.
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The intensity value of a pixel is highly dependent on the intensity values of its

neighbourhood pixels, and the textures distributed within a local region tend to

be the same. This phenomenon can be called local similarity. In fact, in image

processing, the notion of near neighbour dependence is pervasive [14] [28]. MRF is

a type of mathematical tool to model this dependence.

Let X = {X1, . . . , XM2} be a family of random variables defined on the lattice

system S. The family X is called a random field. Lowercase letters denote the

values assumed by these random variables, i.e. the notation Xs = xs denotes the

event that Xs takes the value xs. The joint event X = x where x = {x1, . . . , xM2}
can be regarded as a configuration of X, or in other words, a realization of the field

X with significant interaction between neighbourhood sites.

For a discrete label set L, the probability that random variable Xs takes the

value xs is denoted P (Xs = xs), abbreviated P (xs), and the joint probability is

denoted P (X = x) = P (X1 = x1, . . . , XM2 = xM2) and abbreviated P (x). X is

said to be a MRF on S with respect to a neighbourhood system N if and only if

the following two conditions are satisfied:

1. Positivity:

P (x) > 0 ∀x (4.2)

2. Markovianity:

P (xs|xS−s) = P (xs|xNs) (4.3)

where S− s is the set difference, xS−s denotes the set of labels at the sites in S− s

and xNs stands for the set of labels at the sites neighbouring s. The left hand of

equation (4.3) is called the local characteristics of MRF and it turns out that the

joint probability of any process satisfying equation (4.2) is uniquely determined by

these local characteristics [5].
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Figure 4.2: The Markovianity property: the boundary set {xb} separates the inside

pixel xs and outside pixels {xo}.

The Markovianity depicts the local characteristics of image X: a site interacts

with only the neighbouring sites. In other words, only neighbouring sites have

direct interactions with each other. Fig. 4.2 shows a second order MRF neigh-

bourhood. The pixel set {xb} located in the boundary decouples the inside pixel

xs and outside pixel set xo. The pixels located in boundary set {xb} are said to be

the neighbourhood of xs. Notice that if the neighborhoods are large enough to en-

compass the dependencies, any process which satisfies equation (4.2) and (4.3) will

be a MRF. In practice, based on prior knowledge, effort is made to select the size

of neighbourhood. It should be large enough to contain the necessary information

to model different classes of images, and at the same time small enough to ensure

feasible computational loads. A MRF is said to be homogeneous if P (xs|xNs) is

independent of the relative position of site s in S.

In image processing, it may be necessary to define a few coupled MRFs for some

problems, each defined on one of the spatially interwoven set of sites. For example,
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in the related tasks of image segmentation, two MRFs, one for pixel values (xs) and

the other for the underlying label values (ls), can be defined on the image lattice

and its label set respectively. They are coupled to each other via the conditional

probability P (xs|ls).

4.2 Markov-Gibbs Equivalence

Theoretically, A MRF can be specified in two ways: the conditional probabilities

approach P (xs|xNs) and the joint probability approach P (x). Besag argues for the

joint probability approach in view of the disadvantages of the conditional proba-

bility approach [5]. Firstly, no obvious method is available for deducing the joint

probability from the associated conditional probabilities. Secondly, the conditional

probabilities themselves are subject to some non-obvious and highly restrictive con-

sistency conditions. Thirdly, the natural specification of equilibrium of statistical

process is in terms of the joint probability rather than the conditional distribution

of the variables. Fortunately, a theoretical result about the equivalence between

MRFs and Gibbs distribution provides a mathematically tractable means of speci-

fying the joint probability of an MRF.

4.2.1 Gibbs Random Field Definition

Gibbs models originated from statistical physics and were introduced into image

modelling by Hassner and Sklansky in 1983 [27]. A Gibbs distribution P (x) relative

to (S, N) measures the probability of the occurrence of a particular configuration

x in the image domain. It can be represented as follows:

P (x) = Z−1e−
1
T

U(x) (4.4)
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where

Z =
∑

x∈X

e−
1
T

U(x) (4.5)

is a normalizing constant called the partition function, T is a constant called the

temperature which controls the degree of peaking in the density P (x), and U(x) is

the energy function taking the form

U(x) =
∑

c∈C

Vc(x). (4.6)

The energy is a sum of clique potentials Vc(x) over all possible cliques c. The

value of Vc(x) depends on the local configuration on the clique c. By choosing a

particular function Vc(x), the a priori contextual information can be incorporated

in the model.

A set of random variables x is said to be a Gibbs random field (GRF) on S

with respect to N if and only if its configurations obey a Gibbs distribution. A

GRF is said to be homogeneous if Vc(x) is independent of the relative position of

the clique c in S. It is said to be isotropic if Vc is independent of the orientation

of c. To specify a GRF distribution if it is homogeneous or isotropic is simpler

than specifying one without such properties [27]. The homogeneity is assumed in

most MRF vision models for mathematical and computational convenience. The

isotropy is a property of direction-independent regions.

Sometimes, it may be convenient to express the energy of a Gibbs disribution

as the sum of several terms, each ascribed to cliques of a certain size, that is:

U(x) =
∑

s∈C1

V1(xs) +
∑

{s,s′}∈C2

V2(xs, xs′) +
∑

{s,s′,s′′}∈C3

V3(xs, xs′ , xs′′) + . . . (4.7)

This implies a homogeneous Gibbs distribution because V1, V2 and V3 are indepen-

dent of the locations of s, s′ and s′′. For non-homogeneous Gibbs distributions, the

clique functions should be written as V1(s, xs), V2(s, s
′, xs, xs′), and so on.



CHAPTER 4. MODEL-BASED TEXTURE ANALYSIS 49

P (x) measures the probability of the occurrence of a particular configuration x.

The more probable configurations are those with lower energies. The temperature

T controls the sharpness of the distribution. When the temperature is high, all

configurations tend to be equally distributed. Near zero temperature, the distribu-

tion concentrates around the global energy minimum. Usually, T is assumed to be

1 unless otherwise stated.

4.2.2 Hammersley-Clifford Theorem

An MRF is characterized by its local property (Markovianity) whereas a GRF is

characterized by its global property (the Gibbs distribution). The Hammersley-

Clifford theorem establishes the equivalence of these two types of properties. The

theorem states:

X is an MRF on S with respect to N if and only if X is a GRF on S with

respect to N .

Many proofs of the theorem exist (e.g. in [5]). According to this theorem, if X

is a Gibbs distribution, then for a configuration x of X, one has

P (xs|xS−s) =
e−

∑
c∈A

Vc(x)

∑
x′s e−

∑
c∈A

Vc(x′s)
(4.8)

where A consists of cliques containing s and x′s denotes any possible values on

position s. Eqn. (4.8) only depends on xs and its neighbours.

The practical value of this theorem is that it provides a simple way of spec-

ifying the joint probability by providing an explicit formula for the joint proba-

bility distribution P (X = x) in terms of the energy function. One can specify

the joint probability P (X = x) by specifying the potential functions together with
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the neighbourhood system. In this way, the a priori knowledge or preference about

interactions between labels is also easily encoded in the image processing procedure.

How to choose the forms and parameters of the potential functions for a proper

encoding of constraints is a major topic in MRF modelling [29] [37]. The forms

of the potential functions determine the form of the Gibbs distribution. When all

the parameters involved in the potential functions are specified, the Gibbs distri-

bution is completely defined. To calculate the joint probability of an MRF, which

is a Gibbs distribution, it is also necessary to evaluate the partition function Z.

Because it is the sum over a combinatorial number of configurations of X, the com-

putation is usually intractable. The explicit evaluation can be avoided in maximum

probability based MRF vision models when U(x) contains no unknown parameters.

However, this is not true when the parameter estimation is also a part of the prob-

lem. In the latter case, the energy function U(x) = U(x|θ) is also a function of

parameters θ and so is the partition function Z = Z(θ). The evaluation of Z(θ) is

required. To circumvent the formidable difficulty therein, the joint probability is

often approximated in practice.

4.3 Image Models

Most texture research can be characterized by the underlying assumption made

about the texture formation process. There are two major assumptions, and the

choice of the assumption depends primarily on the type of textures to be consid-

ered [14]. The first assumption, which is called the placement rule, considers a tex-

ture to be composed of primitives. Macro-textures have large primitives, whereas

micro-textures are composed of small primitives. The texture is generated by some

placement rules which specify how the primitives are oriented, both on the image
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field and with respect to each other. The tissue samples are a typical example of

this kind of textures. But the textures of sand, grass, and water are not appro-

priately described by the placement rule. The key feature of these texture images

is that the primitives are random in shape and cannot be easily described. The

second viewpoint regarding texture generation processes involves the stochastic as-

sumption. The value at each pixel site is considered a random variable, and the

texture is regarded as a sample from a probability distribution on the image space.

This assumption of texture formation can be applied to the sand, water and grass

textures. Fig. 4.3 shows the texture samples in these two categories.

The interest of this thesis is in texture models with stochastic process approach.

Ideally, people would like to find a stochastic process that is physically meaningful

and related to the texture which is being modeled. Texture models serve a dual role

in that they can describe images and also can serve to generate synthetic images

from the model parameters. In the stochastic process approach, the grey level xs at

a pixel site s is not independent of the grey levels at other sites in the image, and

the principal concern is about the interaction and relationship between the pixels.

MRF image models belong to the stochastic category. The study of it has had

a long history beginning with Ising’s 1925 thesis on ferromagnetism [53]. Although

the Ising model used in his thesis was not proved to be a realistic model for magnetic

domains, it is approximately correct for phase-separated alloys, idealized grass, and

some crystals [24]. In 1974, Besag allowed a natural extension of the model to the

case of variables that have integer ranges, either bounded or unbounded [5]. A

particular MRF model favours its own class of patterns by associating them with

larger probabilities than other pattern classes. In the segmentation process, they

are employed to model the a priori probability of contextual dependent pattern of

the images. For examples: a colour Gauss Markov random field (GMRF) model
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is used by Panjwani and Healey for modeling a colour image [40]. Barker and

Rayner [3] used an isotropic MRF model and GMRF model for an unsupervised

segmentation algorithm. The isotropic MRF model is used to model an image

consisting of regions of constant but different grey scales, corrupted with an i.i.d.

noise process, and GMRF model for individual textures. Chellappa and Chatterjee

[10] used the GMRF model in a supervised segmentation algorithm. The GMRF

model parameter and some derived features calculated using the model parameters

are used as the texture features for classification. Cross and Jain [14] used an

auto-binomial model to model and synthesize Brodatz textures. Derin and Cole

[18] used a specific Gibbs distribution model considering up to 4-pixel clique size

for texture segmentation. Other studies that made use of MRF and GRF models

for texture or image modelling were conducted by Geman and Geman [27].

This section will focus on most common MRF models in image processing: auto-

model and Gauss-model. And in fact, Gauss-model can also be regarded as a special

case of auto-models.

4.3.1 Auto-Model and Related Texture Synthesis

Contextual constraints on two pixel sites, which are encoded in the Gibbs energy

as pair-clique potentials, are the lowest order constraint for conveying contextual

information in MRF texture models. Fig. 4.4 shows the pair-cliques involved in

the first to third order models.
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Figure 4.3: Texture samples: (a,b) Texture samples with circle primitives that

can be synthesized by placement rule models (adapted from Matlab demo image

database). (c,d) Texture samples that can be synthesized by stochastic processes

(Brodatz textures).
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Figure 4.4: Pair-cliques involved up to the third order MRF texture model. (a-b)

Pair-cliques involved in the first order model. (a-d) Pair-cliques involved in the

second order model. (a-f) Pair-cliques involved in the third order model.

From the previous section, it can be observed that with clique potentials of up

to two sites, the energy takes the form

U(x) =
∑

s∈S

V1(xs) +
∑

{s,s′}∈C2

V2(xs, xs′) (4.9)

The above equation is widely used because of its simple form and low computational

cost, and at the same time it still can convey contextual information [37]. Some

specific MRF or GRF models can be specified by proper selection of V1 and V2.
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When V1(xs) = xsGs(xs) and V2(xs, xs′) = βs,s′xsxs′ where Gs(.) is an arbitrary

function and βs,s′ is a constant reflecting the pair-clique interaction between s and

s′, the energy equation has the form

U(x) =
∑

{i}∈C1

xsGs(xs) +
∑

{s,s′}∈C2

βs,s′xsxs′ (4.10)

The above energy expression is called auto-models by Besag [5]. It can be further

classified according the assumptions made about individual xs. An auto-model is

said to be an auto-logistic model if the xs takes on values in the discrete label set

{0, 1} or {−1, 1}. The corresponding energy is of the following form

U(x) =
∑

{s}∈C1

αsxs +
∑

{s,s′}∈C2

βs,s′xsxs′ (4.11)

where βs,s′ can be viewed as the interaction coefficients. The conditional probability

for the auto-logistic model with {0, 1} is

P (xs|xNx) =
eαsxs+

∑
s′∈Ns

βs,s′xsxs′

∑
xs∈[0,1] e

αsxs+
∑

s′∈Ns
βs,s′xsxs′

=
eαsxs+

∑
s′∈Ns

βs,s′xsxs′

1 + eαs+
∑

s′∈Ns
βs,s′xs′

(4.12)

When Ns represents the nearest neighbourhood on a lattice system (four nearest

neighbours on a 2D lattice system), the auto-logistic model is reduced to the Ising

model. An auto-model is said to be an auto-binomial model if xs is taken on

values in {0, 1, . . . , R− 1} and every xs has a conditionally binomial distribution of

M trials and probability of success q. An auto-model is said to be an auto-normal

model, also called Gauss-model, if the label set L’s joint distribution is multivariate

normal. This model will be described in the next section.

One of the primary goals of MRF models is the description of real textures.

The parameters of MRF models completely describe the texture structure. Given

the model parameters, one can synthesize textures. This method is widely used
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in stochastic image compression, random texture synthesis and lattice-physics sim-

ulations [23]. To illustrate the ability of describing the texture structure of MRF

texture models, several MRF textures will be generated using auto-logistical models

in this section and Gauss-models in the next section.

To generate auto-model MRF textures that are a visual representation of a

MRF, a procedure that yields a sample from a MRF with given parameters is

required, i.e., generate texture samples xi statistically sampled from the random

field X using the distribution law p(.) of Eqn. (4.4). Gibbs sampler is a widely

used technique for such a synthesis problem. The general steps involved in the

Gibbs sampler for the discrete binary valued case are [23]:

Step 1 Start with a sample from an i.i.d binary random field with p(xs) = 0.5.

Step 2 Visit each site in the image. At each site, sample xs from p(xs|xr, r ∈ Ns)

Step 3 Repeat Step 2 many times, until the stability is reached.

For the auto-logistic model case, the conditional probability given by Eqn. (4.12)

can also be written as [14]:

P (xs|xNs) =
exp(xsT )

1 + exp(T )
(4.13)

where for the first order model T is:

T = α + β(1, 1)(xs+r1 + xs−r1) + β(1, 2)(xs+r2 + xs+r2)

and Ñs = {r1, r2} = {(0,−1), (−1, 0)}. For the second-order model T is:

T = α + β(1, 1)(xs+r1 + xs−r1) + β(1, 2)(xs+r2 + xs−r2)+

β(2, 1)(xs+r3 + xs−r3) + β(2, 2)(xs+r4 + xs−r4)
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and Ñs = r1, r2, r3, r4 = (0,−1), (−1, 0), (−1,−1), (1,−1).

The distribution of neighbourhood set Ñs around pixel s up to fourth order is shown

in Fig. 4.5.

Figure 4.5: Auto-model neighbourhood system.

Some MRF texture examples of size 128×128 generated from auto-logistic mod-

els are shown in Fig. 4.6. The model parameters are given in Table 4.1 (the model

parameters are adapted from [14]). These simple texture samples are representative

results but not direct attempts to imitate real textures. However, by artificially set-

ting the model parameters, an intuitive understanding of the functionality of the

model parameters in controlling the underlying structure of the texture can be

obtained.

Textures I-a, I-b and I-c are generated using first order models (Ising model).

Because the parameters along vertical and horizontal direction have the same values,

these textures demonstrate an isotropic structure. All the parameters of texture

I-a are set to zero, i.e. α = β(1, ·) = 0, which makes the intensity value of each

pixel independent of all the other pixels and the probability of a pixel being black

or white is fifty percent. The texture generated using this models is a typical

noise texture. As the values of β(1, ·) change from 0 in texture I-a to 1.52 in
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texture I-c, the texture clustering increases clearly. Many of the applications of the

Ising model involve studying the checkerboard-like patterns obtained with negative

clustering parameters [24]. This is illustrated by texture I-d, where the most likely

configuration is a black pixel surrounding by four white pixels or vice versa.

Figure 4.6: Synthetic textures generated using auto-models in Table 4.1. (I) Ising

textures. (II) Anisotropy textures. (III) Attraction-repulsion textures.

Textures II-a, II-b and II-c show extreme anisotropy of first order and second

order models. The value β(1, 1) controls the horizontal clustering and β(1, 2) con-
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trols vertical clustering. In texture II-a, a large positive value of β(1, 2) and a large

negative value of β(1, 1) result in clean vertical lines. On the contrary, texture

II-b has short thick and noisy horizontal lines because of the small positive value

of the vertical clustering parameters. The clustering along the NW-SE direction

of texture II-c is pronounced since the parameter in this direction is 1.9 and the

parameters in all the other directions are relatively smaller.

An attraction-repulsion process involves having low-order parameters positive

(resulting in clustering), but high-order parameters negative (to inhabit the growth

of clusters) [14]. If high-order parameters are also positive, large clusters would

result, whereas negative high-order parameters yield small clusters. Texture III-a

and III-b shows the effect of anisotropic clustering with inhibition. Texture III-b

contains longer horizontal and vertical lines than texture III-a because of the large

values of the first order clustering parameters β(1, 1) and β(1, 2). Texture III-c and

III-d shows two isotropic attraction-repulsion textures. Cluster sizes are small here

because of the high order inhibition.

The synthetic texture samples shown in Fig. 4.6 demonstrate that the MRF

parameters control the strength and direction of the clustering of the image. The

model parameters themselves are sufficient to generate images. As Besag explains in

the discussion of his lattice model paper [5], the pattern formation process, although

specified locally, implies a global pattern. The consistency conditions enforced by

the MRF model cause a pattern over the entire lattice. The patterns generated

by varying the model parameters can be studied and analyzed. Directionality,

coarseness, grey level distribution, and sharpness can all be controlled by choosing

of the model parameters.
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Model Number Model parameters

α β(1, 1) β(1, 2)

I-a 0 0 0

I-b -2.2 1.1 1.1

I-c -3.04 1.52 1.52

I-d 5.09 -2.25 -2.16

α β(1, 1) β(1, 2) β(2, 1) β(2, 2)

II-a -0.26 -1 2.1 0.13 0.015

II-b -2.04 1.93 0.16 0.07 -0.075

II-c -1.9 -0.1 0.1 1.9 0.02

α β(1, 1) β(1, 2) β(2, 1) β(2, 2) β(3, ·) β(4, ·)
III-a 2.19 -0.088 -0.009 -1 -1

III-b 0.16 2.06 2.05 -2.03 -2.10

III-c -0.97 0.94 0.94 0.94 0.94 -0.42 -0.49

III-d -4.6 2.62 2.62 2.17 2.17 -0.87 -0.85

Table 4.1: Auto-model parameters corresponding to the textures in Fig. 4.6

4.3.2 Gauss-model

One of the important characteristics of image data is the special nature of the

statistical dependence of the grey level at a lattice point on those of its neighbours.

Gauss-model provides a way of modelling this relationship by representing xs as a

linear weighted combination of the neighbourhood pixels and additive noise. The

random field modeled by a Gauss-model is called the Gauss Markov random field

(GMRF). Comparing with auto-logistical and auto-binomial models, the Gauss-

model introduces much more diverse texture types and has been successfully used

to simulate, segment, and classify different image textures with a limited spatial

range of pixel interactions.
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Let X be an observation from an image defined on a two dimensional M ×M

lattice system S where S = {(i, j); 0 ≤ i, j ≤ M − 1}. The two dimensional

GMRF models characterize the statistical dependency among pixels by satisfying

Eqn. 4.2 and 4.3. Since GMRF models are defined only for symmetric neigh-

bourhood sites, often N is equivalently characterized using an asymmetrical neigh-

bour set Ñ , i.e. if r ∈ Ñ then −r /∈ Ñ and N = (r : r ∈ Ñ)
⋃

(−r : r ∈
Ñ). A hierarchy of GMRF models can be defined. For example, when Ñ =

{r1, r2} = {(0,−1), (−1, 0)}, a first order GMRF model is obtained, and when

Ñ = {r1, r2, r3, r4} = {(0,−1), (−1, 0), (−1,−1), (−1,−1)} a second order model

is obtained and so on.

Given a finite image, it can be analyzed as a finite slice of an underlying infinite

lattice image. This approach leads to the class of GMRF models known as infinite

lattice GMRF models. In general the infinite lattice models do not give computa-

tionally attractive algorithms for image processing. Another class of models, known

as finite lattice models, obtained by assuming special boundary conditions, yields

computationally efficient processing algorithms using fast transforms like discrete

Fourier, discrete sine and cosine [9]. Because of this, the finite models will be used

in this thesis, and the boundary conditions are considered as follows: the left and

right edges as well as the top and bottom edges are considered adjacent. In other

words, the field is toroidal. Fig. 4.7 shows a four by four small image under this

boundary conditions. For example, in the first order model case, x(1,1) has four

neighbourhood pixels: x(1,2), x(2,1), x(4,1), and x(1,4).

The finite lattice GMRF model under this boundary assumption can be repre-

sented as follows [9]:

xs =
∑

r∈ Ns

θrxs+r + es (4.14)

x is a real number and es is a zero mean, Gaussian noise, with autocorrelation given
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Figure 4.7: A image (size: 4× 4) with a toroidal boundary condition

.

by

E[eses+r] =





σ2 r = (0, 0)

−θrσ
2 r ∈ Ns

0 otherwise

(4.15)

Let the vector θ
¯

contain the parameter θr, r ∈ Ns in the above equation. The θ
¯

for the fifth order GMRF model is shown in Fig. 4.8, where θ(0,−1) = θ(0,1) and

θ(−1,0) = θ(1,0) etc. [θ
¯
, σ2] are the parameters of GMRF.

By defining

x
¯

= [x(0,0), x(0,1), . . . , x(0,M−1), . . . , x(M−1,M−1)]
T

and

e
¯

= [e(0,0), e(0,1), . . . , e(0,M−1), . . . , e(M−1,M−1)]
T ,

Eqn. 4.14 can be written as:

B(θ
¯
)x
¯

= e
¯

(4.16)
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Figure 4.8: The parameters of the fifth order GMRF model.

where B(θ
¯
) is a block-circulate symmetric matrix:

B(θ
¯
) =




B0,0 B0,1 . . . B0,M−1

B0,M−1 B0,0 . . . B0,M−2

· · ·
B0,1 . . . B0,0




(4.17)

where each B0,i is an M ×M matrix and B0,i = B0,M−i.

For example,when using the simplest first order model, θ
¯

= {θ(0,−1), θ(0,1), θ(−1,0), θ(1,0)},
let θ1 = θ(0,−1) = θ(0,1) and θ2 = θ(−1,0) = θ(1,0). Applying Eqn. 4.14 to each pixel
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in Fig 4.7, leads to:




x(0,0) −
[

θ1 θ2

]



x(1,4) + x(1,2)

x(4,1) + x(2,1)


 = e(0,0)

x(0,1) −
[

θ1 θ2

]



x(1,1) + x(1,3)

x(4,2) + x(2,2)


 = e(0,1)

. . .

x(4,4) −
[

θ1 θ2

]



x(4,3) + x(4,1)

x(3,4) + x(1,4)


 = e(0,0)

(4.18)

B(θ
¯
) is:




1 −θ1 −θ1 −θ2 −θ2

−θ1 1 −θ1 −θ2 −θ2

−θ1 1 −θ1 −θ2 −θ2

−θ1 −θ1 1 −θ2 −θ2

−θ2 1 −θ1 −θ1 −θ2

−θ2 −θ1 1 −θ1 −θ2

−θ2 −θ1 1 −θ1 −θ2

−θ2 −θ1 −θ1 1 −θ2

−θ2 1 −θ1 −θ1 −θ2

−θ2 −θ1 1 −θ1 −θ2

−θ2 −θ1 1 −θ1 −θ2

−θ2 −θ1 −θ1 1 −θ2

−θ2 −θ2 1 −θ1 −θ1

−θ2 −θ2 −θ1 1 −θ1

−θ2 −θ2 −θ1 1 −θ1

−θ2 −θ2 −θ1 −θ1 1




.

All the other elements in the above matrix are zero.

The joint probability can be expressed by a Gibbs distribution [37]:

p(x) =

√
det(B(θ

¯
))√

2πσ2
e

(x−µ)T B(θ)(x−µ)

2σ2 (4.19)
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where µ is an M × 1 vector of the conditional means. Substituting B(θ
¯
) into Eqn.

4.19, it can be found that the single-site and pair-site clique potential functions for

the Gauss-model are:

V1(xs) = (xs − µs)
2/2σ2 (4.20)

and

V2(xs, xs′) = θr(xs − µs)(xs+r − µs+r)/2σ
2 (4.21)

The conditional distribution at pixel s given the neighbourhood set Ns is:

P (xs|xr, r ∈ Ns) =
e−U(xs|xr,r∈Ns)

Z
(4.22)

where Z is the partition function of the conditional Gibbs distribution. Based on

Eqn. 4.20 and 4.21

U(xs|xr, r ∈ Ns) =
1

2σ2
((xs − µs)

2 − 2Σr∈Nsθr(xs − µs)(xs+r − µs+r)) (4.23)

4.3.3 Gauss-Model Texture Synthesis

The synthesis procedure of GMRF textures begins with the representation given by

Eqn. 4.16. Assuming that θ
¯

takes values so that B−1(θ) exists, the image vector x
¯

can be written as:

x
¯

= B−1(θ
¯
)e
¯

(4.24)

It is a heavy computational burden to implement Eqn. 4.24 by directly inverting

an M2 ×M2 matrix. But under the assumption of a toroidal boundary of image

x, B−1(θ
¯
) will also be a block-circulate matrix. Let Λ be the covariance matrix of

image x, then the GMRF texture sample x can be computed as [23]:

x = ifft2 {sqrt(fft2(Λ)) · fft2(e) } (4.25)
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where fft2 and ifft2 denote two-dimensional discrete Fourier and inverse Fourier

transform. sqrt() is the square root operator and “·” denotes element-by-element

operations, and e is an i.i.d. Gaussian noise image sample.

Fig. 4.9 shows sixteen 64 × 64 GMRF texture samples synthesized using the

models given in Table 4.2 (the parameters of the models are adapted from [9]).

Inspecting the samples, one can see that they are quite varied in textural patterns.

First, the orientations of the texture are controlled by the setting of parameters in

the model, just like the auto-model synthesized textures in Fig. 4.6. By setting the

vertical and horizontal parameters to zero, textures (b), (c), and (g) show strong

diagonal directions. Texture (o) is obtained from texture (n) by considering an

interaction of a pair of WN-ES direction neighbourhood pixels. The clear horizontal

oriented line structure in texture (n) is diffused in texture (o). And by adding the

EN-WS pair of pixels, a more macro-structure pattern in texture (e) than texture

(o) is generated. The stretch of the line structure in the horizontal direction almost

disappears. Texture (a) and texture (p) each have a vertical stretching tendency

because the parameter along the vertical direction is bigger than the parameter

along the horizontal direction. But the negative value of texture (p) makes the

scale of the texture along the horizontal more narrow and sharp than texture (a).

Visually, texture (a) appears like a blurred version of texture (p). Texture (a) and

texture (l) have the same set of parameters. The different is the model orders.

Texture (a) has a first order model, and texture (l) has a second order model. The

interactions between neighbourhood pixels in texture (a) happens within a smaller

neighbourhood than texture (l). This makes the change of grey levels in texture

(a) look more continuous than texture (l).
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Figure 4.9: Synthetic textures generated using the GMRF models in Table 4.2
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4.4 Model-based Texture Segmentation Algorithm

Design

The approach of model-based image segmentation is to articulate the regularities

between neighbouring pixels mathematically, and then to exploit them in a Bayesian

framework to make inference that which label is most likely to happen. During

the segmentation process, the prior distribution models are needed to capture the

tendencies and constraints that characterize the scenes of interest. In general, the

following problems should be addressed in the segmentation approach:

1. Design of prior models;

2. Statistical inference to specify the model parameters;

3. Specification of the posterior distribution given the observed image;

4. Estimation of the true image based on the posterior distribution coupled with

a Baysian decision rule.

The rest of this section will present in detail a segmentation algorithm motivated

by the above considerations.

4.4.1 Prior Image Models

The importance of prior information in image analysis is illustrated by Winkler

[54] through an interesting experiment on image restoration. Based on different

prior models, the recovered images from the same observed image looked totally

different. Image (b) in Fig. 4.10 is restored based on smooth and isotropic Ising



CHAPTER 4. MODEL-BASED TEXTURE ANALYSIS 70

Figure 4.10: (a) A degraded image. (b) Reconstructed image based on smooth and

isotropic Ising model. (c) Reconstructed image based on vertical-stripe auto-model.

model assumption, whereas image (c) is restored based on vertical stripes auto-

model.

To define the prior image models for the segmentation algorithm, the meaning

of the image X mentioned afterwards should be explained first. As in the previous

section, let X be a two dimensional M × M image defined on the lattice system

S. Associating with each pixel s is a random variable Xs which contain all of

the relevant information for the image processing task. In segmentation, X is the

pixel intensity array and a corresponding texture label array, i.e., X = {XI , XL}.
Each label gives the texture type of the associated pixel. Fig. 4.11 illustrates the
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Figure 4.11: Image components defined for model-based segmentation algorithm.

(a) Intensity image (observable). (b) Label image (unobservable).

intensity component XI and label component XL of image X.

Designing the prior models about the image X means selecting the appropriate

MRF models which can describe the underlying statistical structure of the inten-

sity image and the label image. The selected models should correctly describe the

relations and constraints among the pixels in image. Because the kind of knowl-

edge that the prior distribution can represent is articulated in terms of small local

collections of variables, this leads to a distribution on X with a more or less “local

neighbourhood structure” which can just be modelled using MRF.

Viewing the literature, several MRF models are presented for various image

processing problems. Krishmanachari and Chellappa have demonstrated the appli-

cability of using GMRF models to model the intensity image [35]. The conditional

distribution of the intensity image XI at site s which carries a class label ls can be

written as[39]:

P (XI
s = xs|XI

r = xr, r ∈ Ns, X
L
s = ls) =

e−U(XI
s =xs|XI

r =xr,r∈Ns,XL
s =ls)

Z
(4.26)
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where U(.) is the energy function which takes the form:

U(XI
s = xs|XI

r = xr, r ∈ Ns, X
L
s = ls)

=
1

2σ2
ls

((xs − µs)
2 − 2Σr∈Nsθ

ls
r (xs − µs)(xs+r − µs+r)) (4.27)

Where θls
r represents the GMRF model parameter of class ls. When the intensity

image is zero mean, Eqn. 4.27 can take a simpler form:

U(XI
s = xs|XI

r = xr, r ∈ Ns, X
L
s = ls) =

1

2σ2
ls

(x2
s − 2Σr∈Nsθ

ls
r xsxs+r) (4.28)

Usually, the label image does not have as many intensity levels as the intensity

image. Its intensity levels are the number of texture types in the image. Therefore,

the prior model for label image is not as complicated as that for intensity image.

The main consideration for the prior model of label image is the smoothness con-

straint. In fact, a generic contextual constraint in our daily life is the smoothness.

It assumes that physical properties in a neighbourhood of space or in an interval

of time present some coherence and generally do not change abruptly. This phe-

nomenon also happens in an image. The local conditional probability of the label

image can be modelled by a so called pairwise interaction model [39]:

P (XL
s = ls|XL

r = lr, r ∈ ψs) =
exp{−U(ls|lr)}∑

l
′
s=(1,2,···,L) exp{U(l′s)}

(4.29)

where ψs is the neighbourhood set of a pixel s in the label image, and each pixel

carries a class label ls, ls ∈ {1, 2, · · · , L}. The energy function U(ls) calculates the

number of neighbours in ψs that belong to same class as ls:

U(XL
s = ls|XL

r = lr, r ∈ ψs) = β
∑

r∈ψs

δ(ls − lr) (4.30)

where δ() is the Kronecker delta.
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According Eqn. 4.29, the likely pictures for the label image are therefore the

ones that respect the prior expectations: they segment into regions of constant

intensities. Whenever all labels in the neighbourhood ψs take the same value as ls,

they incur a high positive potential, which results in a higher probability; otherwise,

if they are not all the same, they incur a small potential, which results in a lower

probability. In other words, Eqn. 4.29 and 4.30 provide a method for constructing

smooth label images by giving a higher probability to smoothness distribution.

4.4.2 Model Size and Parameter Estimation

To estimate the GMRF model, two major problems have to be tackled: the choice

of appropriate neighbourhood size (i.e., the order of the GMRF model) and the

estimation of parameters in the models.

Although using GMRF models to describe the structure of the texture is theoret-

ically appropriate, accurate estimation of the model parameters using the observed

data is still an open issue. In the case of this thesis, the parameters for the two

image models mentioned in the previous section should be estimated. The least

squares estimate is selected in this thesis, which can provide appropriate estimates

for segmentation purposes and computational efficiency [38].

Given a neighbourhood set Ns for each pixel site s in S, the finite lattice system

S can be partitioned into mutually exclusive and totally inclusive subsets SI , the

interior set and SB, the boundary set, such that: SB = { s = (i, j) : s ∈ S, (s+r) /∈
S for at least one r ∈ Ns}, and SI = S − SB. Then the least square estimation of

the parameters are [34]:

θ̂ = [
∑

SI

QsQ
T
s ]−1[

∑

SI

Qsxs ] (4.31)
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and

σ̂2 =
1

M2

∑

SI

[ xs − θ̂
T
Qs ]2 (4.32)

Where

Qs = [xs+r1 + xs−r1, . . . , xs+rn + xs−rn]T (4.33)

r1, . . . , rn is the asymmetrical neighbourhood set Ñs defined in the beginning of

section 4.3.2. The neighbourhood set of Gauss-model is the same as the auto-

model neighbourhood set shown in Fig. 4.5. M2 is the number of pixels in SI . The

parameters up to fifth order model are shown in Fig. 4.8.

Model order is one of the important concerns for a successful segmentation.

Usually, the more complicated the texture, the higher order model should be used.

But it is difficult to explicitly adapt the interaction structure to a particular texture

by choosing the most characteristic model size and also excluding probably less

significant interactions from a model. Kashyap and Chellappa presented a method

generated from Bayes procedure for estimation and choice of the model order for

the GMRF texture [34] [9].

Let N1, N2, . . . , Nk, . . . be the first, second , . . ., kth, . . . order neighbourhood.

The decision rule for the choice of appropriate neighbourhood size k is: choose the

neighbourhood Nk if

k = arg mink{Ck} (4.34)

where

Ck = −2
∑

s∈S

ln(1− θT
k φs,k) + N2 ln σk + mk ln N2 (4.35)

θk = col [θr, r ∈ Ñk
s ] (4.36)

φs,k = col [cos
2π

N
(sT r), r ∈ Ñk

s ] (4.37)
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Figure 4.12: Synthesized textures corresponding to the models in Table 4.3. (a)

Model A. (b) Model B. (c) Model C. (d) Model D. (e) Model E.
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Model Model order Model parameters σ2 Ck

A 2 θ0,−1 = 0.2707 θ−1,0 = 0.5001 1.000
θ−1,−1 = −0.1471 θ−1,1 = −0.1224

B 1 θ0,−1 = 0.0135 θ−1,0 = 0.4985 1.1571 944.0

C 2 θ0,−1 = 0.2786 θ−1,0 = 0.5000 0.9788 474.2
θ−1,−1 = −− 0.1496 θ−1,1 = −0.1283

D 3 θ0,−1 = 0.2790 θ−1,0 = 0.5004 0.9797 562.8
θ−1,−1 = −0.1494 θ−1,1 = −0.1287
θ0,−2 = −0.0001 θ−2,0 = −0.0004

E 4 θ0,−1 = 0.2787 θ−1,0 = 0.5011 0.9795 603.5
θ−1,−1 = −0.1479 θ−1,1 = −0.1328

θ0,−2 = 0.0006 θ−2,0 = −0.0012
θ−1,2 = 0.0010 θ−2,1 = 0.0035

θ−1,−1 = −0.0008 θ−1,−2 = −0.0016

Table 4.3: GMRF texture models and Ck values corresponding to the synthesized

textures in Fig. 4.12.

where Ñk
s is the asymmetrical half of Nk

s , and mk is the number of parameters in

neighbourhood Ñk
s .

To illustrate the usefulness of the decision rule, texture (a) in Fig. 4.12 is

synthesized using the GMRF model (A) shown in Table 4.3. Take texture (a) as

the test original image, the estimated models of texture (a) using second order to

fifth order model are given in (B) to (E) in Table 4.3. Each estimated model’s

statistics Ck is computed and shown in Table 4.3 too. Comparing the Ck values,

one can see that the decision rule correctly picked up model (C), which has the same

order as model (A). Textures (b) to (e) in Fig. 4.12 are synthesized based on the

estimated models (B) to (E) in Table 4.3. It is clear that the textures corresponding

to the inappropriate models (B), (D) and (E) are not quite similar to texture (a).

Texture (c) which is synthesized using the same order model as texture (a) is very
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similar to texture (a). In general, the textures corresponding to a specific model ξ

and another model, which includes all the neighbours in model ξ and some extra

neighbours may appear similar , making visual judgement subjective. However, the

quantitative decision rule may correctly rejects these over-parameterized models.

The data in Table 4.4 is calculated from 144 Radarsat sea ice image samples.

For each sample, Ck was calculated using second to fifth order estimated GMRF

models. The numbers associated with each order represent the number of times an

model had the minimum Ck. Observing Table 4.4, fourth order model should be a

preferred choice for Radarsat SAR sea ice texture. The fourth order model is used

in the SAR sea ice image segmentation in this thesis.

Model Order Times of Minimum Ck

2 19

3 6

4 74

5 45

Table 4.4: The minimum Ck value distribution of Radarsat SAR sea ice image with

different GMRF texture model orders

There are many natural and artificial image textures that can be modeled ade-

quately by GMRF models with multiple pair-clique interactions. But as an image

model, the Gauss-model has some draw backs. First, it assumes the infinite contin-

uous range of the signal values and, in the strict sense, does not represent the digital

images that have a finite set of pixel values. Second, this model assumes that all

the neighbourhood pixels interact with each other within a square neighbourhood

system, and the model only considers the interaction between pairwise pixels. Such
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simplification leaves aside quite a number of natural textures that usually have

larger and more diverse texture structure and greater geometric differences.

For a pairwise interaction model, there is only one parameter β in Eqn. 4.30,

which characterizes the binding between textures of the same class, to be estimated.

However, it is difficult to estimate the exact value of β. Based on the segmentation

experiments, β could be set between 1 and 3. The nature of the segmentation

result also depends on the order of the pairwise interaction model. The choice of

model order depends on the knowledge of intensity image, and it is quite flexible.

For example, it is preferable to choose the first-order model if one knows a priori

that the boundaries are either horizontal or vertical. It is also not necessary that

the neighbourhood pixels are connected with each other. For example, in the

segmentation approach for coastline detection [56], 8 nearest neighbourhood pixels

and 8 neighbourhood pixels located at a certain distance from the site s are selected.

In this thesis, without any specific assumption to the distribution of the texture

types in the image, the second order label model neighbourhood is used.

4.4.3 MRF Segmentation in Bayesian Framework

Some image analysis can be implemented using ad hoc techniques, but for robust

and powerful algorithm design, there is a need for theory. When analysis is based

on precisely formulated mathematical models, one can study the performance of

algorithms analytically and design optimal methods. The Bayesian approach is one

of the promising attempts to provide a such base[54]. The Bayesian paradigm allows

one to consistently combine the prior model with the data, and an optimization

process can be designed to obtain a MAP solution.

The basic theory for model-based image segmentation using Markove random
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field coupled with Baysian framework in the literature is introduced in this section.

The segmentation algorithm developed in this thesis based on the theory will be

explained in detail in the next section.

An optimization-based segmentation algorithm involves three tasks: problem

representation, objective function and optimization process. The representation

deals with how to provide the solution. For an image labeling problem, one may use

a chain of boundary locations to represent the solution [41], or one may alternatively

use a region map to perform the same task [28, 55, 35]. The label image XL defined

in section 4.4.1 is, in fact, a region map representation. The second task is how to

formulate the objective function for the optimization. The formulation determines

how the constraints and prior knowledge about image are encoded into the function.

The encoded information may be pixel intensity, context relations between pixels,

or some statistical features of pixel values. The third task deals with optimizing

the objective, i.e., how to search for the optimal solution in the solution space. The

main concern in this stage is the tradeoff between the appropriate solution and

computation efficiency. These three issues are related to one another. First of all,

the scheme of representation influences the formulation of the objective function

and the design of the search algorithm. The formulation of the objective function

then affects the search.

In the segmentation algorithm presented in this thesis, based on the employed

image models, the Bayesian theory will involve in the formulation setup, and the

objective function in the form of an energy function will be minimized to obtain an

optimized solution.

Under the definition for the image X = {XI , XL}, the observation on the image

is not complete: one observes the intensity image, but not the label image. The seg-

mentation purpose is then to estimate the label image based on the observed image
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and the prior information about the observed and label image. The segmentation

can be formulated as an optimization process involving maximizing a posteriori:

(XL)∗ = argXL max [P (XL|XI) =
P (XI |XL)P (XL)

P (XI)
] (4.38)

This approach can be called a MAP estimate: given the observed intensity image

XI , choose the most likely label image (XL)∗ which maximizes the posteriori dis-

tribution of Eqn.4.38. The posterior distribution contains the information relevant

to the image segmentation process. It reveals the likely and unlikely states of the

label image. The denominator P (XI) is difficult to evaluate. But because XI

is the observed intensity image, P (XI) is then a constant which can be ignored.

The analysis of the posterior distribution will require only ratios, not the absolute

probabilities.

Searching all the possible configurations of label image {XL} for a global op-

timum is computationally infeasible. For example, even for the very simple case

of segmentation of a 128× 128 image into two classes, there are 2214
possible label

configurations. To overcome the computational difficulty, the following paragraph

will show how the optimal solution can be obtained by using a local optimization

approach: the iterated conditional mode method (ICM), which was first suggested

by Besag [4].

The intensity image is considered to be composed of a set of k × k sub-images

Es centered at each pixel s. Es can be called the energy window. As shown in Fig.

4.13, pixel s in the intensity image is centered by a 9×9 energy window Es. In each

of these windows the texture labels are considered to be homogeneous, i.e., all the

pixels in this window carry the same texture label. Let XI
s∗ denote the intensity

array in the energy window Es. Using the Gibbs formulation, the joint probability

in the window Es can be written as [39]:
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P (XI
s∗|XL

s = ls) =
exp(−U1(X

I
s∗|XL

s = ls))

Z1(ls)
(4.39)

where Z1(ls) is the partition function of texture ls and according to Eqn. 4.20 and

Eqn. 4.21, the energy in Es with a free boundary is:

U1(X
I
s∗|XL

s = ls) =
1

2(σls)2

∑

s′∈Es

{x2
s′ −

∑

r∈N̂s′ |r±s′∈Es

θls
r xs′(xs′+r + xs′−r)} (4.40)

For convenience, re-write Eqn. 4.29 as follows, it is the distribution function

for the texture label at site s conditioned on the labels of the neighbouring sites ψs

shown in Fig. 4.13:

P (Ls|Lr, r ∈ ψs) =
exp(−U2(Ls|Lr, r ∈ ψs))

Z2

(4.41)

where Z2 is partition function of label image. According to Bayesian theory, the

following equation can be written:

P (XL
s = ls|XI

s∗, X
L
r = lr, r ∈ ψs) =

P (XI
s |ls)P (ls|lr, r ∈ ψs)

P (XI
s∗)

(4.42)

Since Xs∗ is already observed, P (XI
s∗) in Eqn. 4.42 is a constant, the numerator is

a production of two exponential functions and Eqn 4.42 becomes:

P (XL
s = ls|XI

s∗, X
L
r = lr, r ∈ ψs)

=
1

Zp

exp(−UP (XL
s = ls|XI

s∗, X
L
r = lr, r ∈ ψs)) (4.43)
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Figure 4.13: Neighbourhood systems of intensity and lable images.

From Eqn. 4.39 and 4.41 , the energy UP (.) in Eqn. 4.43 can be written as:

UP (XL
s = ls|XI

s∗, X
L
r = lr, r ∈ ψs)

= log(Z1(ls)) + U1(X
I
s∗|ls) + U2(ls|lr, r ∈ ψs) (4.44)

Compared with Eqn. 4.38, Eqn. 4.43 and 4.44 are the local expression of

probability and energy. Avoiding the computational burden of solving Eqn. 4.38

for a global XL, Eqn. 4.43 can be used to find a local optimum XL
s [35] [39]

[4]. In this case, the solution is an approximation to the MAP estimation. The
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term log(Z1(ls)) is the summation of energy of each intensity array configuration

in the energy window Es, and it is dependent on the texture class. It can be

evaluated explicitly given the model parameters of each class, but the computation

is very cumbersome. When the σ2 of each texture model do not have a significant

difference, the energy summation of all possible configurations of each class do not

have a significant difference as well. In this case, this term can be ignored.

4.4.4 MRF Segmentation Algorithm

Based on the theory described in the above section, the flow chart of the MRF

segmentation algorithm used in this thesis is illustrated in Fig. 4.14. This algorithm

will be used in Chapter 5 to generate all the MRF segmentation results.

Three steps are involved in the algorithm: model size estimation, model parame-

ter estimation and the deterministic relaxation. Before explaining the segmentation

algorithm, one point should be made clear. As shown in model size estimation part

of Fig. 4.14, all the references to intensity image in the following description corre-

spond to the zero mean image. A zero mean image can be obtained as follows: for

each pixel (i, j) in the intensity image, the local mean of pixel (i, j) is obtained by

computing the mean of a square window around pixel (i, j) in the original intensity

image. Then the intensity value of pixel (i, j) of the zero mean image is obtained

by subtracting the local mean from the original intensity value of pixel (i, j). The

purpose of making image zero mean is to utilize Eqn. 4.28 which is obtained under

the zero mean assumption.

The method introduced in section 4.4.2 is used for model size estimation. The

steps involved in parameter estimation part can be illustrated using Fig. 4.15.

First, the original image is divided into several un-overlapping sub-images, in this
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Figure 4.14: Model-based MRF texture image segmentation algorithm flowchart.
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(a) (b)

Figure 4.15: Parameter estimation part in Fig. 4.14. (a) Original image. (b) Coarse

segmentation.

example, the original image is divided into 16 sub-images. For each sub-image, its

GMRF model is estimated. so 16 models are estimated from the 16 sub-images.

The kmeans method is then used to group these 16 models into 3 classes as shown

in figure b. Finally, the GMRF models θC1 , θC2 and θC3 for the three classes C1,

C2 and C3 are estimated.

The first step in the deterministic relaxation segmentation process involves com-

puting the Gibbs energy UCi
= UCi,1 + UCi,2 of each pixel for each class Ci. UCi,1

is the energy calculated from the intensity image and UCi,2 is the energy calculated

from the label image. Ei is the total energy of the whole image which is the sum-

mation of the energy of each pixel. As shown in Fig. 4.14, during each visit to

site s, its energy UCi
can be calculated, and the class corresponding to the lowest

energy UCi
is selected. The label image is then updated with the class label of the

lowest energy. The process is repeated until there is no further change in the total

energy of the image, or the the number of iterations exceeds a threshold. Since the
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energy is not increasing at each pixel visiting, the segmentation process is bound

to converge.
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Figure 4.16: Variances of Brodatz texture energy U1 vs different energy window

sizes.

In order to be compatible with UCi,2, which is only the energy of one neigh-

bourhood window, UCi,1 values are normalized by dividing the size of the energy

window k × k. The normalized UCi,1 is in fact the average energy of each pixel in

Es. The energy window size k is an important parameter that needs to be selected

carefully. Like the common condition when applying an average filter, if the size of

the filter is too big, too much blurring results. The edge information will be heavily

damaged. The same consideration applies to the value of k. It should be as small

as possible to keep the edges between textures neat, and at the same time, for a

uniform texture, the average energy of a pixel calculated within the energy window

should be stable.

Fig. 4.16 plots the variance of U1 with different energy window size of four
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Figure 4.17: Variances of Radarsat sea ice texture energy U1 vs different energy

window sizes

Brodatz textures. The x axis represents window sizes from 5 to 21. From the plot,

it can be seen that when the window size is larger than 13, there is not much change

in variance values. In the following experiments with Brodatz textures, the energy

window size is set to 13. For sea ice texture image, 10 first year ice image samples

and 10 multi-year ice image samples are selected from the Radarsat sea ice images.

Fig. 4.17 shows the typical variances of U1 of first year and multi-year ice image

with different energy window sizes. Based on the plot, the energy window size of

sea ice image is set to 15.



Chapter 5

Experiments and Results Analysis

The GLCP method has been used to classify sea ice types in SAR imagery for

years. Reviewing the image processing literature, there is still strong supportive

evidence that this method is the currently preferred texture analysis algorithm for

sea ice type identification [42, 2, 36]. However, this method suffers from having to

select quantization, displacement, window size, orientation as well as the texture

statistics. All suggested choices of these values are based on experiments using

selected images of some areas. When model-based MRF methods are used for

texture analysis, they are demonstrated to have different abilities compared to

the GLCP method [12]. Encouraging results have been obtained for unsupervised

texture segmentation using Brodatz textures [38, 18]. Unfortunately, the texture

appearance of a consistent ice type is not as regular as a Brodatz texture, and

most of the time, different ice types as well as open water are interwoven with

each other. Trained human operators often need ancillary information to properly

segment a SAR sea ice image. Can MRF methods be used in SAR sea ice image

segmentation? Comparing the GLCP and MRF methods, which one can produce

88
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a better segmentation result? Or under certain circumstances, which one is a

better candidate? By now, there exists very limited published research investigating

the potential of MRF methods in SAR sea ice image segmentation, since most

MRF testing is usually represented using Brodatz textures. As a precursory and

preliminary research project, this thesis will explore these concerns focusing on the

following three research questions.

5.1 Research Questions

Research Question One How does window size influence the estimated individual

GLCP texture features and GMRF model parameters?

The same window size (n) can be used to determine the GLCP texture features

as well as the GMRF model parameters. From the procedure described in Fig. 3.3

and Fig. 3.4, the window size determines the pixels used to calculate the GLCM.

Similarly, the GMRF model parameters of the intensity image are also estimated

based on the pixels involved in the window n. So, for both methods, the size of n is

a very important parameter, and different number of pixels in n can result different

estimation results. It is necessary to evaluate the effect of window size n on the

stability of each estimated GLCP texture feature and GMRF model parameter.

Conclusions on this research question can help to select the suitable window size

for both methods.

Research Question Two How does the window size n influence the separability of

the clusters of the estimated GLCP texture features and GMRF model parameters?

This research question explores the texture distinguishing ability of GLCP tex-

ture features vs GMRF model parameters from the classification point of view. As



CHAPTER 5. EXPERIMENTS AND RESULTS ANALYSIS 90

described in Chapters 3 and 4, the segmentation approach of the GLCP method is

based on the texture features of each pixel. First, the texture features are extracted

from the image, then they are used as the input to a supervised or unsupervised

classifiers. Similarly, using the ICM method, the GMRF model is estimated from

the image first, then the segmentation is an optimization process for selecting a

texture label for each pixel which makes the pixel have the smallest energy. In this

process, the texture model is used to calculate the energy. Given a pair of tex-

tures, the separation of the GLCP texture features between the two textures versus

the separation of the GMRF models provides a means to evaluate the texture dis-

tinguishing abilities of these two methods. Evaluating the texture distinguishing

ability will also help to deduce the source of the problem from a poor segmentation

result. It may be caused by the poorly estimated texture features or models from

the very beginning, or the subsequent segmentation approach causes the texture

information reserved in the texture features or models lose.

From the second research question, another issue can also be addressed, i.e.,

given a sufficiently large window size, which method has a better texture distin-

guishing ability? This can be regarded as a complement to the second research

question. The second research question explores the effect of different window sizes

on the texture distinguish ability of the GLCP texture features and GMRF model

parameters. But what will happen if sufficiently large window sizes are provided for

each method? The question is inspired by the fundamental difference of statistical-

based and model-based texture analysis techniques. MRF texture models are asso-

ciated with the natural formation process of the analyzed textures. In theory, the

model-based texture analysis technique can not only describe the texture structure,

but also has the ability to re-construct the textures. But, there is no known method

to synthesize textures based on the GLCP texture features. From this point, it is
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a logical inference that the MRF texture model contains more texture structure

information for distinguishing texture types than the GLCP texture features.

Research Question Three Given a window, what is the effect on the estimated

GLCP texture features and GMRF model parameters if the window contains multiple

textures with the possibility of irregular boundaries?

The first and second research questions deal with homogeneous textures, i.e.,

the GLCP texture features or GMRF model parameters are estimated from the

“pure” texture samples. But usually, given a natural image, some of the selected

texture samples from the image may contain multiple textures. For example, sea ice

may be crashed and broken into pieces because of the weather conditions. Different

ice types are interwoven with each other in the image. Given a window, the bigger

it is, the greater the probability that various ice types will be included in it. In this

case, the estimation of GLCP texture features or GMRF model parameters may

be damaged. What is the relationship of the estimated texture features from the

multi-texture window with the texture features of each texture in the window?

The GLCP texture features are measurements that can describe a qualitative

aspect of the texture. In contrast, the GMRF texture models describe the rela-

tionship of one pixel with its neighborhood pixels quantitatively. The texture can

be uniquely generated once its texture model is known. If more than one texture

class is found in a window, the estimated GMRF model from this window could

not represent any class. In the segmentation process, the poorly estimated GMRF

texture models will be applied to the whole image when calculating each pixel’s

energy. In the GLCP method, one poor estimation from a multi-texture window

will only affect the segmentation result of that window, and could not be spread to

the whole image.
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In the following three sections, the three research questions stated above will be

explored based on several experiments.

5.2 Research Question One

Research Question One How does window size n influences the estimated indi-

vidual GLCP texture features and GMRF model parameters.

5.2.1 Method

For the first research question, given a texture, the relative increase of standard

deviation of each estimated GLCP texture feature and each GMRF model is calcu-

lated.

Given a window n, the GLCP texture features and GMRF model parameters

can be estimated based on pixel values in this window. In each case, a multi-

dimensional feature space is created. For example, given a texture sample, if two

GLCP texture statistics are used with δ = 1 and θ = 0◦/180◦, 90◦/270◦, then

the GLCP texture feature space is four. If a third order GMRF texture model is

estimated from this window, then six pairs of model parameters are involved, the

GMRF feature space is dimensioned to six. The experiment is designed to check the

effect of different window sizes on the stability of the estimation in each dimension

for both methods.

One synthetic texture (1024 × 1024) generated using the models (A) in Ta-

ble 5.1, one Brodatz texture (1024 × 1024), and one SAR sea ice image (768

× 768) are used for the experiments. From each texture image, for each win-

dow size (n = 8, 16, 32, 64, 96), 60 samples of a certain size are randomly se-
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Model Model parameters

(-1,0) (0,-1) (-1,-1) (-1,1) (-2,0) (0,-2)

A 0.520252 0.0934154 0.0303413 0.0180476 -0.148331 -0.0216434

B 0.468389 0.308257 -0.0755398 -0.0755797 -0.100678 -0.0407557

C 0.423393 0.406875 -0.178478 -0.1887020 -0.121439 -0.0649544

Table 5.1: The GMRF models used to generate the synthetic textures used in the

experiments in Chapter 5.

lected. The window sizes used for selecting the samples are 8, 16, 32, 64, 96.

The three texture statistics dissimilarity, entropy and correlation with δ = 1 and

θ = 0◦/180◦, 45◦/225◦, 90◦/270◦, 135◦/315◦ are used in the GLCP method. The

third order GMRF texture model for synthetic texture, and fourth order GMRF

model for Brodatz and sea ice textures. The test experiment is designed to keep

watching on the relative change of standard deviation in each data space with dif-

ferent window sizes. The variance V ARsample size
feature of each estimated feature from

the 60 samples with a certain sample size is calculated first. For example, the

GLCP entropy texture feature with δ = 1 and θ = 0◦/180◦ has five variance values:

V AR8
E(1,0/180),V AR16

E(1,0/180),V AR32
E(1,0/180), V AR64

E(1,0/180) and V AR96
E(1,0/180). For a

comparison purpose, the change of standard deviation V sample size
feature is obtained by

normalizing each V ARsample size
feature by the variance of the 96 sample size as follows:

V sample size
feature =

V ARsample size
feature

V AR96
feature

5.2.2 Experiment Results

A typical plot of this experiment is given in Fig. 5.1 using pigskin texture of

Brodatz image. It shows the changes of standard deviations V sample size
feature of each
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GLCP texture features

96 to 8 96 to 16 96 to 32 96 to 64

Synthetic 9.3270 5.4479 2.9316 1.5454

Brodatz 6.8539 4.2216 2.3303 1.2397

Sea ice 2.5119 2.0420 1.3403 0.9901

GMRF model parameters

96 to 8 96 to 16 96 to 32 96 to 64

Synthetic 28.3209 8.5046 3.9449 1.6601

Brodatz 16.4391 4.8464 2.2325 1.2402

Sea ice 21.3758 7.3539 3.1928 1.7490

Table 5.2: Average deterioration of the standard deviation of the estimated

GLCP texture features and the GMRF model parameters from window sizes 96

to 64, 32, 16, 8.

estimated GLCP texture feature and each GMRF model parameter from window

sizes 96 to window size 8. Fig 5.1 a plots the six GLCP texture features (θ =

45◦/225◦, 135◦/315◦ show the similar changes as θ = 0◦/180◦, 90◦/270◦), and figure

b plots the six GMRF model parameters (the last four parameters show similar

changes as the first six). Several observations can be obtained from Fig. 5.1. First,

larger window size leads to more stable estimates than smaller window size. Second,

with the window size decreasing, the standard deviation of each estimated GLCP

texture feature and the GMRF model parameter increase exponentially. Third, with

the window size decreasing, the standard deviation of each GMRF model parameter

increases faster than the GLCP texture features, especially from window size 32 to

window size 8.

These observations are supported by the numbers in Table 5.2, which summa-
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rizes the average increase of the standard deviation of each estimation from the

three textures used in this experiment. For example, using the GLCP method,

the biggest standard deviation increase is a factor of 9.3270, which happened in

synthetic texture from window size 96 to window size 8. Whereas, the biggest

increase using the GMRF method is 28.3209, which also happened in synthetic

texture from window size 96 to window size 8. Comparing the average increases

of standard deviations from larger window size (96) to smaller window size (64 32

16 8), the GMRF model always exceeds the GLCP texture features. For the esti-

mated GMRF model parameter, bigger standard deviations could make the same

parameter positive in one estimation window and negative in another estimation

window. As demonstrated in Section 4.3.3, the positive and negative value of MRF

model parameter behave quite differently in the texture formation process. In this

case, the big standard deviations will heavily damage the estimation of the texture

model.

Based on the experiment, one can see that to obtain a stable estimation, the

GMRF needs more data than GLCP. A big window size for a robust estimation

should be more necessary and efficient for the GMRF than GLCP.

5.3 Research Question Two

Research Question Two How does the window size n influence the separability

of the clusters of estimated GLCP texture features and GMRF model parameters.
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(a)

(b)

Figure 5.1: Change of standard deviation of the estimated GLCP texture features

and the GMRF model parameters with different window size. (a) GLCP texture

features (D: dissimilarity, E: entropy, C: correlation, δ = 1). (b) GMRF model

parameters.
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5.3.1 Method

This research question explores the effect of different window size on the over-

all feature space for each method. The experiments are designed to consider the

multi-dimensional feature space of each method together by applying a space trans-

formation technique. In fact, evaluating the separability of the whole feature space

is more consistent for the texture classification approach, which considers the fea-

ture space together instead of each one individually.

Using the Fisher linear discriminant (FLD) technique [45], the clusters of GLCP

features and GMRF model parameters estimated from a pair of textures will be

projected into one dimensional feature space. The separability of each method

can be evaluated by comparing the Fisher inter-class separation of the projected

clusters and the Bhattacharyya error bound [45] between the clusters in the multi-

dimensional feature space.

Fisher Linear Discriminant

The distance between clusters is a common measurement for their separability.

But it is difficult to visualize the distance between clusters where the feature space

dimension is larger than three. Using the FLD technique, one can project d dimen-

sional data samples onto a line ω and calculate a weighted distance between the

projected clusters [45].

The discriminant vector ω for classes c1 and c2 can be found by optimizing the

following Fisher criteria:

J(ω) =
ωT SBω

ωT Swω
(5.1)

where SB is the between-class matrix which is the squared distance between the

class means m1 and m2.

SB = (m1 −m2)(m1 −m2)
T (5.2)
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and Sw is the within-class scatter matrix which measures the variance of classes.

Sw = S1 + S2 (5.3)

where S1 and S2 is the scatter matrices of each class.

Si =
∑

x∈Ci

(x−mi)(x−mi)
T (5.4)

By taking the derivative of J(w), the optimal discriminant vector w is obtained:

w = S−1
w (m1 −m2) (5.5)

Let x be an m × d matrix, where m is the number of samples in the class and

d is the dimension of samples. The following transformation

y = wtx (5.6)

converts a d-dimensional problem to a more manageable one-dimensional one. The

Fisher inter-class distance is the value of Fisher criterion (Eqn. 5.1) obtained by

using the optimal discriminant vector w in Eqn. 5.5.

To plot the distributions of two sets of multi-dimensional GLCP texture features

or GMRF model parameters on their Fish discriminant vector w estimated from

two textures, Eqn. 5.6 is used in this research question. Observing the distributions

on w, one can visually evaluate the separation between two data sets.

Bhattacharyya Error Bound

A further insight of the separability of GLCP texture features vs GMRF models

can be obtained by calculating the upper bound of classification error between the

feature clusters of the texture pair in the original multi-dimensional feature space.
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Let α1 and α2 represent two clusters, then the upper error bound of classification

error of them is [45]:

P (error) ≤ P β(α1)P
1−β(α2)

∫
pβ(y|α1)p

1−β(y|α2)dy for 0 ≤ β ≤ 1 (5.7)

where P (α1) and P (α2) represent the probability of class α1 and α2, and p(y|α1)

and p(y|α2) represent the class pdfs. When the two classes α1 and α2 have the same

probability of occurrence, i.e., β = 1/2, Eqn. 5.7 is referred to as the Bhatacharyya

bound expressed as:

P (error) ≤
√

P (ω1)P (ω2)e
−k(1/2) (5.8)

where the Gaussian case for k(1/2) is:

k(1/2) = 1/8(µ1 − µ2)
t[

Σ1 + Σ2

2
]−1(µ1 − µ2) +

1

2
ln

|Σ1+Σ2

2
|√

|Σ1||Σ2|
(5.9)

5.3.2 Experiment Results

Three texture image pairs are used in the experiments: synthetic (1024 × 1024),

Brodatz (1024 × 1024) and SAR sea ice texture images (768 × 768) Fig. 5.2. The

synthetic texture images are generated using the GMRF texture model (A) and (B)

in Table 5.1. For each pair of texture images, 60 sample images with size 8, 16, 32

and 64 are randomly selected from each texture. The selected GLCP parameters are

dissimilarity and entropy along 0◦/180◦, 45◦/225◦, 90◦/270◦, 135◦/315◦ directions

with δ = 1. So for each texture sample, eight co-occurrence texture features are

extracted. The third order GMRF model is used for synthetic textures (six model

parameters). The fourth order GMRF model is applied to Brodatz and SAR sea ice

textures (ten model parameters). The correlation texture statistics is not used in

the experiment for two reasons. First, among the three texture statistics, correlation

contains the least texture distinguishing information compared with dissimilarity
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(a) 

(b) 

(c) 

Figure 5.2: Test image pairs for the second research question. (a) Synthetic GMRF

textures (model A and B in Table 5.2.1). (b) Brodatz textures. (c) SAR sea ice

texture s(L: first year ice R: multi-year ice).
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and entropy. Second, the GLCP and GMRF should have the similar feature space

dimensions for comparison. The projected GMRF model parameters on ω of each

texture pair are plotted in Fig. 5.3 (n = 8), Fig. 5.4 (n = 16) and Fig. 5.5 (n = 32).

For each texture pair, its projected GLCP texture feature clusters on ω are also

plotted under GMRF plot with same x axis unit. The vertical dash lines in each

figure show the mean position of each projected cluster.

Table 5.3 reports the Bhatacharyya error bounds (BEB) of each texture pair

and the Fisher criteria (J Fisher inter-class distance) of each projected texture pair

plotted in Figs. 5.3, 5.4 and 5.5 (the first three rows). Each data cluster is assumed

to have a normal distribution.

Observing the distribution of the two data clusters projected on the line w

from Fig. 5.3 to Fig. 5.5 as well as the corresponding values of Fisher inter-class

distance listed in Table 5.3, there exits a very clear tendency. First, in Fig. 5.5

where n = 32 , all the GMRF models have better separations than GLCP texture

features, especially for the sea ice texture pair. As the window size decreases to

16× 16, the cluster center distance of GMRF between the projected synthetic and

Brodatz texture pairs becomes less than cluster center distance of the GLCP. In

Table 5.3, the observation from Fig. 5.4 is supported by the BEB and J values,

i.e., compared with GLCP, GMRF has bigger BEB values and smaller J values for

synthetic and Brodatz texture pair. These observations mean that as the window

size decreases to 16×16, the separability of GMRF model for synthetic and Brodatz

texture pair becomes inferior to GLCP texture features. Finally as the window size

decreases to 8× 8, the superiority of GLCP texture features over GMRF model for

separating all the three texture pairs are very obvious from both the plots and the

corresponding BEB and J values. The same experiment based on a 64×64 window

size generates a similar result as the 32 × 32 window size, i.e., the separability
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(a)

(b)

(c)

Figure 5.3: Distributions of the two sets of the GMRF model parameters and

the GLCP texture features estimated from Fig. 5.2 using n = 8 on their Fish

discriminant vector w. (a) Synthetic textures. (b) Brodatz textures (c) SAR sea

ice textures.
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(a)

(b)

(c)

Figure 5.4: Distributions of the two sets of the GMRF model parameters and

the GLCP texture features estimated from Fig. 5.2 using n = 16 on their Fish

discriminant vector w. (a) Synthetic texture. (b) Brodatz texture. (c) SAR sea ice

texture.
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(a)

(b)

(d)

Figure 5.5: Distributions of the two sets of the GMRF model parameters and

the GLCP texture features estimated from Fig. 5.2 using n = 32 on their Fish

discriminant vector w. (a) Synthetic texture. (b) Brodatz texture. (c) SAR sea ice

texture.
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of the GMRF texture model is better than the GCLP texture features. Another

inference can also be drawn from the above observations. With the window size

decreasing, the separability of GMRF models for textures deteriorates faster than

GLCP texture features. This observation is consistent with the conclusion of the

first research question.

Based on experiments, two conclusions can be made. First, both methods prefer

the larger window size. Second, as the window size decreases, the separability of

GMRF models become inferior to the GLCP texture features.

As mentioned in section 5.1, one issue related to the second research question

needs to be analyzed. Given a sufficiently large window size, which method has a

better texture distinguishing ability?

To answer this question, the column of 32×32 window size in Table 5.3 need to

be analyzed. One can see that the BEB values of all the three texture pairs have a

magnitude equal or less than 10−3. This means the Bhatacharyya error bounds of

GMRF clusters are improved not bigger than 10−3 comparing with GLCP texture

features. In this case, one could say the GMRF texture model and GLCP texture

features have the similar separability for these three texture pairs. Observing the

parameter set of model (A) and (B) in Table 5.1, they are not as similar to each

other as (B) and (C). To avoid one-sidedness, Fig. 5.6 shows the texture samples

synthesized from model (C) and (B). Fig. 5.7 illustrates their projected feature

cluster distributions on w (a: n = 8, b: n = 16, c: n = 32). Their Bhatacharyya

error bounds and Fisher inter-class distance are also reported in Table 5.3 in the

row of synthetic*. When the sample size is 32 × 32, different from all the first

three texture pairs in Fig. 5.5, the GLCP texture features of Fig. 5.6 has a better

separability than GMRF texture models. But again, if checking Table 5.3, the

difference of error bounds between GMRF models and GLCP texture features are
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Bhatacharyya error bounds (BEB) and Fisher criterion (J)

8× 8 window size

GMRF GLCP

BEB J BEB J

synthetic 3.5× 10−1 0.24 2.9× 10−1 1.68

Brodatz 3.7× 10−1 0.24 2.0× 10−1 1.52

sea ice 2.5× 10−1 0.55 4.8× 10−2 6.58

synthetic* 2.2× 10−1 1.15 1.7× 10−2 12.26

16× 16 window size

GMRF GLCP

BEB J BEB J

synthetic 1.7× 10−1 4.19 1.3× 10−1 4.98

Brodatz 1.3× 10−1 2.21 4.4× 10−2 5.64

sea ice 7.9× 10−13 101.03 1.1× 10−3 21.07

synthetic* 2.8× 10−2 8.06 9.7× 10−7 51.21

32× 32 window size

GMRF GLCP

BEB J BEB J

synthetic 4.0× 10−4 26.33 3.0× 10−3 19.75

Brodatz 3.2× 10−3 21.85 3.5× 10−3 21.54

sea ice 1.5× 10−51 462.21 6.7× 10−8 58.74

synthetic* 1.5× 10−7 55.72 6.9× 10−25 219.06

Table 5.3: Bhatacharyya error bounds and Fisher criteria of the texture pairs in

Fig. 5.2 and 5.6
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negligible. 64× 64 window size generates the similar result as 32× 32 window size.

Based on the supplementary experiment above, another conclusion in the second

research question can be obtained. With a large window size, the GMRF model

and GLCP texture features have similar separability.

Figure 5.6: Another test image pair for the second research question (Left: model

C, Right: model B in Table 5.1).
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(a)

(b)

(c)

Figure 5.7: Distributions of the GMRF texture model and the GLCP texture fea-

tures estimated from Fig. 5.6 on their Fish discriminant vector w. (a) n = 8 × 8.

(b) n = 16× 16. (c) n = 32× 32.
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5.4 Research Question Three

Research Question Three Given a window, what is the effect on the estimated

GLCP texture features and GMRF model parameters if the window contains multiple

textures with the possibility of irregular boundary

5.4.1 Method

Given an estimation window with more than one texture, the extracted GLCP

texture features or the estimated GMRF texture model from this window can not

represent correctly any texture type in this window because of the “un-pure” data.

How does each texture type in a given window affect the estimation result? What

is the relationship of the extracted GLCP texture features or the estimated GMRF

texture model from a multi-texture window with the GLCP texture features or the

GMRF model of each texture in this window?

Based on the calculation of GLCP texture features and GMRF model parame-

ters, a reasonable inference is that the extracted GLCP texture features or estimated

GMRF model from a multi-texture window should have a linear relationship with

the GLCP texture features or GMRF texture model of each texture in this window.

For example, if two texture types A and B in window n, then F = a×FA + b×FB,

where F is any co-occurrence texture feature of window n, a is the ratio of texture

A in window n, b is the ratio of texture B in window n, and a + b = 1. The same

relationship for the GMRF model parameters: θ = a × θA + b × θB, where θ is a

parameter of the MRF model. Although not proven mathematically, the above re-

lationship can be demonstrated by the following experiment using the three texture

images in Fig. 5.8.
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(a)

(b)

(c)

Figure 5.8: Three texture images separated by straight boundary. (a) Synthetic

texture. (b) Brodatz texture. (c) SAR sea ice texture.
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5.4.2 Experiment Results

Fig. 5.8 shows three texture images (a: synthetic, b: Brodatz, c: SAR sea ice)

which are separated by straight vertical boundary from the middle. For each

pixel in the image, its GLCP texture statistics dissimilarity, entropy (δ = 1, θ =

0◦/180◦, 45◦/225◦, 90◦/270◦, 135◦/315◦) and GMRF model parameters (third or-

der for synthetic texture, fourth order for Brodatz and SAR sea ice textures) are

estimated based on a window (n = 16, n=32) centering on this pixel.

Fig. 5.9 shows the GLCP texture features averaged over 50 arbitrarily selected

rows in Fig. 5.8 a (a: n = 16, b: n = 32). The area between the two vertical lines

is the boundary area, i.e., when the window moves into the boundary area, it will

contain two textures from the left and right sides. The GLCP texture features along

θ = 45◦/225◦, 135◦/315◦ directions have the similar results as the θ = 0◦/180◦,

and 90◦/270◦ directions and they are not plotted out. Fig. 5.10 shows the first

four GMRF model parameters averaged over the same 50 rows. The rest of the

model parameters have the similar results as the first four and are not plotted out.

Observing these plots, one can see that within the boundary areas, the values of

the GLCP texture features or the GMRF model parameters change approximately

linearly from the value of the left texture to the value of the right texture. This

phenomena is more clear in (b) of both figures because the larger window size makes

the estimations more stable. The similar situation in the boundary areas happened

for Bordatz texture (Fig. 5.11, Fig. 5.12) and SAR sea ice texture (Fig. 5.13, Fig.

5.14).

The above experiment shows that the estimations in both methods can be dam-

aged by the multi-texture windows along the boundary areas. Given a window with

multiple textures, each estimated GLCP texture feature seems to be a weighted lin-
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ear combination of the corresponding GLCP texture feature of each texture. The

same conclusion applies to each estimated GMRF model parameter.

Based on the above conclusions, one possible mis-classification in the bound-

ary areas can be illustrated using Fig. 5.15. Texture A and B has a right-angle

boundary. When an 5× 5 window is located on pixel s, 9 pixels in this window be-

long texture A, and 16 pixels belong to texture B. Based on the above experiment,

for both methods, the estimated parameters should be more similar to texture B

rather than A. The pixel s could be mis-classified into texture B. In this case, the

right-angle boundary between the two textures could be corroded and moved into

texture A in the segmentation result.

In the practical segmentation problem, the poor estimation caused by the multi-

texture windows can not be avoided since the irregular boundaries between textures

exist anyway. How does the damaged estimations affect the segmentation results

for each method? Fig 5.16 to Fig. 5.18 shows the segmentation results of three

Brodatz texture images with different boundary situation. To concentrate on the

evaluation of boundary effect on the segmentation results, all the original images

(192× 192) contain the same two Brodatz textures paper and pigskin.

Fig. 5.16 a shows the first original image with a straight vertical boundary,

Fig. 5.16 b represents the true segmentation. Using 16 × 16 window size, both

the GLCP and MRF are easily able to segment the original image, and produce

accurate segmentation results. For comparison, the boundary from the MRF is

better than the GLCP.

The next original image Fig. 5.17 a has a sinusoidal boundary with three peri-

ods, which makes it more difficult to distinguish than the first original image. The

16× 16 window size is used, and the segmentation result is again about the same.
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Figure 5.9: The averaged GLCP texture features over 50 arbitrarily selected rows

from Fig. 5.8 a (the area between the two straight lines is the boundary area). (a)

n = 16. (b) n = 32.
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Figure 5.10: The averaged GMRF model parameters over 50 arbitrarily selected

rows from Fig. 5.8 a (the area between the two straight lines is the boundary area).

(a) n = 16. (b) n = 32.
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Figure 5.11: The averaged GLCP texture features over 50 arbitrarily selected rows

from Fig. 5.8 b (the area between the two straight lines is the boundary area). (a)

n = 16. (b) n = 32.
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Figure 5.12: The averaged GMRF model parameters over 50 arbitrarily selected

rows from Fig. 5.8 b (the area between the two straight lines is the boundary

area). n = 16. (b) n = 32.
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Figure 5.13: The averaged GLCP texture features over 50 arbitrarily selected rows

from Fig. 5.8 c (the area between the two straight lines is the boundary area). (a)

n = 16. (b) n = 32.
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Figure 5.14: The averaged GMRF model parameters over 50 arbitrarily selected

rows from Fig. 5.8 c (the area between the two straight lines is the boundary ares).

(a) n = 16 . (b) n = 32.
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Figure 5.15: The estimated texture parameters of pixel s using 5× 5 window could

be more similar to the parameters of texture B than A.

However, the better boundary obtained by the MRF in the first original image is

not obvious in this case. Continuing to increase the complication of the boundary,

the results from the MRF and GLCP methods do not appear similar any more. Fig.

5.18 a has a sinusoidal boundary with eleven periods which makes the boundary

between two textures much more difficult to distinguish than the first two original

images. The segmentation results using 16 × 16 window size from the GLCP and

MRF methods are shown in Fig. 5.18 c and d. Both methods do not have a suc-

cessful segmentation. For the GLCP method, the bad segmentation concentrates

on the boundary area, the left and right sides have the correct segmentation. But

for the MRF, the bad segmentation happens all over the image. Fig. 5.18 e and f

are the segmentation results using 8× 8 window size. The GLCP method produces
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a much better segmentation than the MRF method.

Observing the segmentation results, one can see that for textures with simple

boundaries, given a window, most of the time, there is only one texture type in-

volved in this window. In this case, both methods can make a correct estimation

and thus produce an accurate segmentation. When segmenting the images with

complicated boundaries all over the image, the ability of the two methods may be

damaged by the multi-texture windows, the segmentation results from both meth-

ods should not be good. To avoiding the multi-texture windows, small window

size could be used. In this case, GLCP method probably produces a better seg-

mentation result than the MRF method. This can be explained from the results

of the first two research questions, i.e., as the window size decreases, the standard

deviation of the estimated GMRF model parameters as well as its separability for

textures becomes more inferior compared to the GLCP texture features.
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(a) (b)

(c) (d)

Figure 5.16: Segmentation of Brodatz texture image (n = 16). (a) Original image.

(b) True segmentation. (c) GLCP result. (d) MRF result.
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(a) (b)

(c) (d)

Figure 5.17: Segmentation of Brodatz texture image (n = 16). (a) Original image.

(b) True segmentation. (c) GLCP result. (d) MRF result.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Segmentation of Brodatz texture image. (a) Original image. (b) True

segmentation. (c) GLCP result (n = 16). (d) MRF result (n = 16). (e) GLCP

result (n = 8). (f) MRF result (n = 8).
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5.5 Image segmentation Results

In this section, the GLCP and MRF methods will be applied to synthetic, Brodatz

and SAR sea ice images. Since the synthetic and Brodatz images are generated

with different artificial boundaries, they can serve as the examples to demonstrate

the theoretical concerns described in this thesis. The segmentation result of SAR

sea ice image are demonstrated and discussed finally.

The first image is a sample of synthetic image Fig. 5.19 a. It contains two

synthetic textures with a sinusoidal boundary of one period. The most complicated

texture distribution of this image happens in the middle of the image, where given

a window, two textures could be included with complicated boundary. Using a

16 × 16 window, the GLCP has a much better segmentation result (c) than MRF

(d). The GLCP can distinguish the two texture regions and also the exact boundary

between the textures. However, the 16×16 window size is not suitable for the MRF

method, which can not separate the two texture regions. Using 32 × 32 window

size, both methods generate a better result than their 16× 16 window size results.

The GLCP method has an improved segmentation in the texture regions, but the

segmentation of the boundary area in the middle of the image is not as good as

16×16 window size. The improvement of the MRF method is noticeable. Observing

the segmentation result, the MRF method almost can distinguish the true boundary

between the two textures.

The next segmentation examples will use Brodatz images. Compared with the

synthetic textures image, more texture types will be involved as well as more compli-

cated boundaries between textures. The first Brodatz image contains three Brodatz

textures Fig. 5.20 a. The segmentation results using 16 × 16 and 32 × 32 window

sizes of the GLCP and MRF methods are given in figure c, d, e and f. Basically,
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Figure 5.19: Segmentation of Synthetic texture image. (a) Original image. (b) True

segmentation. (c) GLCP result (n = 16). (d) MRF result (n = 16). (e) GLCP

result (n = 32). (f) MRF result (n = 32).
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both methods are able to segment the image. Observing these results, some similar-

ities exist with the synthetic image results. First, for the GLCP method, a 16× 16

window has a better segmentation along the boundary areas, whereas, 32× 32 has

a tendency to confuse raffia texture (middle) with wood texture (top). Second, the

MRF method does not produce a correct segmentation along the boundary area

using 16× 16 window size, but with a 32× 32 window size, the segmentation result

is improved considerably. For this image, 16 × 16 window size is suitable for the

GLCP method, and 32 × 32 is good for the MRF method. In fact, if not consid-

ering the boundary area, both window sizes work well in the GLCP method. So,

using the GLCP method, in order to obtain a correct segmentation in the bound-

ary areas, among several possible selections, the window size should be as small as

possible. Whereas, for the MRF method, the small window can not supply enough

information to correctly estimate the texture models.

The second Brodatz texture image contain five Brodatz textures Fig. 5.21 a.

Some of them (pigskin, raffia, water) have different textural resolutions, and the

water, wood and raffia shows stronger texture pattern compared with the grass and

pigskin textures. The five Brodatz textures with different patch size are mosaiced

together with straight vertical and horizontal boundaries between each other. The

16 × 16 window size does not work well for both methods. The GLCP method

can not distinguish the raffia and pigskin textures but separate the wood texture

into two classes. The MRF can not distinguish water and raffia textures. But

with 16 × 16 window size, both methods generate a basically correct boundaries

between textures that can be separated. Using 32 × 32 window size, again the

GLCP method can not distinguish the raffia and pigskin, but the wood texture is

identified correctly. The big window make the algorithm mis-classify the boundary

region around certain textures as a separate class, and the two small texture patches
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Figure 5.20: Segmentation of Brodatz texture image. (a) Original image. (b) True

segmentation. (c) GLCP result (n = 16). (d) MRF result (n = 16). (e) GLCP

result (n = 32). (f) MRF result (n = 32).
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wood and raffia in the middle of the image are also grouped into the boundary class.

Comparing the two segmentation images using GLCP method, one can see that the

segmentation result using 16× 16 window size is better than using 32× 32 window

size. Different situation happens in the MRF method, the better result comes from

32× 32 window size again as the previous images. The algorithm can separate all

the texture types basically, and the boundary locations are very close to the true

ones.

The last Brodatz image Fig. 5.22 a contains four textures separated with each

other by sinusoidal instead of straight boundaries. The segmentation results are

similar as Fig. 5.20. For both window size 16× 16 and 32× 32, the GLCP method

again can not separate pigskin and raffia textures and suffers in the boundary areas.

MRF method has a better segmentation result using 32 window size.

Observing the segmentation results, if the textures can be separated by two

methods, most of the time, the MRF generates better segmentation and boundaries

than the GLCP method. The latter suffers from distinguishing the pixels along

the boundary areas. The reason can be explained as follows. As mentioned in

Chapter four, people’s prior knowledge about the images can be involved into the

segmentation process by probably designing the prior image models for the intensity

and the label image. Based on the label image model, given a pixel, the most

probable class label of this pixel is the one that most of its neighborhood pixels take.

As an example of how the label image model helps to improve the segmentation

results during each deterministic iteration mentioned in ICM algorithm in Section

4.4.4, Fig. 5.23 shows the segmentation results after one, five and fifteen iterations.

One can see that great changes happened between the fifteen iterations. After the

first iteration, it is hard to image that the algorithm could finally segment the image.

But after five iterations, the right result basically appeared with some “noise”
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Figure 5.21: Segmentation of Brodatz texture image. (a) Original image. (b) True

segmentation. (c) GLCP result (n = 16). (d) MRF result (n = 16). (e) GLCP

result (n = 32). (f) MRF result (n = 32).
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Figure 5.22: Segmentation of Brodatz texture image. (a) Original image. (b) True

segmentation. (c) GLCP result (n = 16). (d) MRF result (n = 16). (e) GLCP

result (n = 32). (f) MRF result (n = 32).



CHAPTER 5. EXPERIMENTS AND RESULTS ANALYSIS 131

distributed in each texture type , and after fifteen iterations, the segmentation

image is quite similar to the final result shown in Fig. 5.22 f, which was generated

after thirty iterations. The iteration process can be regarded as a kind of correcting

process guided by the prior models. Based on the segmentation result after the first

iteration, the ICM algorithm will gradually update the pixel labels which are most

likely to happen based on the image models. Given a region, if more than half of the

pixels in this region take the right labels, the algorithm will finally make a correct

segmentation. But if the first iteration generates a wrong initial segmentation, the

segmentation result won’t be correct.

Figure 5.23: MRF Mid-segmentation results of Fig. 5.22. (a) After one iteration.

(b) After five iterations. (c) After fifteen iterations.

From the segmentation results using different window sizes, one can see that

both methods prefer larger window size to obtain a robust estimation. But larger

window size may cause segmentation problem using the GLCP method in the

boundary area, i.e., the true boundary between textures may be blurred, and some-

times, the pixels along the boundary areas could be distinguished as another tex-

ture class. To overcome this boundary problem, the window size should be as small
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as possible for the GLCP method. Using the MRF method, small window size

may ruin the texture model estimation and distinguish ability, from this point, the

window size should be as big as possible. But given an image with complicated

boundaries all over the image, large window size could also damage the estimated

models based on the third research question. General speaking, the MRF has a

more restricted limitation on the window size than the GLCP method. Table 5.4

shows the segmentation error of each test image.

Segmentation error of the test images

GLCP MRF

16× 16 32× 32 16× 16 32× 32

Fig. 5.19 15.83 % 3.53 % 25.37 % 8.05 %

Fig. 5.20 4.29 % 4.08 % 8.83 % 3.03 %

Fig. 5.21 29.42 % 29.87 % 27.60 % 14.90 %

Fig. 5.22 24.16 % 21.82 % 19.89 % 3.60 %

Table 5.4: Segmentation error of the test images in section 5.5.

The last two segmentation results are from SAR sea ice images. Sea ice segmen-

tation has been a challenging research topic for years, and there are few publications

about SAR sea ice image segmentation using texture methods, especially using au-

tomated approaches. As Clausi mentioned [13], the unsupervised segmentation

should be more suitable for SAR sea ice type identification than supervised seg-

mentation. As introduced in Chapter 2, many different variables may influence the

appearance of sea ice in a SAR image. The same ice type may not be identical

from image to image, and even within the same image. In this case, the selected

training samples in a supervised algorithm may not be sufficient to include all the

class variability throughout the image.
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The sea ice image shown in Fig. 5.24 is obtained from Barber et al [16]. The

image is extracted from X-band, HH polarization, STAR-1 with a six meters res-

olution. Two ice types are included in the image: first year ice and multi-year

ice. Because the sea ice texture has a finer resolution than Brodatz textures, the

window size used in the GLCP method is 13×13. An 16×16 window size is used in

the MRF method considering the complicated boundaries and many small patches

of multi-year ice in the image. The segmentation results from the GLCP and MRF

methods are given in Fig. 5.25 and Fig. 5.27. Both methods can separate the

two ice types. But comparing the two results, one can see the difference along the

boundary area. As in the previous examples, the boundaries generated from the

MRF method are more accurate than the GLCP method, the GLCP method tends

to increase the distribution of multi-year ice in the image. This observation can be

demonstrated more clearly using the segmentation edge map shown in Fig. 5.26

and Fig. 5.28. The edges in these two figures are extracted from the segmentation

results. Visually observing the boundary locations in these two figures, one can see

that the edges in Fig. 5.28 present more appropriately the boundary locations of

different ice types. Barber et al used this image in supervised segmentation using

statistical based texture analysis methods. Based on the above explanation about

the shortcoming of supervised classification for sea ice image, it is not surprise to

know from their paper that the classification accuracy of the training image was

always higher than the test image.

The second sea ice image shown in Fig. 5.29 is obtained from the Canadian Ice

Service [11]. This C-band HH Radarsat ScanSAR image was obtained on October

13, 1997 on Beaufort Sea. The image was captured at incidence angles of between

20 and 49 degrees with a pixel spacing of 100 meters. Multi-year ice, new ice and

grey ice are contained in the image. The new ice which is in a dark tone can be
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found in the middle of the image. The grey ice with a grey colour can be found in

the top and bottom regions of the image. The multi-year ice with a brighter colour

than grey ice, scatters among grey ice, can be located in the top region of the image,

and a small amount can also be found in the bottom region. The GLCP method

and MRF methods generate different segmentation results, and both methods do

not perform as well as the first ice image. Generally speaking, the GLCP method

Fig. 5.30 generates a better segmentation image than MRF method Fig. 5.32. For

the new ice segmentation, Fig. 5.32 tends to confuse it with grey ice in the top

part of the image. In distinguishing multi-year ice and grey ice, the two methods

have obviously different tendency. The MRF method is too sensitive to the texture

changes and the segmentation result looks more broken than GLCP method, which

can also be demonstrated by the segmentation edge maps shown in Fig. 5.31 and

5.33 respectively. however, the GLCP method tends to confuse the multi-year ice

with grey ice on the top region of the image. It enlarges the grey ice scale more

than it should be.

Comparing the two ice images, one can notice that the pattern of each ice type

in Fig. 5.24 is more strongly defined than the ice’s pattern in Fig. 5.29. Also the

textures pattern of first year and multi-year ice in Fig. 5.24 have a bigger difference

than those in Fig. 5.29. Finally, the multi-year ice and grey ice in the latter image

are mixed together most of the time. All of these could result a poorer model

estimation and make the second image more difficult to segment using the MRF

method.
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Figure 5.24: Aerial SAR image (sub-image of Figure 2(b) in [16])
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Figure 5.25: GLCP segmentation result of Fig. 5.24
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Figure 5.26: GLCP segmentation result edge map of Fig. 5.25.
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Figure 5.27: MRF segmentation result of Fig. 5.24
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Figure 5.28: MRF segmentation result edge map of Fig. 5.27.
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Figure 5.29: Radarsat SAR sea ice image obtained from Canadian Ice Service [11].
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Figure 5.30: GLCP segmentation result of Fig. 5.29
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Figure 5.31: GLCP segmentation result edge map of Fig. 5.30.
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Figure 5.32: MRF segmentation result of Fig. 5.29
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Figure 5.33: MRF segmentation result edge map of Fig. 5.32.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The topic of this thesis is to focus on texture image analysis and segmentation.

The theory of the statistical-based GLCP and model-based MRF texture analysis

techniques are introduced, the texture segmentation algorithms based on them are

developed. For the comparison purposes, three research questions related to pa-

rameter estimations and the respective texture discrimination ability of the GLCP

texture features and GMRF models are raised. A series of experiments are con-

ducted and the results are investigated and analyzed. Finally, to illustrate the

segmentation algorithms, three kinds of texture images, the synthetic, Brodatz,

and SAR sea ice images, are tested.

Several conclusions can be obtained from the above work. These are list below.

• The GLCP and MRF are two different texture analysis techniques. The GLCP

method does not have any assumptions on the analyzed textures. The tex-

ture statistics used in the GLCP method are the measurements that describe

145
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the qualitative aspect of the texture. Whereas, the MRF regards a texture

as a sample generated from a stochastic process, and the relationship of a

pixel with its neighborhood can be described by a model. By controlling

the parameters of the MRF model, one can generate textures with different

structures. But there is no comparable methods to synthesize texture based

on the GLCP texture features. Because not all textures in nature follow a

model, the GLCP method could be applicable to more texture types than the

MRF method.

• For both methods, the window size is a very important element in the seg-

mentation process. As a function of decreasing window size, the standard

deviation of the estimated GMRF model parameter deteriorates faster than

GLCP texture features. Also the texture distinguishing ability of the GMRF

model become inferior to the GLCP texture features. Because of the rela-

tive stability of the estimated GLCP texture features across different window

sizes, the GLCP method performance is better with a smaller window size

than the MRF method. The latter has more difficulties to obtain a robust

model estimation using a small window size.

• Given a multi-texture window, each estimated GMRF model parameter from

this window is a weighted linear combination of the corresponding model pa-

rameter of each texture. The same conclusion applies to the GLCP texture

features. In the unsupervised segmentation process, when a window moves

across the boundary areas between textures, the model parameters estimated

from the multi-texture window dose not represent either texture. The poor

estimations may damage the segmentation for both methods. For the GLCP

method, the poor estimation will affect the segmentation in the boundary
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areas, whereas for the MRF method, the poor estimation will affect the seg-

mentation all over the image. One way to decrease this damage is to decrease

the window size, so fewer windows will contain multi-textures. This solution

works well for the GCLP method, but not for the MRF method based on the

above conclusion.

• Observing the deterministic relaxation process, the label image model used

in the current MRF segmentation algorithm prefers big texture patches. The

small patches of textures scattering among other textures can be easily swal-

lowed by its surrounding textures. This problem can not be easily solved

because the algorithm can not distinguish which small patches should be

removed because of the wrong segmentation and which one should be kept

because there really exists a small patch of texture in the image.

• Base on the segmentation results, the MRF method has a more restricted

limitation on the window size than the GLCP method. Useful guidelines for

selecting the suitable window size for each method is as follows. For the

GLCP method, the window size should be as small as possible because this is

appropriate for locating the true boundary. For the MRF method, the window

size should be as large as possible to obtain a robust model estimation.

• Besides the window size, there are also several other important elements in

each method which could heavily effect the segmentation results. The quan-

tization, displacement, orientation and texture statistics are important pa-

rameters in the GLCP method. The texture model, model size, and energy

window size are the significant concerns in the MRF method.
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6.2 Future Work

To improve the performance of the GLCP and MRF segmentation algorithm, several

directions could be explored.

• As mentioned in section 6.1 to obtain a robust texture model estimation in

MRF method, the window size should be as large as possible. But increasing

the window size will cause the multi-texture window problem in the bound-

ary regions, which will also damage the estimation. An intelligent window

selection scheme could be considered so that the multi-texture windows can

be excluded in the calculation. This will greatly increase the accuracy of the

estimated texture models. For example, the estimated parameters from a

window can be regarded as a point in the multi-dimensional feature space, if

the point is beyond certain distance away from the cluster center, the window

will not be included in the parameter estimation.

• Although there are many MRF texture classification algorithms published in

the literature, the available image models are quite limited. Gauss-model

is most commonly used for the intensity image. Only the pair-clique pixel

relationship is considered in this model. It is necessary to investigate the

possibility of using other texture models for sea ice image based on the further

analysis and understanding on the sea ice texture structure.

• Different initial methods for label image should be explored for increasing

the segmentation accuracy. The current initial label image is a uniformly

distributed random image. The initial label image could be the preliminary

segmentation results from some high speed segmentation algorithms, e.g. the
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segmentation result using the first order methods in statistical texture anal-

ysis.

• An intelligent segmentation algorithm are also needed to developed for the

GLCP method other than the currently used k-means approach. The main

effort should be focused on the mis-classification along the boundary area.



Appendix A

Radarsat Image and Sea Ice Types

Launched in November1995, RADARSAT is a sophisticated Earth observation (EO)

satellite developed by Canada to monitor environmental change and the planet’s

natural resources [48].

A.1 Image Modes of Radarsat

The orbit of Radarset is shown in figure A.1. It can apply 25 image modes, each

image mode corresponds one beam position shown in figure 2.2. Radarsat is a

side-looking imaging system, and the captured image is on the right side of its

track.

A.2 Processing Levels of Radarsat Image

For each Radarset beam mode, image products are processed to different levels

of geometric accuracy and radiometric calibration. It is very important to know

150
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Figure A.1: Radarsat-1 (adapted from [48]).

this before one orders some data for a special research. There are seven types

of Radarset image products: signal data, single look complex, path image, path

image plus, map image, precision map image, and orthorectified. The first two

types are slant range image, and Path Image and Path Image Plus have already

been converted to ground range image, the direction of the image is the same as

the direction of the satellite track. The last three modes are already corrected and

geocoded using the ground control points.

A.3 Ice Types

Table A.3 lists the ice types commonly used in the preparation of the Canadian Ice

Service products and publications [11].
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Ice Types Description

New ice A general term for recently formed ice which includes

frazil ice, grease ice, nilas, slush and shuga. These types

of ice are composed of ice crystals which are only weakly

frozen together (if at all) and have a definite form only

while they are afloat.

Grey ice Young ice 10-15 cm thick. Less elastic than nilas and

breaks on swell.Usually rafts under pressure.

Grey-white ice Young ice 15-30 cm thick. Under pressure it is more

likely to ridge than to raft.

Thin-first year First-year ice of not more than one winter’s growth, 30-

70 cm thick.

Medium first-year First-year, ice 70-120 cm thick year.

Thick first-year First-year ice over 120 cm thick.

Old year Sea ice which has survived at least one summer’s melt.

Topographic features generally are smoother than first-

year ice. May be subdivided into second-year ice and

multi- year ice. Second-year ice: Old ice which has sur-

vived only one summer’s melt. Multi-year ice: Old ice

which has survived at least two summer’s melt.

Table A.1: Sea ice types
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