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Object Recognition

» Why Challenging?

= Large intra-class variation




Image Models and Unlabeled Data
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Image Models and Occlusion
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Generative Models in Visual Recognition

» Restricted Boltzmann Machines (RBMs)
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Basic RBM lIssues

» Large Number of Parameters

= Grows roughly quadratically with the image size
= Expensive weight learning procedure
= A threat to good generalization of the model

» Solution:

= Using a weight sharing scheme
& & & Visible Layer Hidden Layer
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v" Translation invariance is
frequently violated. —

[Lee et al. 2009]
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Proposed Strategy |

» Defining network weights as linear combinations of a set of
predefined filters.

v'The number of parameters becomes independent of the size
of the image.
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Proposed Strategy |1

» Given afilter bank F = {f' £ .. fF}:

W.; = Z Oék;jfk where P < D
k=1

» Learning the weights «ay; of the filters:
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Eigen-RBM

» Eigen-RBM

= Filter Bank: Top eigenvectors of the covariance matrix of the training
data.

Eigendigits Filter bank

v’ Eigendigits capture information at a variety of scales from coarse to fine.
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Eigen-RBM and Basic RBM

» The learned filters for a single digit class training data

Eigen-RBM Basic RBM

v Although noise-reduction is not the objective, the learned Eigen-RBM filters are
less noisy.
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Setup

» Dataset
= Small MNIST: 6000 training, 1000 test
= 28x28 images of hand-written digits

» Classifier
= 1NN

» Feature learning

= Unsupervised
= Fine-tuned using error back-propagation

Class labels

uonyededoud-yoeq 40443
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Eigen-RBM Analysis

» Determining the optimum number of eigendigits

= Akaike Information Criterion (AIC)
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v" We use the top 30 Eigendigits of the data
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Recognition Performance

Basic RBM vs. Eigen—RBM(30 Eigendigits)
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Sparsity in Recognition
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v’ Eigen-RBM representation is sparser than that of basic RBM.
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Sample Generation
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Sparsity in Sample Generation
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v’ Eigen-RBM generates similar or better samples with more sparse representations
than basic RBM.
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Conclusion

» Eigen-RBM:

= Scalable weight learning algorithm
= Number of parameters is independent of the image size

» Compared to Basic RBM:

= Similar or better performance
= Much less training time
= More sparse representations
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Questions and Suggestions

Thank you!

Essentially, all Models are wrong, but some are useful.
George P. E. Box
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