

Scalable Learning for Restricted Boltzmann Machines

Elnaz Barshan Paul Fieguth

System Design Engineering
University of Waterloo
Waterloo, Canada

29 October 2014

- Motivation
- > Related Work
- Proposed Approach
- > Experimental Results
- > Conclusion

Object Recognition

- Why Challenging?
 - Large intra-class variation

Image Models and Unlabeled Data

Image Models and Occlusion

Discriminative Model

Hand-crafted

Features: h Recognition Image Pixels: v

Generative Model

[Ranzato et al. 2011]

- Motivation
- > Related Work
- Proposed Approach
- > Experimental Results
- > Conclusion

Generative Models in Visual Recognition

Restricted Boltzmann Machines (RBMs)

Learning:

$$W_{opt} = \operatorname*{argmax}_{W} P(\mathbf{v})$$

Basic RBM Issues

- Large Number of Parameters
 - Grows roughly quadratically with the image size
 - Expensive weight learning procedure
 - A threat to good generalization of the model

> Solution:

- Using a weight sharing scheme
 - ✓ Convolutional Architectures
 - ✓ Translation invariance is frequently violated.

[Lee et al. 2009]

- Motivation
- > Related Work
- Proposed Approach
- > Experimental Results
- > Conclusion

Proposed Strategy I

Defining network weights as linear combinations of a set of predefined filters.

√ The number of parameters becomes independent of the size
of the image.

Proposed Strategy II

ightharpoonup Given a filter bank $F = \{\mathbf{f}^1, \mathbf{f}^2, ..., \mathbf{f}^P\}$:

$$W_{:j} := \sum_{k=1}^{P} \alpha_{kj} \mathbf{f}^k$$
 where $P \ll D$

 \triangleright Learning the weights α_{kj} of the filters:

$$\frac{\partial log P(\mathbf{v})}{\partial \alpha_{kj}} = \sum_{i \in vis} \frac{\partial log P(\mathbf{v})}{\partial w_{ij}} \frac{\partial w_{ij}}{\partial \alpha_{kj}}$$

$$= \sum_{i \in vis} (\langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_{model}) f_i^k$$

Eigen-RBM

- Eigen-RBM
 - Filter Bank: Top eigenvectors of the covariance matrix of the training data.

 Eigendigits Filter bank

✓ Eigendigits capture information at a variety of scales from coarse to fine.

Eigen-RBM and Basic RBM

The learned filters for a single digit class training data

✓ Although noise-reduction is not the objective, the learned Eigen-RBM filters are less noisy.

- Motivation
- > Related Work
- Proposed Approach
- > Experimental Results
- > Conclusion

Setup

- Dataset
 - Small MNIST: 6000 training, 1000 test
 - 28x28 images of hand-written digits

- Classifier
 - 1NN
- Feature learning
 - Unsupervised
 - Fine-tuned using error back-propagation

Eigen-RBM Analysis

- Determining the optimum number of eigendigits
 - Akaike Information Criterion (AIC)

✓ We use the top 30 Eigendigits of the data

Recognition Performance

✓ Eigen-RBM has a similar performance to basic RBM, but with much less training time.

Sparsity in Recognition

✓ Eigen-RBM representation is sparser than that of basic RBM.

Sample Generation

Sparsity in Sample Generation

✓ Eigen-RBM generates similar or better samples with more sparse representations than basic RBM.

- Motivation
- > Related Work
- Proposed Approach
- > Preliminary Results
- Conclusion

Conclusion

- Eigen-RBM:
 - Scalable weight learning algorithm
 - Number of parameters is independent of the image size
- Compared to Basic RBM:
 - Similar or better performance
 - Much less training time
 - More sparse representations

Questions and Suggestions

Thank you!

Essentially, all Models are wrong, but some are useful.

George P. E. Box