

Unsupervised Classification of Sea-Ice using SAR via an Adaptive Texture Sparsifying Transform

Robert Amelard, Alexander Wong, Fan Li, David A. Clausi
Department of Systems Design Engineering
University of Waterloo, Canada

Motivation

- Identification of sea-ice in polar regions
 - Navigation
 - Ship routing
- Manual process is unscalable
- SAR for ice identification
 - Good:
 - not affected by cloud/snow cover
 - Bad:
 - complex/noisy data

Outline

- Background (compressive sensing)
- Proposed Method
- Experimental Results
- Conclusions/Future Work

Outline

- Background (compressive sensing)
- Proposed Method
- Experimental Results
- Conclusions/Future Work

UNIVERSITY OF WATERLOO

Background: Sparsifying Transform

- Borrowed from compressive sensing
 - Efficient signal acquisition
- Sparsifying transform
 - Projection of data for accurate acquisition using low number of points

Outline

- Background (compressive sensing)
- Proposed Method
- Experimental Results
- Conclusions/Future Work

Method Outline

- 1. Image representation
- 2. Sparsifying projection
- 3. Unsupervised classification

Step 1: Representation

- "Signature" of the data
- Incorporate texture and spatial information
 - Realistic water/ice patterns

Step 1: Representation

- "Signature" of the data
- Incorporate texture and spatial information
 - Realistic water/ice patterns

All images in the presentation are RADARSAT-2 Data and Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2008) – All Rights Reserved

Step 2: Sparsifying Projection

- Efficiently and compactly represent data
- Project signatures into sparse feature space
 - Reduce effect of noise
- Effectively "simplifies" data
- Solved using modified k-means
 - Relative texture/spatial weighting

$$-\sum\sum[\alpha\cdot\ell_2^t+\beta\cdot\ell_2^s]$$

Texture similarity

Spatial coherence

Step 3: Unsupervised Classification

- Learn classifier in sparse feature space
 - Assumption: Sparsification resulted in wellseparated classes
- Learns inherent patterns in data
 - No human bias!
- k-means with n_c classes
 - Ice/water: 2 classes
 - Types of ice: 2+ classes

Outline

- Background (compressive sensing)
- Proposed Method
- Experimental Results
- Conclusions/Future Work

Experimental Setup - Data

- RADARSAT-2 SAR imagery
 - C-band, HV polarization, 50m spatial resolution
 - Chukchi and Beaufort Seas, Apr

 Jun 2010
- Chosen because data contains:
 - Much noise (SAR, banding effects)
 - Low SNR (HV)
 - Different classes

Experimental Setup

- Parameter values
 - $-\alpha = 1$, $\beta = 10$ (texture/spatial weight)
 - $-n_b = 1000$ (number of salient points)
 - 2-layer neighbourhood
- Compared with:
 - Pixel-based methods
 - Gaussian mixture models, k-means
 - Region-based method
 - Iterative Region Growing using Semantics (IRGS) [1,2]

Erroneous localized ice types!

Cohesive!

Proposed method

Comparable!

Results

Banding effect!

GMM

Proposed method

No banding effect!

Comparable!

IRGS

Outline

- Background (compressive sensing)
- Proposed Method
- Experimental Results
- Conclusions/Future Work

Conclusions & Future Work

- Sparsifying transform for sea/ice classification
 - Simple 3-stage implementation
 - Representation, Projection, Classification
 - Represents noisy/complex data well
 - Promising results with HV RADARSAT data
- Future work
 - Rotation, scale invariance
 - Automatic parameter selection
 - Ground-truth comparison

References

- [1] Q. Yu and David A. Clausi, "SAR sea-ice image analysis based on iterative region growing using semantics," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3919–3931, 2007.
- [2] Q. Yu and David A. Clausi, "IRGS: Image segmentation using edge penalties and region growing," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 12, pp. 2126–2139, 2008.

Thank You!

Comments/Questions/Feedback:

ramelard@uwaterloo.ca

http://vip.uwaterloo.ca