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Motivation

 |dentification of sea-ice in polar regions
— Navigation
— Ship routing

* Manual process is unscalable

* SAR for ice identification
— Good:

 not affected by cloud/snow cover

— Bad:

e complex/noisy data
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Outline

* Background (compressive sensing)
* Proposed Method
* Experimental Results

e Conclusions/Future Work
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* Background (compressive sensing)
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Background: Sparsitying
Transform

* Borrowed from compressive sensing
— Efficient signal acquisition

e Sparsifying transform

— Projection of data for accurate acquisition
using low number of points
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Outline

* Proposed Method
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Method Outline

1. Image representation

2. Sparsifying projection

3. Unsupervised classification
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Step 1: Representation

e “Signature” of the data

* Incorporate texture and spatial information

— Realistic water/ice patterns
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Step 1: Representation

e “Signature” of the data

* Incorporate texture and spatial information

— Realistic water/ice patterns
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Step 1: Example

All images in the presentation are
RADARSAT-2 Data and Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2008) —
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Step 1: Example

- texture
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- spatial
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Step 2: Sparsitying Projection

* Efficiently and compactly represent data

* Project signatures into sparse feature space
— Reduce effect of noise
* Effectively “simplifies” data

e Solved using modified k-means
— Relative texture/spatial weighting

—YX[a - 45+ B - 3]
7 ~

Texture similarity Spatial coherence
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Step 3: Unsupervised o0

Classification

* Learn classifier in sparse feature space

— Assumption: Sparsification resulted in well-
separated classes

* Learns inherent patterns in data
— No human bias!

* k-means with n, classes
— Ice/water: 2 classes

— Types of ice: 2+ classes
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Outline

* Experimental Results
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Experimental Setup - Data

* RADARSAT-2 SAR imagery
— C-band, HV polarization, 50m spatial resolution
— Chukchi and Beaufort Seas, Apr—Jun 2010
* Chosen because data contains:
— Much noise (SAR, banding effects)
— Low SNR (HV)
— Different classes




UNIVERSITY OF

WATERLOO

Experimental Setup

 Parameter values
—a =1, = 10 (texture/spatial weight)
—n, = 1000 (number of salient points)
— 2-layer neighbourhood

* Compared with:
— Pixel-based methods
e Gaussian mixture models, k-means

— Region-based method
* |terative Region Growing using Semantics (IRGS) [1,2]
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Results

multi-year ice

first-yearice
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Erroneous localized ice types!

k-means
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Cohesive!

Proposed method
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Comparable!

IRGS
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Results

ice

water
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Results

Banding effect!
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No banding effect!

Proposed method
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Comparable!
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Outline

e Conclusions/Future Work
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Conclusions & Future Work

» Sparsifying transform for sea/ice classification
— Simple 3-stage implementation
e Representation, Projection, Classification
— Represents noisy/complex data well

— Promising results with HV RADARSAT data
* Future work

— Rotation, scale invariance

— Automatic parameter selection

— Ground-truth comparison
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Thank Youl!

Comments/Questions/Feedback:
ramelard@uwaterloo.ca

http://vip.uwaterloo.ca
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