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Abstract

The enormity of the problem of deteriorating pipeline infrastructure is widely apparent. Since a complete rebuilding of the piping system

is not financially realistic, municipal and utility operators require the ability to monitor the condition of buried pipes. Thus, reliable pipeline

assessment and management tools are necessary to develop long term cost effective maintenance, repair, and rehabilitation programs. In this

paper a simple, robust and efficient image segmentation algorithm for the automated analysis of scanned underground pipe images is

presented. The algorithm consists of image pre-processing followed by a sequence of morphological operations to accurately segment pipe

cracks, holes, joints, laterals, and collapsed surfaces, a crucial step in the classification of defects in underground pipes. The proposed

approach can be completely automated and has been tested on five hundred scanned images of buried concrete sewer pipes from major cities

in North America.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Most municipal pipeline systems are inspected visually

by mobile Closed Circuit Television (CCTV) systems or by

human inspectors [1]. There are several CCTV variants that

may reduce the cost of the inspection or provide improved

results each using a television camera in conjunction with a

video monitor, videocassette recorders, and possibly other

recording devices, and falling into one of two basic types

[2]: either the inspection is performed using a stationary or

zoom camera mounted at a manhole so that it looks down

the pipe, or a mobile robotic system is placed within the

pipe itself. A typical pan and tilt CCTV camera and the

corresponding image from an internal inspection of a buried

sewer pipe are shown in Fig. 1. The camera provides images

to an operator who is trained to detect, classify and rate the

severity of defects against documented criteria [3]. Manual

CCTV inspection has been shown to be incapable of
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performing reliable inspection [4], since the human vision

process is prone to subjective considerations, fatigue,

boredom, lapses in operator concentration and inexperience

[2]. Thus, manual results are widely agreed to lack

reliability and consistency, precluding the undertaking of

preventive maintenance with confidence.

The sewer scanner and evaluation technology (SSET) [3]

is an innovative technology for obtaining images of the

interior of pipe, developed by TOA Grout, CORE Corp.,

Japan, and the Tokyo Metropolitan Sewer Authority. SSET

is a system that offers a new inspection method, utilizing

digital optical scanning and gyroscopic technology, mini-

mizing some of the shortcomings of traditional CCTV

inspection equipment. The mechanics of inspecting the

pipes by SSET are similar to the CCTV inspection, in that

the SSET probe is designed to operate from a tractor

platform to propel the tool through the pipe. The SSET

probe and digitized images of underground pipe with

various objects are shown in Fig. 2. The major benefit of

the SSET system over the current CCTV technology is that

the engineer will have much higher quality image data to

make critical rehabilitation decisions, and the flattened
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Fig. 1. CCTV camera and internal inspection image of buried pipelines.

S.K. Sinha, P.W. Fieguth / Automation in Construction 15 (2006) 47–5748
image geometry, greatly simplifying automated computer-

based analyses.

The goal of our research is to develop an automated

method which, given a pipe image, classifies each object in

the image into one of five classes: background, crack, hole,

joint, and lateral.
2. Buried pipe image pre-processing

We have acquired a data set consisting of thousands of

images of buried sewer concrete pipes from major cities in

North America. This data set has been used to explore basic

characteristics of underground pipe images. Analyses of

images have shown that there are two important character-

istics that complicate the segmentation of pipe images: firstly

the presence of a complicated background pattern due to

earlier runoff, patches of repair work, corroded areas, debris,

non-uniformities in illumination, and flaws in the image

acquisition process; secondly the three main objects of

interest–cracks, joints, and laterals–are all dark features that

cannot be distinguished by intensity criteria alone (Fig. 3).

There are several challenges in analyzing and classifying

these pipe images. First is the difficulty in developing a

mathematical model for each object of interest, straightfor-

ward for regular, known structures such as joints and
Fig. 2. SSET inspection probe and digitized
laterals, but much harder for random, irregular holes and

joints. Next is the challenge of the background, often highly

patterned and cluttered, leading to spuriously detected

edges. Finally is the problem of limited contrast, particularly

between minor cracks and the background. Thus the use of

digital image data typically requires some degree of

preprocessing, including geometric correction, image

enhancement, and feature selection [5–7]. For example,

geometric correction involves the reorientation of the image

data to selected parameters [8], allowing for accurate spatial

assessments and measurements of crack features. Image

enhancement seeks an improvement of the image data that

suppresses unwanted distortions in background or enhances

some image features (like cracks) important for further

processing. The principal objective of image pre-processing

is to process an image so that the result is more suitable than

the original image for a specific application. The word

Fspecific_ is important, because it establishes at the outset

that the techniques discussed in this section are very much

problem-oriented. In this section, we examine image pre-

processing for contrast enhancement.

2.1. Bayesian classification

The identification of the boundary between objects and

their surroundings can be formulated as a pattern classi-
color image of buried pipe surface.



Fig. 3. Typical SSET images of underground concrete pipe showing different objects.
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fication problem [9]. Specifically, it is desired to classify a

pixel as to whether it is more likely that it came from same

object or the neighboring background. In a Bayesian

framework, a color pixel xc= (r,g,b)
T, can be classified as

a crack if its a posteriori probability P(Crack|x) is greater

than the corresponding a posteriori probability for the

surrounding pipe background P(Back|x). If the class-condi-

tional probability densities p(x|Crack) and p(x|Back) are

known, then Bayes’ Rule can be used to compute the

corresponding a posteriori probabilities.

Standard parametric or non-parametric techniques can be

used to learn the underlying class-conditional densities

p(x|Crack) and p(x|Back). However, one must bear in mind

that the a posteriori probabilities P(Crack|x) and P(Back|x)

are evaluated for each pixel, along each search line, at each

time step. Thus, in order for this approach to be usable in

practical (real-time) systems, a premium is placed on the

on-line processing time required to discriminate between

the classes. Towards this end, Fisher’s linear discriminant

[10] is used to enhance the contrast between the objects and

the pipe background. In the case of a two class discrim-

ination problem, such as distinguishing between objects

and pipe background, Fisher’s linear discriminant [10] can

be used to determine the axis, w, onto which vector color

data can be projected which preserves as much of the

discriminating capability of the color information as

possible. The resulting FFisher linear discriminant_ max-

imizes the separability of the two classes. Crack images

representative of those likely to be encountered during

scanning of underground pipes can be used to learn the

Fisher discriminant axis.

w ¼ Sc þ SBÞð �1
mC � mBÞð ð1Þ
where S and m are the class scatter and mean, respectively.

mk ¼
1

nk
~
xavk

x ð2Þ

Sk ¼ ~
xavk

x� mkÞð x� mkÞð T ð3Þ

Computed over all samples xk in class k.

Fig. 4 shows how Fisher’s discriminant analysis can be

used to enhance the contrast between the pipe background

and cracks, comparing the original color image, its gray-

scale equivalent, and the enhanced projection onto the

Fisher axis.
3. Segmentation of buried pipe images

In our proposed automated pipe analysis the following

need to be discriminated: pipe joints (a horizontal dark

straight line), pipe lateral (a circular dark object), surface

cracks (randomly shaped thin dark lines), and pipe back-

ground (highly patterned). Successfully segmenting pipe

joints, laterals, and cracks, all of which are dark, will clearly

require some discrimination on the basis of geometry and

shape. In this paper a morphological segmentation

approach, based on set-theoretic concepts of shape [11], is

proposed for extracting joints and laterals. The main

objective of this approach is to segment out the pipe joints

and laterals from the image, at which point the subtle

surface cracks can be more readily extracted by a

subsequent filtering operation [12,34].

A large number of segmentation algorithms have been

proposed in the literature [13–16], however the literature on



Fig. 4. Fisher’s discriminant analysis can be used to enhance the contrast

between the pipe background and cracks. The original color image (a)

shows few cracks in the pipe surface. In gray-scale image (b) there is little

contrast between the background and crack. Projection onto a Fisher axis

(c) enhances the contrast and enables better extraction of the crack features.

AHB ¼ pjbþ paA for every baBf g ð7Þ
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segmentation of concrete pipe defects is very limited.

Maser’s algorithm [17] recommends a histogram thresh-

olding approach, however it is not clear how the value of

the threshold is originally determined. More recently, Chen

et al. [18] applied a segmentation method, introduced by

Kittler et al. [19], to pavement images, although the

effectiveness of the method is unclear. An approach to the

recognition of segmented pavement distress images is

studied by Mohajeri and Manning [20], using directional

filters to classify the objects. An entropy-based approach

[11], which finds a bilevel threshold to maximize entropy

criteria, did not improve pavement-surface images. The

cluster classification process, which assigns a particular

object to one of many groups by comparing typical features

from each group, reported a significant amount of error

[12].

In general, segmentation techniques take one of three

possible approaches [21]: edge detection, thresholding, or

object geometry. An edge is defined as the boundary
between two regions with relatively distinct gray-scale

characteristics, thus edge-detection techniques attempt to

segment objects by outlining their boundaries. Thresh-

olding, on the other hand, seeks to distinguish objects on the

basis of their absolute intensities, for example separating a

darker object from a lighter background. The literature on

segmentation based on gray-level intensity is inapplicable in

our context since cracks, holes, joints, and laterals all appear

as comparably dark objects on a lighter background, as

shown in Fig. 3. Rather, it is the geometry, rather than the

intensity, which distinguishes these objects. Mathematical

morphology [22–26] provides an approach to the segment-

ing of digital images that is based on shape. Appropriately

used, morphological operations tend to simplify images,

preserving their essential shape characteristics and eliminat-

ing irrelevancies.
4. Mathematical morphology

Mathematical morphology [22–27] is a widely used

methodology for image analysis, smoothing, segmentation,

edge detection, thinning, shape analysis and coding. Based

on a formal mathematical framework, mathematical mor-

phology is a fast, robust method that analyzes the geometry

of an image directly in the spatial domain. In this section,

we present a morphological approach for segmenting

underground pipe images, which includes the process of

characterizing the object sizes in a pipe image, thresholding

the image into a binary image, and finally classifying the

segmented image. Morphology operates on image regions

(e.g., the light and dark portions of an image), where the

regions can be reshaped (i.e., morphed) in various ways

under the control of a structuring element. The structuring

element can be thought of as a parameter to the morpho-

logical operation. The most fundamental operations are

morphological dilation and erosion. Based on these, two

compound operations, opening and closing, can be defined.

We first define these in the context of binary images, then

for gray-scale images.

Consider a binary image I ={ p(x,y)} consisting of pixels

p(x,y)Z{0,1}.

We define sets A and B to represent the image and the

selected structuring element, respectively:

A ¼ x; yð Þjp x; yð Þ ¼ 1f g ð4Þ

B ¼ x; yð Þj x; yð Þ in structuring elementf g ð5Þ

Then the dilation A]B of A by B is defined as

AB ¼ aþ bj for all aa A and baBf g ð6Þ

That is, A]B is the union of all pixels in A surrounded

by the shape of B. Similarly the erosion AHB is defined as
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That is, all pixels within a ‘‘distance’’ B from the edge of

A are removed. Next, two compound operations can be

defined, opening A>B and closing A&B:

A>B ¼ AHBð Þ]B ð8Þ

A&B ¼ A]Bð ÞHB ð9Þ

The opening operation, which we use in our classifica-

tion, leaves unchanged all parts of A, except for those

features and regions smaller than the structuring element,

which are removed. Any method which operates exclusively

on binary images is somewhat limiting, since most images

are color or gray-scale. A gray-scale image I ¼ p x; yð Þf g;
p x; yð ÞaR can be interpreted as a three-dimensional

surface, with the pixel intensity or shade interpreted as a

height. If we define

A ¼ x; y; zð ÞjzVp x; yð Þf g ð10Þ

and given some structuring volume B, then we can interpret

two-dimensional gray-scale morphological operations on

image I as three-dimensional binary morphology on A, B.

Written directly in terms of a gray-scale image f(x,y) and
Fig. 5. Overview of the proposed morp
structuring function b(x,y), grey-scale erosion and dilation

[35] can be defined as

f]bð Þ x; yð Þ ¼ max
i;jð Þ

f x� i; y� jð Þ þ b i; jð Þf g ð11Þ

fHbð Þ x; yð Þ ¼ max
i;jð Þ

f xþ i; yþ jð Þ � b i; jð Þf g ð12Þ

The gray-scale opening and closing are then defined as

before, in Eqs. (8) and (9).
5. Morphological segmentation

In underground pipe image segmentation, the following

classes are of general interest: the pipe joints (horizontal dark

straight lines), pipe laterals (circular dark objects), surface

cracks (irregularly shaped thin dark lines), and the pipe

background (anywhere from a smooth to a highly patterned

surface). The goal of our research is to segment pipe joints,

laterals, and cracks based on the geometric differences

between them, specifically based on morphology.

The premise of the morphological approach is to

distinguish objects on the basis of shape. With the canonical

shapes being thin and wide (joints), large and round

(laterals), and small and irregular (cracks, holes), the key

idea of this paper is to use two parameterized structuring
hological segmentation approach.



Fig. 6. This figure illustrates joint/lateral discrimination using different structuring element: a horizontal element (top) of length 285 mm, consistent with the

geometry of a perfect joint, as opposed to a circular element (bottom) of radius 57 mm, tuned to the shape of a perfect lateral.
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elements: a circular structuring element (SC) of radius r, and

a horizontal structuring element (SH) of varying length l and

fixed width w =3. As the effect of an opening is to remove

those features, which are small relative to the structuring

element S while preserving features greater than S, the

choice of these two elements (circular and rectangular) is

clearly designed to mimic the geometry of the laterals and

joints to be extracted. The key idea, then, is that we can

isolate objects of a given Fsize_ by performing a series of

opening operations, based on structuring elements of varying

size. The Fsize_ of any object can then be defined mathemati-

cally as the largest structuring element (measured here in

terms of radius r or length l) that can be inscribed in the

object. Note that, aside from the general shape of the

structuring element, we do not make any specific assumption

regarding the shape of the object being measured, therefore
Fig. 7. Morphological analysis based on a circular structuring element: the aver

diameter; area is normalized to that of an ideal lateral. Clearly as the diameter is

quickly eliminated.
this definition of size is quite general and will prove effective

in measuring sizes of cracks, irregular laterals, etc., which

otherwise resist specific characterization. The segmentation

algorithm consists of a sequence of processing steps,

illustrated in Fig. 5, and developed below.

5.1. Morphological opening and thresholding

We performed a morphological opening operation on the

underground pipe image with increasing sizes of the circular

and horizontal structuring elements. Clearly as the size of

the structuring element is increased features of increasing

size are removed by the morphological opening. For

example, a structuring element of intermediate size will

preserve laterals and a collapsed pipe, but will remove

cracks and small holes.
age area of each class is plotted as a function of the structuring element

increased, classes with thin, elongated geometries (e.g. cracks, joints) are



Fig. 8. As in Fig. 7, but using a horizontal structuring element, normalized to the area of an ideal joint. Clearly as the length is increased, classes with small

geometries (e.g., cracks, holes) are quickly eliminated.
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Fig. 6(b) shows two examples of the results of gray-scale

opening. Although some of the original features in Fig. 6(a)

are still clearly present, the output of the morphology is

confusing and not easily interpreted. What we really want is

an additional processing step, a thresholding function t(),

classifying each pixel as:

t p x; yð Þð Þ

¼
0 Pixel is geometrically consistent with structuring element

1 Pixel is not consistent

��

ð13Þ
That is, the set of all Fdark_ (zero valued) pixels will

identify the object(s) in the image which are compatible

(i.e., bigger than) the selected structuring element. Ideally,

we would like a single global threshold T such that

t p x; yð Þð Þ ¼ 0 p x; yð ÞVT
1 p x; yð Þ 	 T

��
ð14Þ

Unfortunately, it is difficult in general to find a single

threshold that is best for an arbitrary gray-scale image.

Many approaches have been proposed to find an optimal

threshold level for certain image cases [28–31]. We propose

to use Otsu’s method [30] because it is non-parametric,

unsupervised, and automatic. A discriminant criterion is
Fig. 9. Lateral discrimination: we can distinguish between laterals and other classe

discriminate D between an ideal lateral and any other class as the difference in r
computed for each possible threshold T; the optimal

threshold is that gray-level where this measure is maxi-

mized. The results of Otsu’s method are illustrated in Fig.

6(c): the segmented joint and lateral stand out very clearly.

With a methodology in place for understanding the results

of a given morphology, we can now study the choice of

structuring elements that will be most effective in classify-

ing each pipe object. Figs. 7 and 8 plot the average area of

objects in each class (crack, hole, joint, etc.) based on

circular and horizontal structuring elements, respectively.

That is, if we let |t(I)| represent the number of dark pixels in

I after binary thresholding, then Figs. 7 and 8 actually plot

the normalized areas

aL rð Þ ¼ jt I >SC rð Þð Þj
jt ILð Þj aJ lð Þ ¼ jt I >SH lð Þð Þj

jt IJð Þj ð15Þ

where IL, IJ are idealized, prototype images of the perfect

lateral and joint. Note that all of the curves are monotoni-

cally decreasing,

jI >SC r1ð Þj 	 jI >SC r2ð Þj for all r1Vr2 ð16Þ

since a larger structuring element cannot leave more pixels

in place than a smaller element.
s by opening with a circular structuring element. We can plot the ability to

esponse (normalized to standard error) to the structuring element.



Fig. 10. Joint discrimination: as in Fig. 9, but using a horizontal structuring element. We can plot the ability to discriminate D between an ideal joint and any

other class as the difference in response (normalized to standard error) to the structuring element.
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Although the plots in Figs. 7 and 8 are interesting and

intuitive, in order to accurately isolate and classify different

objects in an image we have to take into account the

variations in the area of each class. That is, holes, laterals,

etc. all come in a range of sizes, and this range must be

taken into account in selecting the appropriate structuring

element to serve as a classifier.

We can compute or assess the ability of any structuring

element to discriminate between any two classes (e.g., crack

and hole) by examining the Di,j degree to which two classes

are separated relative to their standard deviations:

Di;j rð Þ ¼
jli rð Þ � lj rð Þj2

r2
i rð Þ þ r2

j rð Þ ð17Þ

li rð Þ ¼ baL rð Þ�i and r2
i rð Þ ¼ baLj rð Þ2�i � baL rð Þ�2i ð18Þ

where b�i represents an average taken over images of class i.

A parallel definition exists for discriminant Di,j(l) based on

a horizontal structuring element. The value of r for which

Di,j(r) is maximized represents the optimal feature by which

to discriminate between classes i and j on the basis of the

area (i.e. number of pixels) remaining after a morphological

opening by element SC(r). By plotting Di,j(r) and Di,j(l) for

different classes i,j we can deduce the set of features to be

extracted for classification. Figs. 9 and 10 plot DL,i(r) and
Table 1

Appropriate threshold selected for classification of various objects in the

underground pipe images by circular structuring element

Threshold values for classification by circular

structuring element

Classified class

No. AR(2) AR(7) AR(23) AR(57)

1 <150 Clean pipe

2 >150 <1000 Crack

3 >150 >1000 <1700 Hole/joint

4 >150 >1000 >1700 <3150 Lateral

5 >150 >1000 >1700 >3150 Collapse pipe
DJ,i(l), respectively, indicating peaks to identify these

features.

5.2. Feature extraction and classification

The sizes of structuring elements for the classification of

objects in underground pipe images can be determined from

the discriminant method described in the previous section.

For example, if an image is opened with SC(2)–the circular

structuring element of radius 2(mm)–then small objects

(e.g., random background patterning) are removed. By

repeating this process for different sizes of structuring

elements SC(7), SC(23), SC(57), we can group objects by

size, that is, into their respective classes.

Specifically, we propose to keep as our features

aL rð Þ ¼ jt I >SC rð Þð Þj ra 2; 7; 23; 57f g ð20Þ

where the features are selected to discriminate between

successive class pairs clean-pipe, cracks, holes joints,

laterals, and pipe-collapse. A further set of four features is

chosen based on rectangular structuring elements:

aJ lð Þ ¼ jt I >SH lð Þð Þj la 2; 47; 121; 155f g ð19Þ

selected to discriminate between successive pairs of clean-

pipe, cracks-holes, laterals, joints, and pipe-collapse.
Table 2

Appropriate threshold selected for classification of various objects in the

underground pipe images by horizontal structuring element

Threshold values for classification by horizontal

structuring element

Classified class

No. AL(2) AL(47) AL(121) AL(155)

1 <150 Clean pipe

2 >150 <1000 Crack/hole

3 >150 >1000 <1700 Lateral

4 >150 >1000 >1700 <3150 Collapse pipe

5 >150 >1000 >1700 >3150 Joint
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The classifier is then made up of pairwise discriminants,

such as

aL lð Þ]s lð Þ
Class 1

Class 2

ð20Þ

Where the threshold s(l) is based on criterion discrim-

inating between two classes. To maximize Di,j(r)– the

separation of the class means normalized to the standard

deviations–the optimum threshold in discriminating classes

i and j is the weighted mean

si;j rð Þ ¼ ri rð Þli rð Þ þ rj rð Þli rð Þ
ri rð Þ þ rj rð Þ ; thus ð21Þ

s0;1 rð Þ ¼ rcrack rð Þlclean rð Þ þ rclean rð Þlcrack rð Þ
rcrack rð Þ þ rclean rð Þ ð22Þ

The deduced thresholds are listed in Tables 1 and 2. The

threshold values shown in Tables 1 and 2 are selected based
Fig. 11. Classification results by using circular structuring element: the original ima

1, and finally binary images are obtained by global thresholding technique.
on the pixel count area of the classified class. For example,

segmented collapse pipe image will have the pixel area

count of more than 1700 as compared to the segmented

crack or hole in the pipe image, which will have pixel area

count of less than 1700.
6. Experimental results

We have applied the proposed approach to more than

500 underground concrete sewer pipe images. These

images are obtained from SSET inspection of flush-cleaned

18-in. diameter of concrete sewer pipes from various

municipalities in North America. Based on the experimen-

tal results, we conclude that the proposed method can

segment and classify pipe images effectively and accu-

rately. The proposed morphological segmentation and

classification algorithm will work very well for under-
ges are opened by structuring element of different sizes as outlined in Table



Fig. 12. Classification results by using horizontal structuring element: the original images are opened by structuring element of different sizes as outlined in

Table 2, and finally binary images are obtained by global thresholding technique.
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ground pipe images containing one class of object only in a

given frame. In the real world problem, underground pipe

images may contain cluttered objects as shown in Figs.

11(a) and 12(a). For segmentation and classification of such

images, we suggest a slightly different approach. The new

approach is based on taking the difference of image after
Table 3

Confusion matrix using the circular structuring element as classifier (row—

morphological classifier results and column—expert labeling)

Class Clean pipe Crack Hole/joint Laterals Pipe collapse Total Percent

correct
1 2 3 4 5

1 50 0 0 0 0 50 100

2 0 85 15 0 0 100 85

3 0 0 95 5 0 100 95

4 0 0 1 47 2 50 94

5 0 0 0 4 21 25 84

Total 50 85 111 56 23 325

Overall percentage correct classification 91.7
each morphological opening and thresholding operations.

Figs. 11(c) and 12(c) illustrate the procedure of taking

difference of image after successive opening operations to

segment various objects present in the image. Once the

objects are segmented, then feature extraction and classi-

fication can be done.
Table 4

Confusion matrix using the horizontal structuring element as classifier

(row—morphological classifier results and column—expert labeling)

Class Clean pipe Crack/hole Lateral Pipe collapse Joints Total Percent

correct
1 2 3 4 5

1 49 0 0 0 1 50 98

2 0 141 0 0 9 150 94

3 0 0 48 0 2 50 96

4 0 0 0 24 1 25 96

5 0 0 0 0 50 50 100

Total 49 141 48 24 63 325

Overall percentage correct classification 96
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We may evaluate the performance of proposed segmen-

tation and classification methods by a confusion matrix

indicating whether the classification tendency is reasonable

or not. On the confusion matrix, if we have a normal

distributed matrix with few outliers, centered on the

diagonal, the classification can be said to be reasonable.

Tables 3 and 4 show the agreement and disagreement

between the expert classification and the proposed classifier

in terms of confusion matrix by using circular and

horizontal structuring elements, respectively.
7. Conclusions

We have demonstrated an image processing and

morphological approach to segment and classify images

of underground concrete pipes. Experimental results

demonstrate that the proposed approach is effective for

dealing with the underground pipe images with varying

background pattern and non-uniform illumination. Morpho-

logical segmentation approach can be used to distinguish

between cracks, holes, laterals and joints, but it is difficult

to classify these objects into various classes based on their

severity of defects. Therefore, the segmented joints and

laterals have to be further processed to be classified

according to the severity of defects by using other shape

or textural features, like roundness, compactness, etc.

Again, the cracks in pipe images are extracted and

classified well by the morphological segmentation

approach, but the crack pixels are not detected precisely.

Once the laterals, joints and holes are segmented and

classified from the image then the crack detection ,filters,

as described in [32–34], can be used for precise detection

of crack features.
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