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Abstract—Dark-spot detection from synthetic aperture radar
(SAR) imagery is a fundamental step in marine oil-spill detection
and monitoring. However, to achieve robust and accurate detec-
tion is difficult due to SAR sensor limitations and the complex
marine environment. To address this problem, the large-scale
spatial-contextual information in SAR imagery has to be utilized
to increase the class separability between the dark-spot and the
background. A stochastic fully-connected continuous conditional
random field (SFCCRF) approach to model SAR imagery and
perform soft-label inference has been designed and built, leading
to an efficient detection algorithm. Instead of treating all pixels
in the imagery as being connected, SFCCRF determines the
connectivity of two pixels in a stochastic manner based on their
proximity in both feature space and image space. Since SFCCRF
provides an efficient and effective way for modeling the large-
scale spatial correlation effect, the resulting soft-labels can resist
the influence of speckle noise and highlight the difference between
dark-spot and the background. Dark-spot detection is achieved
by binarizing the soft-labels estimated by SFCCRF. The proposed
algorithm is tested on both simulated and real SAR imagery. The
results show that SFCCRF can delineate the dark-spot with low
commission and omission error rates.

I. INTRODUCTION

The operational discharge of oil from ships into the oceans
is an ongoing global problem that greatly affects the marine
and coastal environments [1]. Ships regularly produce oily
bilge wastes which are often illegally discharged to avoid
costly disposal fees at port. The total estimated volume of oil
released from illegal ”operational” discharges is more than that
from large accidents [1], [2]. The presence of oil spills pollutes
the sea water, destroys wildlife habitat and breeding grounds,
and damages beaches, causing many social and environmental
problems [1]–[3].

Advances in remote sensing technologies provide effective
ways for oil spill monitoring to support the enforcement
and cleanup efforts. In particular, the spaceborne synthetic
aperture radar (SAR) remote sensing technique, due to its
wide coverage, all-weather and all-day capability, has been
widely used for oil spill monitoring. Current SAR sensors for
oil-spill monitoring include RADARSAT-2, TerraSAR-X and
Sentinel-1A [4]. Both the true oil spills and some “look-alike”
phenomena (e.g., the low wind area, biogenic slicks and wave
front) appear as dark-spots in SAR images because they can
dampen short-capillary waves which are the main agent of
SAR ocean backscattering [5]–[8].

Dark-spot detection from SAR imagery is a significant
step in SAR oil spill monitoring. The objective of dark-spot

detection is to identify all dark-formations in SAR imagery
that are caused by either the true oil spills or the look-alikes.
This step is important because the further classification of
the true oil spills and the look-alikes has to be based on
the detection results. Therefore, the detection accuracy in this
step directly influence the ability of the monitoring system to
identify the true oil spills. For example, unless a true oil spill
can be detected at this dark-spot detection step, it can never be
detected at a later step [9]. Moreover, accurate delineation of
the boundaries of dark-spots/targets in the dark-spot detection
step is crucial for extracting meaningful features to support
the classification step.

This paper therefore focuses on dark-spot detection from
SAR imagery. However, designing a robust and accurate
detection algorithm is a challenging task due to the diffi-
culties caused by the sensor limitations, the complex marine
environment, as well as the characteristics of the true oil
spills. First, dark-spot detection is affected by SAR sensor
noise. SAR speckle is an inherent and deterministic part of
SAR signal, and may provide useful information in some
specific applications. However, SAR speckle is treated as noise
due to its undesirable nature in the dark-spot detection task.
The presence of speckle in SAR imagery will reduce the
class separability between the targets and the background, and
increase the difficulties to detect the targets. Note that besides
the speckle noise, other noise, e.g., the sensor thermal noise,
may also contribute to the noise-like patterns in the image.
Second, the intensity contrast between the targets and the
background could be too low for the targets to be detected as
the ocean backscattering decreases, depending on the local sea
state, incidence angle and spatial resolution of SAR imagery
[3]. Third, the detection algorithm should have very high true
positive rate to reduce the omission of true oil spill detections.
However, the ship-generated spills tend to be very small in size
and have thin and elongated geometric characteristics, which
make them highly susceptible to the sensor and the complex
marine environment.

Several methods have been proposed for dark-spot detec-
tion. Intensity thresholding is the commonly used approach
for detecting dark-spot [10]–[14]. To resist speckle noise
and increase the class separability, Shu et al. proposed a
thresholding method that takes advantage of spatial density
information [9]. Some researchers exploit the edge information
in SAR image for dark-spot detection [15]–[18]. A neural
network model has been used for joint dark-spot detection
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and classification of oil spills [19]. Another neural network
model [20] adopts the Weibull multiplicative filter to suppress
speckle noise and enhance the contrast between the targets and
the background, and the Multi-Layer Perceptron (MLP) neural
networks to segment the filtered SAR image. The marked
point process based approach [21] models the dark-spots by
the marked point process under the Bayesian framework and
adopts the Markov Chain Monte Carlo (MCMC) method to
infer the class labels.

Although the thresholding-based approaches are fast for
processing large images, they are very sensitive to SAR
speckle noise. An effective thresholding approach relies on
some spatial feature extraction techniques that are capable of
resisting the influence of speckle noise, while highlighting
differences between the target and background. If a clean
image with distinguishing features can be obtained, applying
the thresholding method to identify the dark-spots will be
a straightforward task. Such an image can be achieved by
some noise-suppression/denoising methods [22], which typ-
ically would smooth the image by conducting some spatial
averaging operations [23]–[25]. Since the ship-generated tar-
gets generally have small, thin and elongated shapes, they are
particularly sensitive to the denoising methods, which tend to
easily erase the thin part of the targets and break the elongated
targets. Therefore, an appropriate denoising method should
not only suppress the speckle noise, but also preserve the
details. Since image denoising essentially exploits the spatial
correlation effect in the image, designing a desirable denoising
method calls for an advanced spatial modeling approach that
is capable of effectively and efficiently accounting for spatial
correlation effect in SAR imagery.

II. OUR APPROACH

In this paper, we develop a stochastic fully-connected con-
tinuous conditional random field (SFCCRF) approach to model
SAR oil spill imagery and perform soft-label inference, leading
to an efficient detection algorithm. A small value of the soft-
label in SFCCRF indicates higher probability of being the
target, but lower possibility of being the background. The soft-
label is therefore equivalent to the “true” backscattering inten-
sity for which a smaller value also indicates higher possibility
of being the target. Since SFCCRF provides an efficient and
effective way for modeling the large-scale spatial correlation
effect, the resulting soft-labels can resist the influence of
speckle noise and highlight the difference between the target
and the background. To achieve the purpose of detection,
a thresholding is performed on the soft-labels to obtain the
binary labels.

The CRF model has been widely used for performing
label inference in the computer vision literature [26], [27].
However, the ordinary CRF only accounts for the spatial
correlation effect among pixels in a small neighborhood. Fully-
connected CRF (FCRF) enhances CRF by addressing the
correlation effect in global image scale, but at the cost of
high computation. The proposed SFCCRF model maintains
the advantages of FCRF but reduces it’s computational cost
by utilizing stochastic cliques [28]. SFCCRF follows the

general framework for building the stochastic cliques in CRF,
but adopts new features to address the particularity of SAR
imagery for dark-spot detection.

In our previous publication [29], we proposed a TGSFCRF
model, and demonstrated that modeling large-scale spatial
correlation effect using the stochastic clique approach can
capture useful spatial contextual information for enhancing
detectability of targets. In this paper, we extend our previous
work by proposing a SFCCRF algorithm which adopts the
continuous CRF (CCRF) approach that yields continuous soft-
labels [30], [31] rather than the traditional CRF model that
produces discrete labels. The advantage of SFCCRF over
TGSFCRF can be illustrated from the following aspects. First,
TGSFCRF uses the spatial information for binary label infer-
ence, while SFCCRF uses the spatial information for soft-label
inference. Consequently, the TGSFCRF model relies upon a
mixture model that simultaneously describes the target and
the background, which causes model limitations due to the fact
that the background is often too complex to be modeled by one
mode. In contrast, the adoption of numerous continuous states
in SFCCRF to describe the background provides increased
freedom to accommodate the heterogeneity and complexity of
the background. Second, although both algorithms adopt the
thresholding methods, TGSFCRF performs thresholding on the
noisy original imagery with great class overlapping to obtain
the unary statistics, while SFCCRF performs on the clean soft-
label imagery with clearer class boundaries in the histogram
domain to obtain binary labels. Therefore, the thresholding
in SFCCRF is more robust than in the TGSFCRF algorithm.
Third, SFCCRF is tailored to the noise characteristics of SAR
image by addressing the multiplicative Gamma noise in the
unary potential rather than using the Gaussian noise assumed
by the TGSFCRF algorithm.

The enhanced total variation (ETV) model performs noise
suppression before segmenting SAR imagery for sea ice
mapping [22]. Both ETV and SFCCRF exploit the spatial
correlation effect in SAR imagery to estimate the hidden states
of the observed SAR imagery. Compared with ETV, SFCCRF
has the following advantages. First, due to the stochastic
cliques, SFCCRF tends to adopts only the most relevant pixels
in the neighborhood, and as such SFCCRF is less sensitive
to the outliers than ETV that adopts all the pixels in the
neighborhood. Second, to describe the multiplicative SAR
speckle noise, SFCCRF uses the Gamma distribution, which
is more accurate than the Gaussian distribution in logarithmic
domain that is adopted implicitly by ETV [32]. As a result, the
associated probabilistic measures in SFCCRF are more robust
to speckle noise, and more capable of reflecting the genuine
similarity between SAR pixels.

The contribution of this paper lies in the following aspects.
(i) A SFCCRF model is used for SAR image modeling
and label inference, leading to an efficient SAR dark-spot
detection algorithm. Since SFCCRF explains the generative
characteristics of SAR image and accounts for the large-scale
spatial correlation effect in SAR image, it can highlight the
difference between the target and the background, and better
discriminate weak targets. (ii) The statistical distribution of
SAR speckle noise is addressed and built into the unary po-
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tential and the data similarity likelihood, and as such SFCCRF
addresses the particularities of SAR speckle noise and resists
its influence. (iii) An effective optimization method based on
gradient descent approach is designed for solving the SFCCRF
model.

The rest of the paper is organized as follows. Section III de-
scribes the implementation and the optimization of SFCCRF,
as well as the summary of the complete dark-spot detection
algorithm. Section IV presents the experiment results on both
simulated and real SAR images.

III. SFCCRF

A. Problem Formulation

We denote the discrete lattice spanned by SAR imagery by
G and a site in the lattice by i ∈ G. We represent the intensity
observation at site i by xi, and the soft-label of site i by si.
Then, a SAR image is expressed as X = {xi|i ∈ G} and the
soft-labels of this image as S = {si|i ∈ G}. Pixel intensity
values in X are linearly normalized into [a, b] interval by using
the equation:

x =
(x−min{X})(b− a)

(max{X} −min{X})
+ a (1)

Moreover, the soft-labels in S share the same value range
with X . Since si can take any decimal fraction values within
[a, b], rather than the integer values of either a or b, the
resulting model is a CCRF model, rather than a discrete CRF
model. Moreover, a low value of si indicates that xi has high
probability of being dark-spot, but low possibility of being
the background. Due to these constraints, the soft-label si
can be treated as the “true” backscattering intensity at site
i for which a smaller value also indicates higher possibility
of being the target. Considering the multiplicative nature of
speckle noise, xi can be expressed as a combination of the
“true” backscattering state si and the noise state ni:

xi = sini (i = 1, 2, ..., N) (2)

where N is the number of pixels in the image, and xi satisfies
a Gamma distribution [33]:

p(xi|si) =
1

Γ(L)

(
L

si

)L
xL−1i e−Lxi/si (3)

where Γ(·) is the Gamma function, and L is the equivalent
number of looks (ENL) of the SAR image X .

The task of dark-spot detection aims to infer S based on
X , which is achieved here by a SFCCRF model, as described
in Sections III-B and III-C. Based on S, a thresholding is
performed to achieve the binary labels Y = {yi|i ∈ G}, as
described in Section III-D.

B. Model Specification

According to CCRF, the estimation of the soft-labels in S
given X is achieved by maximizing the following posterior
distribution:

p(S|X) =
1

Z(X)
exp

{∑
i

ψu(si, X)

+β
∑
i

∑
j∈Ni

ψp(si, sj , X)


(4)

where Z(X) is the partition function, ψu and ψp are re-
spectively the unary potential and the pairwise potential, β
determines the weight of the pairwise potential, and Ni is
a collection the neighboring pixels around pixel i. Since
only pixels in Ni are considered being connected with the
referenced pixel i, Ni determines the pairwise clique structure
in CRF. Based on the different implementations of Ni, we
define the CCRF, the fully-connected CCRF (FCCRF) and the
proposed SFCCRF from a comparative perspective.
• CCRF: Ni consists of all the pixels in a small neighbor-

hood around pixel i, e.g., a 3×3 image patch centered at
the ith pixel.

• FCCRF: Ni involves all the pixels in the whole image.
• SFCCRF: Ni involves a subset of pixels in the whole im-

age, and the pixels in Ni are randomly selected from the
whole imagery according to a stochastic clique approach.

We illustrate below the implementation of five key factors
in SFCCRF, i.e., the stochastic clique, the unary potential
ψu(si, X), the pairwise potential ψp(si, sj , X), the data sim-
ilarity likelihood Pij and the spatial closeness measurement
Qij .

1) Stochastic Clique: The stochastic clique approach se-
lects the pixels in Ni from the image G according to a
stochastic measure, i.e., Ni = {j|j ∈ G and I(i, j) = 1},
where,

I(i, j) =

{
1, if γPijQij > ϕ
0, otherwise (5)

where Pij measures the intensity similarity between pixels xi
and xj , Qij measures the spatial closeness from xi to xj in
image space, γ determines the sparsity of the graph, and ϕ is a
random value in the range of [0, 1] generated from an uniform
distribution. Therefore, in the graphical model displayed by
Fig. 1, the edge eik between si and sk is determined based
on the stochastic measure defined in (5), which favors close
nodes for building connectivity with the referenced node si. By
adopting the stochastic clique approach, SFCCRF is capable
of utilizing the advantages of fully-connected graph, while
reducing greatly the computational cost.

2) Unary Potential: The unary potential is implemented as
follows:

ψu(si, X) = log(p(xi|si)) (6)

where p(xi|si) is defined in (3) to account for the multiplica-
tive SAR speckle noise, and log(p(xi|si)) has the following
expression after removing constant terms:

log(p(xi|si)) = L(log(xi)− log(si)− xi/si)− log(xi) (7)

The unary potential defined above promotes the consistency
between the observation xi and the soft-label si by yielding a
bigger value for better matching between xi and si.
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Fig. 1. The graphical structure of SFCCRF, where the three layers from
bottom to top are respectively the observations layer, the soft-label layer and
the binary label layer. In the middle layer, the edge eik , i.e., the connectivity
between the referenced node si and an arbitrary node sk , is determined by a
stochastic measure, according to which, closer nodes have higher possibility
(black solid edges) to be connected, whereas two nodes with larger distance
are less likely to be connected (red dashed edges).

3) Pairwise Potential: The pairwise potential is expressed
as follows:

ψp(si, sj , X) = − (si − sj)2Pij∑
j∈Ni

Pij
(8)

This pairwise potential encourages pixel i to have similar
label value with pixels in Ni. Moreover, si is more encouraged
to be equal to sj , if pixels i and j have larger data similarity
Pij .

4) Data Similarity Likelihood: Both the stochastic clique
in (5) and the pairwise potential in (8) depend on Pij , i.e.,
the intensity similarity likelihood between pixel xi and xj .
Instead of calculating the similarity between two pixels at site
i and j, we calculate the similarity between two image patches
centered at pixel i and j, to resist the influence of noise and
utilize the local information in image patches.

Based on the Gamma distribution in (3), the probabilistic
similarity between two amplitude values ai =

√
xi and

aj =
√
xj is expressed as [34]:

p(ai, aj) = 4L
Γ(2L− 1)

Γ(L)

(
aiaj

a2i + a2j

)2L−1

(9)

Accordingly, the probabilistic similarity between two image
patches centered at site i and j is the product of all pixels
measures:

Pij =

(
K∏
k

p(aik, ajk)

)1/τ

(10)

where k is used to iterate through all corresponding pixels
within the two patches, K is the total number of pixels in
image patch, and τ is a scaling parameter.

5) Probabilistic Spatial Closeness Measurement: The
stochastic clique in (5) relies on Qij , i.e., the probabilistic
spatial closeness measurement between pixel xi and xj , which
is defined as follows:

Qij = exp

(
− (Jir − Jjr)2 + (Jic − Jjc)2

2σ2

)
(11)

where Jir and Jic are respectively the row and column
locations of site i in image space, and σ determines the spatial
scale.

C. Model Optimization

Based on the model specifications in Sections III-B2 and
III-B3, the objective function in (4) is reformulated as:

p(S|X) =
1

Z(X)
exp

{
−
∑
i

(L(log(si)

+xi/si − log(xi)) + log(xi))

−β
∑
i

∑
j∈Ni

(si − sj)2Pij∑
j∈Ni

Pij


(12)

which has the following negative log-likelihood expression
(12):

L =
∑
i

(L(log(si) + xi/si − log(xi)) + log(xi))

+β
∑
i

∑
j∈Ni

(si − sj)2Pij∑
j∈Ni

Pij

(13)

The objective function in (13) is solved by gradient descent
approach, which repeats until the estimation stabilizes the
iterative update of si using the gradient.

repeat until the estimate stabilizes{

si := si − α
∂L

∂si
, for i = 1, 2, ..., N

}

(14)

where α is the learning rate, and,

∂L

∂si
= −L

(
xi − si
s2i

)
− 2β(vi − si) (15)

where

vi =

∑
j∈Ni

sjPij∑
j∈Ni

Pij
(16)

The presence of L in (15) allows adjusting the weight of
data consistency according to the noise levels. Higher noise
level causes smaller L value, thereby decreased importance of
data consistency.

Since (15) does not allow si to be zero, in (1), we normalize
x into interval [1, 2], rather than [0, 1] to prevent the case when
si = 0.

D. Summary of Complete Algorithm

The final step is to perform a thresholding on the soft-label
S to get the binary label Y , according to the following rule:

yi =

{
0, if si < thrd
1, if si > thrd

(17)

where thrd = mean(S)− ε · std(S), with ε usually being 1.
The complete dark-spot detection algorithm is summarized

in Algorithm 1.
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Algorithm 1 SFCCRF
Input: SAR image X
Output: binary label Y
Initialization: Normalize X into [1, 2], S = X

1: while iter < TotalIters do
2: for i = 1, 2, ..., N do
3: for j = 1, 2, ..., N do
4: calculate Pij and Qij by (10) and (11) respectively
5: include j into Ni, if I(i, j) = 1 in (5)
6: end for
7: calculate vi according to (16)
8: end for
9: R = −L((X − S)/S2)− 2β(V − S) according to (15)

10: S = S − αR according to (14)
11: end while
12: obtain Y according to (17)

IV. EXPERIMENTS AND DISCUSSION

In this section, we start with the introduction to the ex-
perimental setup, followed by the discussion of the results
achieved by different approaches on both simulated and real
SAR images.

A. Experimental Setup

We test SFCCRF on both simulated and real SAR images,
in comparison with several other approaches. The performance
is evaluated using several numerical measures.

1) Methods Compared: It is important to examine the per-
formance differences among CCRF, FCCRF and SFCCRF, in
the context of SAR dark-spot detection. The implementations
of CRF, FCCRF, and SFCCRF are described below.
• CCRF is implemented by following Algorithm 1, but

changing lines 3-6 in Algorithm 1 to achieve local
connectivity. So, Ni includes all pixels in a 3×3 image
patch.

• FCCRF is the same with CCRF except that Ni is set
to include all pixels in a 21×21 image patch. Since Ni
is fairly large, empirically, it can be used to represent
the whole image. We found that using larger Ni causes
increased computational cost, but decreased performance.

• SFCCRF is implemented by following Algorithm 1.
Moreover, we also compare the proposed method with one

recent SAR noise-suppression approach, i.e., the enhanced
total variation (ETV) method which has been used for SAR
sea ice segmentation [22].

2) Parameter Setting: For all methods, we manually de-
termine the model parameters using about 20% of the real
SAR images, and use this parameter setting for testing on the
simulated and the remaining real SAR images. For SFCCRF,
we set γ = 0.3, τ = 1, β = 3, σ = 5, K = 9, α = 0.95, and
TotalIters = 20. CCRF and FCCRF use the same parameter
setting with SFCCRF when applicable. The parameter L of all
methods is set according to the ENL of SAR imagery. In the
simulated study, the value of ENL is pre-known because the
speckle noise with known ENL values is generated to simulate

the SAR images. For real SAR images, the nominal ENL value
is 4 for the product of RADARSAT-1 ScanSAR Narrow Mode.

3) Numerical Measures: We use three statistics, i.e., omis-
sion error (OE), commission error (CE), and averaged error
(AE), to measure the inconsistency between the detected target
and the ground-truth target [35].

Let AE and AR denote respectively the size of detected
target and the size of ground-truth target. Then CE is expressed
as:

CE =
AE −AEinR

AE
(18)

where AEinR is the size of the overlapping area between
the detected target and the ground-truth target. Therefore, CE
reflects the proportion of the false detections in all detections.
Conversely, the OE is expressed as:

OE =
AR −ARinE

AR
(19)

where ARinE is the size of ground-truth target within a certain
distance of the detected target. So, OE indicates the ratio of
the omissions in detection relative to the ground-truth target.
By combining CE and OE, AE provides a balanced evaluation
of the detection capability:

AE =
CE +OE

2
(20)

The above-defined statistics are used to evaluate the perfor-
mance of different algorithms on both simulated and real SAR
images.

B. Experiments With Simulated SAR Images

To test the algorithms under a controlled environment, SAR
images are simulated by degrading a 128×128 sized clean
image (as shown in Fig. 2) with speckle noise. The speckle
noise follows a Gamma distribution, as formulated in (3), and
the noise level is determined by L. A total of eleven SAR
images with different noise levels are simulated by setting
L = 1, 2, ..., 11. Different methods are tested on these eleven
images. In addition to ETV, CCRF, FCCRF and SFCCRF,
in this simulated study, we adopt an intensity thresholding
method, called “IThrhd”, where the threshold equals mean
intensity minus one standard deviation.

Fig. 2. The clean image used for simulating SAR images.

Fig. 3 displays the OE, CE and AE achieved by different
methods on images of different noise levels. SFCCRF out-
performs ETV, CCRF and FCCRF according to all measures
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on most noise levels. FCCRF achieves lower AE and OE
than CCRF in most cases, especially when the noise level is
high. ETV achieves lower CE values than CCRF and FCCRF.
All CRF-based methods perform much better than the IThrhd
approach.

Fig. 4 shows the detection results achieved by different
methods on three simulated images of different noise levels,
i.e., L=2, L=7 and L=11. CCRF performs much better than the
IThrhd approach, which tends to produce very high detection
error. But CCRF still has many false detection and omissions.
FCCRF achieves fewer omissions, but tends to inflate the
targets. ETV achieves better results than FCCRF. SFCCRF
achieves a good balance between omission and commission
error.

Fig. 5 shows the noisy image and the soft-labels of this
image inferred by SFCCRF, as well as their histograms. As
we can see, SFCCRF can enhance the contrast between dark-
spots and background. In histogram domain, the modality that
once hidden in Fig. 5c is revealed in Fig. 5d.
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Fig. 5. (a) Noisy image with L=10. (b) The soft-label(s) inferred by SFCCRF.
(c) The histogram of the noisy image. (d) The histogram of soft-labels.

Fig. 6 shows the receive operating characteristic (ROC)
curves of different methods when L = 2. Overall, the curve
of SFCCRF is above the curves of all others, indicating
that the soft-labels produced by SFCCRF have the strongest
discriminative capability. ETV is very close to SFCCRF and
seems to be the second best. FCCRF outperforms CCRF
in most cases. All CRF-based methods perform better than
IThrhd.

C. Experiments With Real SAR Images

A total of 22 RADARSAT-1 ScanSAR intensity images
of different image sizes, with HH polarization and spatial
resolution of 50×50 meters, provided by Canadian Ice Service
(CIS) from the oil-spill target database of ISTOP [36], are used
for testing the algorithms. Each image contains at least one
anomaly, and the 22 image dataset covers the major types of
anomalies detected by human analysts in CIS under a variety
of sea conditions.

The algorithms are tested on all the images, and the statistics
of the numerical measures achieved by different methods are
summarized in Table I. The results are generally consistent
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Fig. 6. The ROC curves of different methods, showing the trade-off between
false positive rate (FPR) and false negative rate (FNR) as the decision
threshold varies. In ROC, higher closeness of the curve to the top and right
axes implies higher discriminative capability of the associated method. Ac-
cordingly, the proposed SFCCRF method indicates the strongest discriminative
capability. ETV is very close to SFCCRF.

with the simulated study. SFCCRF achieves much lower AE
and CE than the other methods. ETV ranks the second best in
terms of the mean statistics of all measures. In terms of AE,
FCCRF outperforms CCRF, which, although yields low OE,
produces very high CE. All CRF-based methods obtain lower
errors than the IThrhd approach.
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Fig. 7. The comparison of error statistics achieved by the proposed SFCCRF
method and the error statistics achieved by TGSFCRF reported in [29] on the
same SAR images.

Fig. 8 shows the detection results achieved by different
methods on four images. CCRF tends to break the elongated
targets, and wrongly detect dark pixels in the background as
targets. FCCRF is less affected by the background heterogene-
ity than CCRF. But FCCRF tends to expand the boundaries.
ETV performs better than FCCRF, but still tends to inflate the
target and erase some thin targets. SFCCRF can accurately
identify the targets, without being affected too much by the
background and target heterogeneities.

Fig. 7 shows the comparison of error statistics achieved by
the proposed SFCCRF method and the error statistics achieved
by TGSFCRF reported in [29] on the same SAR images. As
we can see, SFCCRF achieved lower mean errors with smaller
standard deviations.

All algorithms were implemented under the MATLAB plat-
form. On average, it took 31.7, 9.3, 78.4, and 34.1 seconds,
respectively, for ETV, CCRF, FCCRF, and SFCCRF to process
a 512-by-512 sized SAR image using a Pentium 3.40-GHZ
Quad-Core processor.
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Fig. 3. The plots of OE (a), CE (b) and AE (c) achieved by different methods over various noise levels measured by ENL, which is denoted by L. In all
plots, lower statistic values indicate better results. The proposed SFCCRF method achieves the lowest error lines on CE and AE, and slightly lower line on
OE, indicating the highest performance according to all measures.

L=2 IThrhd (AE: 67.4%) ETV [22] (AE: 18.7%) CCRF (AE: 27.8%) FCCRF (AE: 23.0%) SFCCRF (AE: 18.6%)

L=7 IThrhd (AE: 59.0%) ETV [22] (AE: 7.8%) CCRF (AE: 12.6%) FCCRF (AE: 12.0%) SFCCRF (AE: 5.7%)

L=11 IThrhd (AE: 57.2%) ETV [22] (AE: 7.1%) CCRF (AE: 11.6%) FCCRF (AE: 9.8%) SFCCRF (AE: 4.8%)

Fig. 4. The detection results achieved by different methods on three simulated images of different noise levels, i.e., L=2, L=7 and L=11. The AE values are
included. In general, the proposed SFCCRF method can better delineate the boundary without being seriously influenced by the noise effect.

TABLE I
STATISTICS (I.E., MEAN, STANDARD DEVIATION) OF OMISSION ERROR (OE), COMMISSION ERROR (CA) AND AVERAGED ERROR (CA) ACHIEVED BY

DIFFERENT METHODS ON REAL SAR IMAGES. FOR ALL STATISTICS, LOWER VALUES INDICATE BETTER PERFORMANCE.

OE CE AE
Mean (%) Std. (%) Mean (%) Std. (%) Mean (%) Std. (%)

SFCCRF 2.1 3.7 9.1 7.7 5.6 5.7
CCRF 0.3 0.6 23.7 16.6 12.0 8.6

FCCRF 5.5 7.8 16.2 13.1 10.8 10.4
ETV 3.7 5.7 13.4 11.5 8.5 8.6

IThrhd 25.7 11.2 82.0 10.4 53.9 10.8
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Image1 IThrhd (AE: 46.8%) ETV [22] (AE: 8.3%) CCRF (AE: 29.1%) FCCRF (AE: 17.9%) SFCCRF (AE: 3.3%)

Image2 IThrhd (AE: 43.8%) ETV [22] (AE: 20.5%) CCRF (AE: 21.4%) FCCRF (AE: 30.9%) SFCCRF (AE: 16.9%)

Image3 IThrhd (AE: 34.9%) ETV [22] (AE: 12.9%) CCRF (AE: 13.2%) FCCRF (AE: 16.6%) SFCCRF (AE: 11.9%)

Image4 IThrhd (AE: 39.3%) ETV [22] (AE: 3.7%) CCRF (AE: 7.2%) FCCRF (AE: 6.6%) SFCCRF (AE: 3.5%)

Fig. 8. The detection results achieved by different methods on four images. The results are generally consistent with Fig. 4. Comparing with the other
methods, the proposed SFCCRF method is less affected by the background and target heterogeneities, and in the meantime can more accurately identify the
boundaries and the linear targets.

V. CONCLUSIONS

In this paper, we presented a SFCCRF approach to model
SAR image and to perform soft-label inference, leading to
an efficient dark-spot detection algorithm. In SFCCRF, we
adopted a stochastic measure to determine the graph connectiv-
ity among pixels, providing an efficient way to model global-
scale spatial correlation effect in SAR imagery. We built the
statistical distribution of SAR speckle noise into the unary
potential and the data similarity likelihood to accommodate
the particularities of SAR images. We derived an effective
optimization method based on gradient descent approach.
Given the soft-labels inferred by SFCCRF, a binarization is
performed to achieve the task of dark-spot detection. The ex-
periments on both simulated and real SAR images demonstrate
the robustness of the proposed SFCCRF against speckle noise,
and its accuracy in detecting dark-spots in SAR imagery under
intense background heterogeneity.
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