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Abstract— This paper presents a novel shape-guided active
contour based approach for segmenting and tracking lumbar
vertebrae in video fluoroscopy using complex-valued wavelets.
representations. Due to low radiation exposure levels, fluoro-
scopic images are characterized by low signal-to-noise ratios,
low contrast resolution, and illumination non-homogeneities
both spatially and temporally, making current methods ill-
suited for segmenting and tracking lumbar vertebrae based
on existing energy functionals. Furthermore, current methods
perform poorly in situations characterized by high curvature
as found in the structure of lumbar spine vertebrae.

In this paper, a novel iterative estimation approach is
used to determine an external energy functional based on
complex wavelets. A shaped-guided algorithm is used to evolve
the contour around a lumbar spine vertebra based on the
complex wavelet energy. The high curvature exhibited by the
lumbar spine vertebra is addressed through a novel importance
sampling scheme. Experimental results show that the proposed
algorithm achieves significantly better segmentation and track-
ing performance for lumbar spine vertebrae in fluoroscopic
images when compared to existing techniques.

I. INTRODUCTION

Sedentary occupations that expose workers to prolonged
sitting are associated with an increased risk of developing
low back pain (LBP) [1], [2]. While the link between LBP
and sitting has been attributed to the flexed curvature of the
lumbar spine [3], the main causes are not well understood,
thus making the condition difficult for clinicians to diagnosis.
To improve the understanding of factors associated with LBP,
it is necessary to quantify rhythms, delays and alterations in
movement patterns related to LBP symptoms. Traditionally,
the motion of the lumbar spine was acquired using standard
radiographic systems. However, due to the relatively high
level of radiation exposure of such systems, only a small
number of extreme positions can be acquired, making a full
analysis of continuous lumbar spine motion very difficult.
A more recent approach that has been shown to be effec-
tive is the use of digital video fluoroscopy systems, which
consist of an x-ray source, an image intensifier, and a video
recorder. Due to the relatively low radiation exposure level
of such systems, video fluoroscopy can be used to capture
an entire sequence of the lumbar spine motion at a lower
exposure level than a single image captured using standard
radiographic systems. A typical fluoroscopic image of the
lumbar-sacral region is shown in Fig. 1.

To aid in the analysis of lumbar spine motion, it is
important to segment and track the motion of the individual

Fig. 1. A fluoroscopic image of the lumbar-sacral region. It can be observed
that the image is contaminated by a high level of noise as well as exhibiting
spatial illumination non-homogeneities and low contrast resolution.

lumbar spine vertebrae over a series of images over time.
A number of techniques have been proposed for segmenting
and tracking lumbar spine vertebrae in video fluoroscopy [4],
[5], [6], [7], [8]. There are several drawbacks to existing
methods that may hinder their effectiveness in non-ideal,
real-world situations. Template matching based approaches
to vertebrae tracking [4], [5], [6] are highly sensitive to geo-
metric distortions, which often occur in fluoroscopic images
since image intensifiers require electrons to be focused on an
input screen with a curved surface. This issue was addressed
by Wong et al. [7], [8] who use an active contour based
approach to the problem. However, current active contour
based methods [9], [10], [11] have several issues that make
them difficult to implement for the purpose of vertebrae
segmentation and tracking. First, the thickness of the patient
affects the level of radiation hitting the image intensifier [12],
thereby resulting in illumination non-homogeneities which
are problematic as current methods are very sensitive to such
variations. Second, the structure of lumbar spine vertebrae is
characterized by high curvature points with which current
methods perform poorly.

The main contribution of this paper is a shape-guided
active contour based approach to lumbar spine vertebrae
segmentation and tracking in fluoroscopic images using
complex wavelets. The proposed method is highly robust
to illumination, to contrast non-homogeneities, and to high
curvature points, which are the key challenges to vertebrae
segmentation and tracking in fluoroscopic images. In this
paper, the proposed method is described in Section II,
and experimental results using dynamic sagittal fluoroscopic
videos of the lumbar region are presented in Section III.
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II. PROPOSED METHOD

The proposed method takes an iterative approach to the
problem of vertebrae segmentation and tracking in fluoro-
scopic images. A complex wavelet external energy functional
is first estimated based on image characteristics. During each
iteration, a locally optimal contour solution is found based
on the estimated external energy, importance sampling is
performed based on curvature, and a least squares estimation
is performed to enforce the shape prior of the vertebrae.

A. Background

An active contour can be modeled as follows:

c(a) = [x(a), y(a)], a ∈ [0, l] (1)

where a is the arclength and l is the total contour length.
The total energy functional of a contour can be defined as
follows:

Etotal =
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where α and β are relaxation factors for the internal elasticity
and rigidity constraints respectively, Eext is the external
energy functional, γ is the relaxation factor for the external
energy functional. The optimal contour solution is deter-
mined by minimizing Etotal.

B. External Energy Functional Estimation

In current active contour based methods, Eext is defined
as the negative intensity gradient (−∇I). However, this
is unsuitable for the case of fluoroscopic images, which
are characterized by low illumination and contrast non-
homogeneities. An external energy functional that addresses
such issues can be obtained as the negative complex wavelet
phase coherence moments [13]. However, it is difficult to
extract useful complex wavelet phase coherence moments in
situations characterized by low signal-to-noise ratios such
as those found in fluoroscopic images. To address issues
associated with noise, we utilize a noise-resilient approach
to complex wavelet phase coherence moment estimation [14]
to compute the external energy functional. The proposed
approach can be described in detail as follows. Given an
image I0, the initial local phase coherence estimate P0 is
obtained at iteration t = 0. At each iteration t of the proposed
estimation approach, the maximum complex wavelet phase
coherence moments $t is computed based on Pt−1. Based
on $t, a new estimate of the image It is computed using a
moment-adaptive bilateral estimation approach:

It(x) =

∑
ψ
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)
It−1 (ψ)∑

ψ

w
(
x, ψ,$t(x)

) (3)

where the estimation weight w is defined as the product of
spatial and amplitudinal weighing functions ws and wa over
a local neighbborhood ψ:

Fig. 2. Estimated complex wavelet phase coherence moments for the
fluoroscopic image shown in Fig. 1. It can be observed that strong structural
information are clearly accentuated, which is important for the purpose of
segmentation.
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The estimated It is then used to estimate the local phase
coherence for the next iteration Pt+1. This process is re-
peated until the desired number of iterations is completed
to obtain the final moment estimate $̃. The estimated com-
plex wavelet phase coherence moments using the proposed
method for a fluoroscopic image is shown in Fig. 2. The
external energy functional can then be defined as follows:

Eext = −$̃ (7)

C. Shape-Guided Active Contour Evolution

To evolve the active contour at each iteration, the problem
is formulated as a Hidden Markov Model (HMM) and the
local optimum solution is found using the Viterbi algo-
rithm [15], [16] based on the estimated complex wavelet
energy functional. The active contour is modeled using q
discrete points and a search is performed for the moment
normals to the contour at each of the q points with p discrete
nodes distributed along each normal. This results in a total of
pq possible solutions. Based on the external energy Eext =
−$̃ at each node, the Viterbi algorithm determines the partial
probability at each node and determines the best sequence
of states that maximizes probability along the contour. Based
on this sequence, the evolved contour can be found.

The evolved contour found using the Viterbi algorithm
is typically insufficient due partly to the lack of prior
constraints. Most current methods deal with this issue by
asserting first or second order constraints. However, it is
problematic for segmenting lumbar spine vertebrae since the
structure of the vertebrae is characterized by high curvature

864



regions. In the proposed method, the problem of high cur-
vature points is addressed by generating points along the
active contour using a novel curvature-adaptive importance
sampling scheme. The density of points along the contour
is adapted in proportional to the absolute value of curvature
such that more points are located at high curvature regions.
Upper and lower bounds for point density is enforced to pre-
vent oversampling high curvature regions or undersampling
low curvature regions.

As stated earlier, it is necessary to impose prior con-
straints to obtain the desired contour around the lumbar
spine vertebrae. However, it is very difficult to integrate
prior constraints into the Viterbi algorithm. The proposed
algorithm works around this issue by first performing the
Viterbi algorithm without prior constraints and then fusing
prior constraints with the estimated complex wavelet phase
coherence moments using constrained least squares optimiza-
tion. The fusion process can be defined as follows:

Ẑ = (CTR−1C + P−1)−1CTR−1(Ω− µ
t
) (8)

where P is the prior constraints, C is the state matrix, Ω
is the estimated moments after dynamic programming, µ

t
is the translation vector computed from moment differences
of consecutive frames, and R are the measurement weights
for each point based on estimated moments. The resulting
contour is then refined over multiple iterations.

III. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed algorithm,
a vertebra in the lumbar-sacral region of the spine was seg-
mented and tracked over time in two test sagittal fluoroscopic
videos. A summary of the test sets is shown below:
• BHN: male (age=22; height=1.80m; mass=77.6kg)
• AUR: female (age=24; height=1.57m; mass=45.8kg)
Both test videos consisted of nine frames depicting the

motion of the spine going from an upright seated position
to a slouched seated position. The test videos were obtained
using a Siemens Siremobil Compact fluoroscopic imaging
system equipped with a 9-inch image intensifier with average
x-ray technique factors of 3.4 mA and 107 kV.

The test videos are representative of non-ideal, real-world
scenarios, where the fluoroscopic images are characterized
by low signal-to-noise ratios as well as illumination and
contrast non-homogeneities both spatially and temporally.
The gradient vector flow (GVF) method [10] was also
evaluated for comparison purposes. It is important to note
that the GVF method was slower than the proposed method
by over a factor of 20. It is also important to note that
the GVF method fails to track the vertebrae beyond the
initial frame for both test cases. Therefore, to make the GVF
method function reasonable for comparison purposes, the
contour was re-initialized after each frame. For the proposed
method, the contour was initialized solely for the first frame,
which is important for the purpose of tracking since it is
impractical to re-initialize the contour for longer sequences.
The normalized MSE between the ground truth contour and

(a) AUR

(b) BNH

Fig. 3. Normalized MSE results for AUR and BNH test videos.
It can be observed that the proposed method achieves noticeably
lower MSE than the gradient vector flow (GVF) method for all
frames for both test videos.

the obtained contours using GVF and the proposed method
is computed over all frames within the test videos. The
MSE results for the AUR and BNH sequences are shown
in Fig. 3. In the both cases, the proposed method performed
significantly better than the GVF method. Sample tracking
results for the AUR and BNH sequences are shown in Fig. 4
and Fig. 5 respectively. The performance improvements of
the proposed method over GVF were particularly evident
in the BHN case, where the contours determined by the
GVF method were significantly deformed and offset when
compared to the actual vertebrae. The proposed method was
able to segment and track the target vertebra over the full
sequence in both test videos with a high level of accuracy.
This demonstrates the effectiveness of the proposed method
in segmenting and tracking lumbar spine vertebrae over time
in fluoroscopic images.
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(a) GVF method (with re-initialization) (b) Proposed method

Fig. 4. AUR tracking results for frames 153, 156, and 160. It can be observed that the proposed method performs noticeably better at
segmenting and tracking the vertebra compared to the GVF method without the need for re-initialization.

(a) GVF method (with re-initialization) (b) Proposed method

Fig. 5. BNH tracking results for frames 1, 4, and 8. It can be observed that the proposed method performs substantially better than the
GVF method, which is unable to segment and track the vertebra at all.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a novel approach to
the problem of lumbar spine vertebrae segmentation and
tracking in fluoroscopic images. An iterative scheme for
estimating complex wavelet moments was used to generate
moments for the external energy functional, thereby address-
ing the issues of contrast and illumination non-homogeneities
and low signal-to-noise ratios. A dynamic programming
approach was used to provide fast initial contour evolution.
Issues associated with high curvature points in lumbar spine
vertebrae structure were addressed through the use of a
novel importance sampling scheme. Experimental results
showed that good segmentation and tracking accuracy of
lumbar spine vertebrae can be achieved for fluoroscopic
image sequences compared to existing techniques. Future
work involves extracting detailed motion information about
the vertebrae from the tracked contour for the purpose of
quantifying alterations in movement patterns related to LBP
symptoms in order to aid clinical diagnosis.
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