
Implementation :
 Based on the above theory, the saliency-guided CFM 

framework can be implemented in two phases. In the first 

phase, a traditional sampling procedure is employed where f is 

sampled sparsely via ΦS
k(m,n) with the pdf PS using only 10\% 

of the sampling locations.  The saliency function Γ(m,n) is then 

employed to determine subset ΩD based on the fluorescence 

microscopy image reconstructed from these samples.

 In the second phase, f is sampled by ΦD
k(m,n) with pdf that 

sample highly salient regions of interest with greater density.  

The samples from the two subsets ΩD and ΩS are then 

combined and used to reconstruct the fluorescence microscopy 

image at a higher accuracy than that achieved in the first 

phase.

 To reconstruct the fluorescence microscopy image from the 

acquired samples, a l1-based total variation minimization 

approach was employed: 

where | . |TVl1 denotes the l1-based anisotropic total variation 

norm, and can be solved using Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) approach.
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Abstract:
A novel saliency-guided approach is proposed for improving the

acquisition speed of compressive fluorescence microscopy

systems. By adaptively optimizing the sampling probability

density based on regions of interest instead of the traditional

unguided random sampling approach, the proposed saliency-

guided compressive fluorescence microscopy approach can

achieve high-quality microscopy images using less than half of

the number of fluorescence microscopy data measurements

required by existing compressive fluorescence microscopy

systems to achieve the same level of quality.

Introduction:
Fluorescence microscopy has broad applications in molecular 

studies of individual proteins and living cells. A key benefit of 

fluorescence microscopy over those based on optical density 

changes and chemiluminescent emission is its greater 

sensitivity and range.  A popular fluorescence microscopy 

approach is scanning confocal microscopy, where samples are 

scanned by a laser to reconstruct an image.  However, such an 

approach has been traditionally limiting in terms of acquisition 

speed due to the image being acquired pixel by pixel. 
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Objective:
Motivated by the importance of the sampling procedure on CFM

performance, the main contribution of this paper is the

introduction of a saliency-guided compressive fluorescent

microscopy system, which incorporates a saliency-guided

sparse measurement model that was developed to significantly

improves reconstruction quality and acquisition speed for

situations where regions of interest have structured

characteristics.

Figure 1. Example of (a) fully sampled fluorescence microscopy 

image, and (b) the corresponding noise contaminated version 

(standard deviation = 3%) used in the first set of experiments.

Saliency-guided CFM 

framework :
 Existing CFM systems employs a traditional sampling scheme 

that sample the entire scene in the same manner regardless of 

the underlying data.  However, such an approach is limited for 

many practical applications of fluorescence microscopy, which 

involve distinct regions of interest with highly salient structural 

characteristics.  Given that such regions are of greater interest 

for analysis purposes, one is motivated to obtain higher quality 

reconstructions for these regions than the background regions. 

 Let the scene being imaged via fluorescence microscopy 

contain M x N sampling locations organized in a finite, 

rectangular lattice.

 Given such a lattice, let us partition it into three complementary 

sets ΩD, ΩS and ΩC
DS (ΩD represents highly salient locations, 

ΩS represents sparse sampling, and ΩC
DS represent non-

sampled locations) such that

 ΩD represents highly salient locations, ΩD is defined based on a 

function Γ(m,n) that quantifies saliency at a given location 

(m,n). Since regions of interest in many CFM applications are 

characterized by large spatial intensity variations (which relates 

to structural characteristics), one can define a saliency function 

Γ(m,n) as:

where

and where Iμ is the mean, I(m,n) is the corresponding vector of the 

Laplacian of the Gaussian filtered data, and ta is the threshold 

value (set at two times the mean saliency S(m,n) of a given data.

Given a collection of K ≤ N x M, the linear measurements of f can 

be expressed as:

where  yk is the kth measurement, Φk is the kth sampling function 

and ε represents the combined effect of measurement and 

quantization noises.

In the proposed saliency-guided CFM framework, since there are 

no measurements in ΩC
DS and the sampling distributions of ΩD and 

ΩS are different, the sampling function at each location. where 

ΦD
k(m,n) are realizations of a Gaussian distributed random 

variable with variance 1 and mean 0, and where ΦS
k(m,n) are 

realizations of a Gauss-Bernoulli distributed random variable x:   

where PS=0 with probability Π and PS is Gaussian distributed with 

probability Π.  In this implementation, mean is zero and variance is 

one, and Π was selected to be $0.9$ (represents 90% 

compression rate or 10% sampling) as the maximum compression 

rate where CFM can still produce reasonably reconstructed 

images.

Problem:
 To address acquisition speed limitation, the concept of 

compressive fluorescence microscopy (CFM) was proposed 

to greatly increase acquisition speed while preserving high 

reconstruction quality.  CFM is based around compressive 

sensing (CS), which allows for greatly reduced fluorescence 

microscopy acquisition times by accurately recovering the 

image from sparse, sub-Nyquist measurements.  

 Much of the research in CFM systems focuses on hardware 

design and reconstruction design, thus leaving the design of 

the sampling procedure largely unexplored.  However, given 

that many applications of fluorescence microscopy involve 

regions of interest with structured characteristics, the design 

of the sampling procedure can have a tremendous effect on 

acquisition speed and reconstruction quality. 
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Figure 4. SNR vs. compression rate for reconstruction results of 

fluorescence microscopy images contaminated by Gaussian 

noise with noise with a standard deviation that is 3% of the 

dynamic range.

(a) (b)

Figure 3. Example reconstruction results for first set of 

experiments at 75% compression rate and 3% noise level.

(a) (b) 

Figure 6. Example reconstruction results for real noisy set of 

experiments at 80% compression rate from real noise-

contaminated measurements.
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Figure 2. Sampling locations of 75% compression rate 

fluorescence microscopy image (Figure 1.), where “white” 

represents sampling location (25% in this case) and “black” is a 

non-sampling location (75% in this case). In the traditional CS 

(a) the sampling locations are distributed uniformly, and in 

SGCFM method (b), the same amount of sampling locations 

distribution is guided by region of interest . 

Figure 5. Example of fully sampled noisy fluorescence 

microscopy image (real noise)


