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Introduction 

• Melanoma is a form of skin cancer 

• 1 in 74 men and 1 in 90 women develop 

melanoma in their lifetime (Canadian 

Cancer Statistics 2008) 

• Need for automated system to assess 

patient’s risk of melanoma 



Problem 

• Objective is to develop algorithm to 

remove illumination variation in skin lesion 

images 

– Pre-processing step before identifying lesion 

boundaries and classifying lesion risk 



Example 

• Example lesion image with illumination 

variation 



Existing Algorithms 

• Assume illumination-reflectance model 

• General illumination correction 

– Gaussian filters 

– Morphological operators 

• Specific to dermatological images 

– Fit to a parametric surface (Cavalcanti et al, 

2010) 

 



Illumination-Reflectance Model 

• Assumes that illumination and reflectance 

(detail) components are multiplicative 

 

• After log transform, illumination and 

reflectance are additive 

 

𝑣 𝑥, 𝑦 = 𝑖(𝑥, 𝑦) ∙ 𝑟(𝑥, 𝑦) 

𝑣𝑙𝑜𝑔(𝑥, 𝑦) = 𝑖𝑙𝑜𝑔(𝑥, 𝑦) + 𝑟𝑙𝑜𝑔(𝑥, 𝑦) 



Algorithm Overview 

1 
• Monte Carlo algorithm for an initial 

estimate of illumination component 

2 
• Parametric curve for the final estimate of 

illumination component 

3 
• Correct for illumination in the original 

image 



• Estimating illumination given the V channel 

 

1. For each pixel in the image: 

– Randomly draw samples from a search space 

surrounding the pixel of interest 

 

1. Monte Carlo Illumination 

Estimation 

𝑖 𝑙𝑜𝑔 =  𝑖𝑙𝑜𝑔𝑝 𝑖𝑙𝑜𝑔 𝑣𝑙𝑜𝑔 𝑑𝑖𝑙𝑜𝑔  



1. Monte Carlo Illumination 

Estimation (cont.) 
2. For each selected pixel: 

– Compute acceptance probability based on 

sum-of-squared differences of neighbourhoods 

3. Build posterior distribution as a weighted 

histogram 

4. Estimate the pixel’s  

illumination component 

 



2. Parametric Illumination 

Estimation 
• Fit initial map to a parametric curve 

– Estimate which pixels are normal skin pixels 

using region merging algorithm 

– Classify regions touching corners as “skin” 

 



2. Parametric Illumination 

Estimation (cont.) 
• Fit a quadratic surface to skin pixels 

• Example of final illumination estimation 

 𝑖′ 𝑥, 𝑦 = 𝑃1𝑥
2 + 𝑃2𝑥𝑦 + 𝑃3𝑦

2 + 𝑃4𝑥 + 𝑃5𝑦 + 𝑃6 



3. Reflectance Map 

Estimation 
• Estimate reflectance component 

• Combine with original H and S channels 



Experimental Results 

• Compared with skin lesion illumination 

correction algorithm proposed by 

Cavalcanti et al. (2010) 

• Used coefficient of variation to quantify 

improvements 

 𝑐𝑣 =
𝜎

μ
 



Examples 

cv = 0.206 cv = 0.001 cv = 0.064 

Original Cavalcanti et al. Proposed Approach 

cv = 0.211 cv = 0.312 cv = 0.130 



Examples (cont.) 

cv = 0.309 cv = 0.260 cv = 0.170 

Original Cavalcanti et al. Proposed Approach 

cv = 0.240 cv = 0.211 cv = 0.076 



Segmentation Example 

• Segment using simple threshold 

• Recall and precision measured at different 

threshold levels 



Conclusion 

• Must correct for illumination variation 

• Multi-stage illumination modeling 

– Initial non-parametric Monte Carlo illumination 

model 

– Final parametric surface model 

• Results show decrease in coefficient of 

variation and improved segmentation 
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