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Spectrum Sensing in Cognitive Radio Using a
Markov-Chain Monte-Carlo Scheme

Xiao Yu Wang, Alexander Wong, and Pin-Han Ho

Abstract—In this letter, a novel stochastic strategy to spectrum
sensing is investigated for the purpose of improving spectrum
sensing efficiency of cognitive radio (CR) systems. The problem
of selecting the optimal sequence of channels to finely sensing is
formulated as an optimization problem to maximize the proba-
bility of obtaining available channels, and is then subsequently
solved by using a Markov-Chain Monte-Carlo (MCMC) scheme.
By employing a nonparametric approach such as the MCMC
scheme, the reliance on specific traffic models is alleviated.
Experimental results show that the proposed algorithm has the
potential to achieve noticeably improved performance in terms
of overhead and percentage of missed spectrum opportunities,
thus making it well suited for use in CR networks.

Index Terms—Spectrum sensing, cognitive radio.

I. INTRODUCTION

ONE of the primary objectives of cognitive radio (CR)
networks is to enable an efficient utilization of spectrum

resources without affecting the performance of primary user
networks. Many currently reported research works in CR
systems have focused on the topic of spectrum sensing, which
is generally considered the first step on the way to medium
access. It involves identifying available channels using ei-
ther cooperative approaches or non-cooperative approaches.
A comprehensive survey on spectrum sensing can be found
in [1].

In non-cooperative approaches, one of the main challenges
is in determining how to perform fine sensing in an efficient
and effective manner, in which a set of channels is selected
for fine sensing such that can maximize the probability of
obtaining available channels. A limitation with existing non-
cooperative spectrum sensing approaches is that their per-
formance heavily depends on the accuracy of the assumed
parametric traffic model. For example, recent non-cooperative
spectrum sensing algorithms in [2]–[4] assume an ON/OFF
exponential traffic model and therefore their performance is
highly dependent on how well the traffic model matches the
real-world behaviour. Hence, the performance of such methods
can degrade noticeably when such modeling assumptions do
not hold true. However, in CR ad hoc networks with high
traffic dynamics and media heterogeneity, it is extremely
challenging to achieve precise traffic modeling via parametric
approaches, which may cause significant performance degra-
dation in the sensing results. To our best knowledge this has
been an open question to the design of non-cooperative sensing
schemes, which is taken as a fundamental problem to the
implementation of non-cooperative CR sensing schemes.
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In this work, we attempt to solve the problem by investi-
gating the potential of employing a non-parametric approach
to spectrum sensing, aiming to alleviate the dependence on
the problem from specific parametric traffic modeling. We
will show that the proposed approach can achieve noticeably
improved performance when compared with existing state-of-
the-art sensing schemes in terms of overhead and percentage
of missed spectrum opportunities, while maintaining excellent
sensing performance under different traffic scenarios. While
statistical inference have been previously investigated [5], they
are fundamentally different since the proposed method is a
stochastic, nonparametric approach for spectrum sensing while
that work is a cross-layer framework that uses mean statistics
deterministically.

II. SYSTEM MODEL

Consider a licensed spectrum containing 𝑀 non-
overlapping channels indexed with 𝑖, 𝑖 = 1, 2, ...,𝑀 . Note that
the 𝑀 channels are not necessarily equally spaced. The 𝑀
channels are shared by 𝑁𝑝 primary users and 𝑁𝑠 secondary
users who seek opportunities to access the licensed spectrum
resources. At each secondary user, a fast sensing over the 𝑀
channels is performed regularly (and possibly periodically) by
way of energy detection over a wide range of spectrum, where
the interval can be set according to IEEE 802.22 functional
requirement. For each round of fast sensing, there exist two
hypotheses 𝐻1 and 𝐻0, which indicate presence and absence
of primary network signals on channel 𝑖, respectively. Hence,
the probability density function (PDF) of the test statistics of
channel 𝑖, denoted as 𝑢𝑖, can be expressed as [6]
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where 𝑘 is the degrees of freedom, 𝜇 is the instantaneous
signal-to-interference-plus-noise ratio (SINR), Γ d enotes the
Gamma function, and 𝐼 denotes a modified Bessel function.

Upon the request of data transmission, a fine sensing
process is initiated over the spectrum via a selected sequence
of channels based on the fast sensing result of each channel
in the previous round. This is to precisely assess channel
availability with the intended second receiver.

III. PROPOSED ALGORITHM FOR FINE SENSING

The section introduces our approach based on Markov-
Chain Monte-Carlo for dynamic spectrum sensing. We par-
ticularly focus on identification of the sequence of available
channels via a non-parametric approach, so as to achieve better
opportunity in channel access.
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A. Problem Formulation

Let 𝒯 denote a sequence of time instances and 𝑡 ∈ 𝒯 .
Let 𝑆𝑡 be a random variable taking on the channel indexes
𝑖, 𝑖 = 1, 2, ...,𝑀 of channels to be finely sensed at time 𝑡.
Let 𝑠𝑡 denote the realization of 𝑆𝑡 on choosing a particular
channel. Furthermore, let 𝑋𝑠𝑡 be a binary random variable
representing the channel availability of 𝑠𝑡, which takes a value
of 1 if the channel is available and 0 otherwise. The problem
of selecting channels for fine sensing can be formulated as
follows. At time instance 𝜉, the optimal sequence of chan-
nels for fine sensing, denoted as {𝑠𝑡1 , 𝑠𝑡2 , ⋅ ⋅ ⋅ , 𝑠𝑡𝑗}𝜉, (where
𝜉 ≤ 𝑡1 <, ..., < 𝑡𝑗 ≤ 𝜉 + 𝑡max, and 𝑡1, ..., 𝑡𝑗 represent
the time instances for starting each channel fine sensing
process in an optimal sequence), is to be determined such that
the probability of channel availability is maximized within
a time limitation 𝑡𝑚𝑎𝑥. Hence, the problem of finding the
optimal channel sequence for fine sensing can be formulated
as follows:

argmax
𝑠𝑡1 ,⋅⋅⋅,𝑠𝑡𝑗

{
𝑃 (𝑋𝑠𝑡1

= 1, ⋅ ⋅ ⋅ , 𝑋𝑠𝑡𝑗
= 1)

}
. (2)

B. Proposed Solution by Markov-Chain Monte Carlo

An important challenge in solving the above formulated
problem is the incompleteness of channel status information
obtained in the previous fast sensing which causes uncer-
tainty in the channel availability. The Markov-Chain Monte-
Carlo (MCMC), as a non-parametric approach, has appeared
to be very successful at solving problems characterized by
uncertainty. The proposed MCMC approach is based on the
Metropolis Hastings algorithm [7]. Let the target probability
of a channel 𝑠𝑡 being selected for fine sensing, denoted as
𝑃 (𝑆𝑡), be defined as

𝑃 (𝑆𝑡 = 𝑠𝑡) = 𝑓(𝑠𝑡)/𝐾, (3)

where 𝑓(𝑠𝑡) is an unnormalized function of 𝑠𝑡 that represents
the probability of channel availability as jointly discovered
by the fast sensing and fine sensing process, and 𝐾 is a
constant that normalizes 𝑓(𝑠𝑡):

∑
∀𝑠𝑡

𝑃 (𝑆𝑡 = 𝑠𝑡) = 1. However,

it is very difficult to obtain a completely accurate channel
availability distribution via the fast sensing process in such a
highly dynamic and unpredictable radio environment. In this
case, a method that can precisely approximate the channel
availability distribution is desired.

Due to the dynamic nature of CR networks, the target
density 𝑃 (𝑆𝑡) should be adaptive to the unnormalized function
𝑓(𝑠𝑡) based on the most updated fast sensing result. Let
the instantaneous statistics 𝑃𝑖𝑛𝑠𝑡(𝑆𝑡 = 𝑠𝑡) be defined as the
likelihood of channel 𝑠𝑡 being available. Using a Rayleigh
fading channel model, 𝑓(𝑠𝑡) can be determined as

𝑓(𝑠𝑡) =
1

𝜇̄

∫ ∞

0

∫ ∞

𝜆

𝑓(𝑢𝑠𝑡) exp(−
𝜇

𝜇̄
)𝑑𝑢𝑠𝑡𝑑𝜇, (4)

where 𝑓(𝑢𝑠𝑡) is the PDF expressed in Eq. (1) with replaced
subscript 𝑠𝑡 to denote channel 𝑖, 𝜇̄ is the average SINR,
𝜆 is determined by the probability of a false alarm. With
𝑓(𝑠𝑡), a sequence of channels for fine sensing can be selected
by sampling the target probability 𝑃 (𝑆𝑡). Note that directly
sampling 𝑃 (𝑆𝑡) is difficult, while 𝑃 (𝑆𝑡) can be indirectly
sampled easily compared with that on a parametric model

such as exponential and normal distribution. To sample the
distribution of 𝑃 (𝑆𝑡), we employ an acceptance-rejection
sampling approach. Instead of drawing a sequence of channels
{𝑠𝑡1 , 𝑠𝑡2 , ⋅ ⋅ ⋅ , 𝑠𝑡𝑗}𝜉 at time instance 𝜉 directly on 𝑃 (𝑆𝑡), we
draw the sequence of channels indirectly from a proposal
density 𝑞(𝑠′𝑡𝑘 ∣𝑠𝑡𝑘−1

). In specific, to determine the 𝑘𝑡ℎ channel
in the sequence, we first draw a channel 𝑠′𝑡𝑘 from proposal
density 𝑞(𝑠′𝑡𝑘 ∣𝑠𝑡𝑘−1

) and a sample 𝑣 from a uniform distri-
bution U(0,1). We then compute the probability of channel
selection 𝛼(𝑠′𝑡𝑘 ∣𝑠𝑡𝑘−1

) based on the previous selected channel
𝑠𝑡𝑘−1

as,
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)

}
.

(5)
Using a symmetric proposal density 𝑞(𝑠′𝑡𝑘 ∣𝑠𝑡𝑘−1

) such as a
Gaussian distribution (i.e., 𝑞(𝑠′𝑡𝑘 ∣𝑠𝑡𝑘−1

) = 𝑞(𝑠𝑡𝑘−1
∣𝑠′𝑡𝑘)) and

substituting Eq. (3) into Eq. (5), the constant 𝐾 from the
numerator and denominator cancel each other out, thus,

𝛼
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)
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{
1,
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The proposal channel 𝑠′𝑡𝑘 is then accepted as channel 𝑠𝑡𝑘 if
𝑣 ≤ 𝛼

(
𝑠′𝑡𝑘 ∣𝑠𝑡𝑘−1

)
and 𝑠′𝑡𝑘 /∈ {𝑠𝑡1 , ⋅ ⋅ ⋅ , 𝑠𝑡𝑘−1

}. This approach
generates a Markov chain in which each selection 𝑠𝑡 depends
only on the previous selection 𝑠𝑡−1.

The above process is repeated until the desired sequence of
channels for fine sensing {𝑠𝑡1 , 𝑠𝑡2 , ⋅ ⋅ ⋅ , 𝑠𝑡𝑗}𝜉 at time instance
𝜉 is determined. As such, the fine sensing is performed based
on the above sequence of channels and terminated when the
requested number 𝑛𝑟𝑒𝑞 of available channels are identified,
or when the maximum number 𝑛𝑚𝑎𝑥 of fine sensing can
be performed within time limitation 𝑡𝑚𝑎𝑥. The computational
complexity of this proposed method yields 𝑂(𝑀) [8].

IV. PERFORMANCE EVALUATION

To evaluate the effectiveness of the proposed spectrum
sensing algorithm, simulations are conducted to compare
the proposed approach with the traditional non-prioritization
approach where the channels with the highest probability of
channel availability based on fast sensing results are finely
sensed, and the state-of-the-art prioritization approach pro-
posed in [4]. In the simulations, we assume 40 channels
exist in the licensed spectrum (i.e., 𝑀 = 40). The average
SINR is set to 20 dB, and the probability of false alarm is
0.01 [6]. Finally, the probability of detection is computed
according to Eq. (4). We observed the proposed method
under different randomly generated packet arrival patterns,
including: i) exponential packet arrival with an average arrival
rate of 10 arrivals/sec, ii) constant packet arrival with an arrival
rate of 10 arrivals/sec, and iii) Pareto packet arrival with a
Pareto distribution with minimum possible value as 0.01 and
index as 1. We first study the percentage of missed spectrum
opportunities 𝑝𝑚,

𝑝𝑚 = 1− 𝑛∗
𝑎𝑣𝑎

min{𝑛𝑎𝑣𝑎, 𝑛max} , 𝑛𝑎𝑣𝑎 ∕= 0, 𝑛max ∕= 0 (7)

where 𝑛∗
𝑎𝑣𝑎 is the number of obtained available channels. The

performance associated with the different number of request
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(a) Proposed approach vs. non-prioritization approach

(b) Proposed approach vs. prioritization approach [4]

Fig. 1. Comparison of average percentage of missed spectrum opportunities
of obtaining different number of required available channels 𝑛𝑟𝑒𝑞 with
different maximum number of fine sensing 𝑛𝑚𝑎𝑥.

available channels 𝑛𝑟𝑒𝑞 and the corresponding maximum num-
ber of fine sensing 𝑛𝑚𝑎𝑥 is shown in Fig. 1. It can be seen that
the average percentage of missed spectrum opportunities of
the proposed approach is noticeably lower than that achieved
by the other tested approaches. The improved performance
stems from its ability of better capturing the dynamic nature
of spectrum availabilities in CR networks.

Next, we study the average percentage of missed spectrum
opportunities under the following traffic models in terms of
inter-arrival time: i) exponential, ii) constant, and iii) one
form of Pareto, as shown in Fig. 2 for 𝑛𝑚𝑎𝑥 = 8. The
performance of the proposed approach remains consistent
under the different traffic scenarios while the performance
of the prioritization approach is much more sensitive to the
variation of traffic scenarios. To study sensing efficiency, the
sensing overhead 𝑜 is evaluated,

𝑜 =

{
min{𝑛max,𝑛Σ} − 𝑛∗

𝑎𝑣𝑎 𝑛∗
𝑎𝑣𝑎 = 𝑛𝑟𝑒𝑞

𝑛max 𝑛∗
𝑎𝑣𝑎 ∕= 𝑛𝑟𝑒𝑞

(8)

A plot of the average overhead in obtaining an available
channel (i.e., 𝑛∗

𝑎𝑣𝑎 = 1) with respect to the maximum number
of fine sensing is given in Fig. 3. The average sensing overhead
of the proposed approach is noticeably lower than that of the
other approaches.

Fig. 2. Comparison of average percentage of missed opportunities of
proposed approach over different traffic scenarios

Fig. 3. Average overhead of obtaining an available channel with different
maximum number of fine sensing 𝑛𝑚𝑎𝑥.

V. CONCLUSION

In this letter, we presented a novel spectrum sensing scheme
based on a Markov-Chain Monte-Carlo approach. Experimen-
tal results demonstrated that the proposed scheme can achieve
better sensitivity in the presence of traffic variation noticeably
due to the non-parametric design - a desired feature for
spectrum sensing schemes in the future dynamic CR networks.
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