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ABSTRACT

The broadband spectrum contains more information than what the human eye can detect. Spectral information
from different wavelengths can provide unique information about the intrinsic properties of an object. Recently
compressed sensing imaging systems with low acquisition time have been introduced. To utilize compressed
sensing strategies, strong reconstruction algorithms that can reconstruct a signal from sparse observations are
required. This work proposes a cross-spectral multi-layerd conditional random field(CS-MCRF) approach for
sparse reconstruction of multi-spectral compressive sensing data in multi-spectral stereoscopic vision imaging
systems. The CS-MCRF will use information between neighboring spectral bands to better utilize available
information for reconstruction. This method was evaluated using simulated compressed sensing multi-spectral
imaging data. Results show improvement over existing techniques in preserving spectral fidelity while effectively
inferring missing information from sparsely available observations.
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1. INTRODUCTION

Having access to information that is available from other wavelengths other than the visible can provide intrinsic
properties of the object. Current multispectral (MS) cameras usually utilize filter wheels, liquid-crystal tunable
filters or acousto-optical tunable filters. These instruments are expensive, bulky and require very long acquisition
time to capture images at multiple wavelengths. Reducing acquisition time and instrument complexity is highly
desired for MS imaging.

Advances in multi-spectral imaging techniques allow wavelength filtering on the imaging detector at a pixel
level.1–3 This approach can greatly improve acquisition time and ease of use at a cost in spatial resolution as pixels
on the detector are assigned to different spectral bands of information. In order to utilize this acquisition strategy,
compressed sensing techniques have been proposed. Compressed sensing techniques allow the reconstruction
of an entire signal using sparsely yet sufficiently sampled observations.4 Compressed sensing systems require
advanced sparse reconstruction algorithms to infer state information given the observations that are made.4–6

Reconstruction algorithms that can effectively infer missing information while maintaining spectral fidelity and
preserving spatial resolution are strongly desired.

Previous work by Kazemzadeh et al. has proposed a multi-layered conditional random field (MCRF) approach
for compressively sensed multispectral data.7 This approach extends CRFs first proposed by Lafferty et al.,8

and models each information band as a MCRF to use spatial and intensity prior information to enhance and
infer high spatial resolution states. The MCRF also incorporates an additional layer of abstraction to enforce
the quality of the observations into the optimization. One limitation of the MCRF is that additional information
from multiple neighboring spectral bands is not utilized. This additional information can be utilized to improve
on the reconstruction result. This paper will propose a cross-spectral multi-layered CRF (CS-MCRF) approach
for sparse reconstruction of compressed sensing multispectral data.
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Information between spectral bands with similar wavelengths can improve the reconstruction quality of com-
pressive sensed multispectral data. Images taken from spectral bands with similar wavelengths contain spatial
characteristics that can be taken into account in the reconstruction process such as fundamental relationships
between neighboring pixels in an image. Channels with similar wavelengths would share similar characteristics
such as intensity differences in a neighborhood, and similar edge structure; this allow the utilization of these
cross spectral relationships in conjunction with spatial relationships in a CRF model. The CS-MCRF will use
neighboring bands that share similar characteristics to guide the inference of our focused band. A multilayered
CRF approach is still incorporated to validate the quality of ovservations at each iteration. CRF uses a concept
of unary and pairwise potentials, where the unary enforces original observations performing data fidelity and
the pairwise enforces spatial and inter-modal relationships filling in missing data. The novelty of the CS-MCRF
approach is the enforcement of the intra-spectral consistencies between neighboring spectral bands.

2. METHODOLOGY

The CS-MCRF is an extension of the MCRF7 incorporating the provided information in neighboring spectral
band to estimate the interseting band. The proposed CS-MCRF models the conditional probability of P (Y |X

¯
)

as:
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) is the normalization function, Cr is the abstraction level that validates the reliability of observations,
and ψ(.) represents the combination of unary and pairwise potential functions:
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here yi ∈ Y is a random variable in the set Y = {yi}ni=1, yϕ ∈ Y is the subset of random varibales constructed
based on the clique structure ϕ in the set of C, and X

¯
= {{xj}nj=1}

m
k=1 is the set of multi-spectral (MS)

observations which xj,k encodes the observation corresponding to the random variable j in the spectral band
k. Each node i has a set of neighbors allowing the formation of multiple clique structures. The pairwise clique
structure is used in our method following the clique formulation presented in.9

A Gaussian distribution is used to determine the inter-spectral weights Wk used in the cross-spectral re-
construction. The motivation behind this procedure is to control the affect of each spectral band to the being
reconstructed band based on the difference in their bandwidths and overlapping where k indicates the neigh-
boring spectral band. However the summation of all the inter-spectral weights for each currently reconstructed
spectral band must be 1:
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where µ is the central wavelength of each band and σ is a controlling factor that determines the effects of
neighboring spectral bands on the reconstructed one.

The unary potential ψu(.) enforces original observations while the pairwise potential ψp(.) enforces spatial
information into the model to smooth the reconstructed result regarding intra-band neighboring pixels and
inter-band ones as well in Eq. 2. The unary feature function utilizes original measurements with high confidence.
This enforces original observations. The pairwise feature function utilizes a combination of euclidean distances
between nodes based on spatial and data differences.

The proposed CS-MCRF utilizes an additional abstraction layer, Cr in the framework as like as7 where
represents the uncertainty layer in the model which more detail can be found in.7



Figure 1: Realization of CS-MCRF graph. x
¯i represents the set of sparse MS observations captured by the MS

camera and yi represent states. Nodes with higher probability of connectivity have solid black edges while lower
probable connections are represented as dashed red lines. Connectivity can be calculated using different models.

Using the pairwise clique, the pairwise potential can be modeled as the combination of spatial P s
i,j and data

Qd
i,j relationship between two pixels at locations i and j for each MS bands k ∈ K. The neighborhood pairwise

potential has no effect if the uncertainty is less than a predetermined threshold Th1.

To summarize the CS-MCRF into a graphical model, let G = (V ;E) be an undirected graph such that V is
the set of nodes of the graph representing states Y = {yi}ni=1, E is the set of edges in the graph. Corresponding
to each vertex on the graph G(.) there is an observation x

¯i ∈ X
¯

which is a set of MS observations containing
information from multiple bands of information at the pixel location i. Furthermore the order of E is dependent
on the number of neighborhood connections considered in the pairwise interpolation. A higher order pairwise
neighborhood promotes higher data and spatial driven consistencies at the cost of computational complexity. In
our method a higher order pairwise connectivity is used as the sparsity of available information limits the amount
of information available in a small neighborhood. For better reconstruction a higher order pairwise connectivity
is implemented.

3. EXPERIMENTAL SETUP

The data used for this project were captured using a interchangeable filter-based imaging system at full resolution
and subsampled using a subsampling mask. This is to simulate a new imaging camera proposed by Kazemzadeh
et al. for multispectral stereoscopic vision.10

Table 1: Bandwidth information for each spectral band
Channel λ (nm)

1 553
2 608
3 650
4 800
5 880
6 1000

The experimental setup follows the setup presented by.10 In order to test for the effectiveness of the new
reconstruction algorithm it is important to perform testing on sparse sampled full sized MS data. This allows
testing on a controlled and quantitatively verifiable environment. To collect the MS data, a camera system
augmented with a bandpass filter wheel is used. The camera used is the IDS U-EYE detector with a detector
resolution of 1200x1600, pixel pitch of 4.5 µm, and a 12 mm format. The detector was equipped with a Pontax
6mm f/1.4 zoom lens with a 9 mm format. There is a mismatch between the detector and the lens, therefore



(a) Channel 1 (553nm) (b) Channel 2 (608nm) (c) Channel 3 (650nm)

(d) Channel 4 (800nm) (e) Channel 5 (880nm) (f) Channel 6 (1000nm)

Figure 2: Fully sampled original images. Images are from six different wavelengths

some Seidel aberrations were observed at full resolution, and were cropped to a 896x1280 resolution to avoid the
aberrations.

Images from different spectral bands in the visible and near infrared (NIR) wavelengths were captured. Table
1 denotes the central wavelength of each channel. In order to image the NIR region, a Tungsten-Halogen light
source is used to illuminate the scene. The exposure time was controlled for each of the six images to avoid
saturation, shown in figure 2.

Figure 3: Simulated MS detector (sampling mask) in a 6x6 region. The color code represents the different
spectral bands imaged



Table 2: Calculated PSNR for different methods
Channel PSNRG(dB) PSNRMCRF (dB) PSNRCS−MCRF (dB)

1 24.87 33.96 38.18
2 25.10 33.37 37.76
3 22.77 31.30 36.11
4 17.62 30.37 36.09
5 22.72 31.50 36.89
6 20.92 30.65 36.32

Table 3: Calculated SSIM for different methods
Channel SSIMG(%) SSIMMCRF (%) SSIMCS−MCRF (%)

1 86.72 91.07 98.23
2 86.69 89.88 97.92
3 81.96 89.67 97.85
4 75.74 91.46 98.22
5 82.92 92.58 98.45
6 80.44 91.94 98.38

Using the available set of six high resolution fully sampled MS images, it is possible to apply a sampling
mask across each image. For each band a sampling mask samples roughly ≈ 17% of the original image. This
is to simulate the pixel level bandpass filtering on the camera proposed by.10 Figure 3 shows a portion of the
sampling mask that simulates the MS detector. The sampling mask for each spectral band is applied to simulate
the compressed sensing of MS data. It is important to note that the sampling rate for each spectral band is well
below the Nyquist rate.11

4. RESULTS

To evaluate the quality of reconstruction from the proposed CS-MCRF method, comparisons are made be-
tween a Gaussian interpolation and the original MCRF.7 These methods are compared both visually as well as
quantitatively through Peak Signal-to-noise (PSNR) analysis as well as structured similarity index (SSIM).12

Table 2 shows the PSNR calculated for the different methods. The PSNR values are evaluated according to
the original fully sampled high-resolution MS data. Comparisons of different methods demonstrate an improve-
ment over existing methods. The CS-MCRF showed improvements of as much as 6 dB over the MCRF and
improvements of as much as 17 dB over Gaussian interpolation in certain spectral channels.

Table 3 shows the structured similarity measures calculated for the different methods. Structured similarity
is compared with the original fully sampled high-resolution MS data. Comparisons of the different methods
demonstrate an improvement over the existing methods. The CS-MCRF showed improvements of around 7−8%
structure similarity over the MCRF and improvements of as much as 22% structure similarity over Gaussian
interpolation in certain spectral channels.

From the two quantitative measures, it is evident that the CS-MCRF performed quality reconstruction and
provided significant improvements over the existing methods.Visually Figure 4 shows the improvement of the
CS-MCRF over the MCRF and Gaussian interpolation. The CS-MCRF produced sharper edges and preserved
original details while smoothing and filling in missing information. Due to sparsity of the original measurements,
the reconstruction process is very challenging. It is a balance between inferring state information as well as
the preservation of original observations. Visually, Gaussian interpolation produced significant artifacts in the
reconstruction process while MCRF produced better interpolation. The results are very smooth and fine details
are blurred out. The CS-MCRF was able to produce quality reconstruction without sacrificing edge and details
preservation.

Furthermore, from Figure 5, it is noticeable that Gaussian interpolation produced reconstruction artifacts as
seen in Figure 5b while blurring the image. Gaussian interpolation only takes advantage of spatial consistencies



(a) Band 1 Original (b) Band 1 Gaussian (c) Band 1 MCRF (d) Band 1 CS-MCRF

(e) Band 2 Original (f) Band 2 Gaussian (g) Band 2 MCRF (h) Band 2 CS-MCRF

(i) Band 3 Original (j) Band 3 Gaussian (k) Band 3 MCRF (l) Band 3 CS-MCRF

(m) Band 4 Original (n) Band 4 Gaussian (o) Band 4 MCRF (p) Band 4 CS-MCRF

(q) Band 5 Original (r) Band 5 Gaussian (s) Band 5 MCRF (t) Band 5 CS-MCRF

(u) Band 6 Original (v) Band 6 Gaussian (w) Band 6 MCRF (x) Band 6 CS-MCRF

Figure 4: Visual result of proposed reconstruction method (CS-MCRF) compared to existing methodology
(Gaussian, MCRF)

and simple data consistencies. The MCRF performed better than Gaussian interpolation in its ability to pre-
serve original observations while enforcing spatial consistencies. Limited by the amount of information used, the
MCRF utilizes increased enforcement of neighborhood consistencies resulting in increased blurring as evident
in Figure 5c. Using additional information available through cross-spectral consistencies, the CS-MCRF pro-
duced improved edge and detail enhancement evident in Figure 5d. Using additional information from multiple
spectral bands, higher unary enforcement can enhance the edge and texture details from the original observa-



(a) Original image for band 1 (b) Gaussian interpolation for band 1

(c) MCRF reconstruction for band 1 (d) CS-MCRF interpolation for band 1

Figure 5: Comparison of results in a zoomed-in region, notice the sharpness and enhanced edge details compared
with other methods

tions. Blurring is still evident as pairwise constraints are still required for inferring pixel locations with missing
observations. Overall results demonstrate improvements over existing methods through the use of additional
cross-spectral consistencies from neighboring MS bands.

Additionally, spectral fidelity is an important measure of MS imaging and the reconstruction algorithm should
be able to achieve good preservation of spectral fidelity. The six-channel spectrum of a specific pixel are plotted
in Figure 6. It is observed that the CS-MCRF has the highest spectral fidelity in comparison with other methods.
Gaussian interpolation demonstrated high variability from the original spectrum while the MCRF was closer to
the original spectrum. Finally the CS-MCRF produced the best results, closest to the original spectrum. This
demonstrates the CS-MCRF’s ability to successfully estimate the spectral response accurately across multiple
MS bands. Spectral fidelity is an important quality measure of the reconstruction algorithm for compressive
sensed MS imaging.

5. CONCLUSIONS

Compressive sensing for multi-spectral data can greatly increase imaging efficiency, compactness and ease of use
for multi-spectral imaging systems. Strong reconstruction algorithms are required to accompany such sensing
devices. A cross spectral multi-layered conditional random field reconstruction approach is presented. Which
attempts to utilize additional spectral information from neighboring spectral bands to improve the sparse re-
construction quality. To test the qualitative and quantitative efficacy of the CS-MCRF, simulated wavelength
sub-sampling was performed on fully sampled multi-spectral data from a six channel multi-spectral imaging sys-
tem. Peak signal-to-noise and Structured similarity analysis was performed. Results show a great improvement



(a) Spectral Intensity at different wavelengths (b) Spectral Intensity deviation at different wavelengths

Figure 6: Six-channel spectrum of a specific pixel in the image. Intensities are plotted in (a). Intensity differences
are plotted in (b). For each plot, blue is the ground truth spectrum; Green represents the Gaussian spectrum;
Red represents the MCRF spectrum and cyan represents the CS-MCRF spectrum

over existing MCRF as well as Gaussian interpolation. Additionally, visual improvements can be observed from
the CS-MCRF over existing methodology. There are less reconstruction artifacts and better preservation of
spectral fidelity, which is very important to multi-spectral imaging.
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