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ABSTRACT

Porous media are an important class of heterogeneous mate-

rials possessing complex random structures. Due to the lim-

itation in measuring high resolution real samples, studying

different physical properties of porous media requires the re-

construction of artificial samples. In many cases of significant

interest, we have a two-scale reconstruction, in which only

the large scales are resolved by low resolution measurements,

leaving fine scales to be inferred from statistical models. In

this paper we propose a statistical fusion approach for a two-

scale porous media reconstruction, in which low resolution

measurements are fused with high resolution samples, with

synthetic realizations generated by posterior sampling.

Index Terms— Image sampling, Posterior sampling,

Simulated annealing

1. INTRODUCTION

A practical and important class of scientific images are the

2D/3D images obtained from porous materials such as con-

cretes, wood, active carbon, and glass. These materials con-

stitute an important class of heterogeneous media possessing

complicated microstructure [1]. Fig. 1 shows two typical 2D

samples of porous media: sintered glass spheres and Berea.

Most porous media possess a chaotic structure that is

difficult to describe qualitatively [1], but they are not totally

random. Therefore there is a mixture of organization and

randomness that makes them difficult to characterize and

study [1]. In order to study macroscopic properties of perme-

ability, conductivity, and transport, high resolution samples

are required. But obtaining such high resolution samples

usually requires cutting, polishing and exposure to air, all

of which affect the properties of the sample. Moreover, 3D

samples obtained by Magnetic Resonance Imaging (MRI) are

very low resolution and noisy, so that only the very largest

pores are resolved. Therefore, artificial samples of porous

media are required to be generated [1].

The reconstruction process is a sampling process. There is

a substantial literature, describing this process based on only a

prior model, leading to prior sampling [1], [2], [3]. However

there is a growing interest in cases in which low-resolution

measurements are available, in which case we have a prior—

(a) Sintered Glass Spheres (b) Berea Carbonate Rock

Fig. 1. Examples of high-resolution 2D porous media (pores

are black, solid is white).

measurement fusion problem, leading to posterior sampling.

The interest stems from the advancement in 3D magnetic-

resonance and 3D computed tomography imaging, where the

resulting measurements resolve certain large pores, but leave

finer scales unresolved. The fundamental question we are ex-

ploring is the degree to which high-resolution 2D scans of

similar samples can allow the resolution enhancement of low-

resolution 2D or 3D measurement sets, as illustrated in Fig. 2.

2. STATISTICAL FUSION AND MODELING

Our proposed fusion method is based on a Bayesian frame-

work, such that we wish to fuse low-resolution measurements

with a high-resolution prior model. Despite a common ap-

pearance with super-resolution image reconstruction, we do

not have multiple measurements from the same original data

and, more importantly, any available high resolution samples

do not come from the same sample as the measurements,

rather a statistically-equivalent one.

Simple image models, such as correlation models and spa-

tial variance, can not characterize the chaotic and complex

morphology of porous media. Instead, for discrete-state prob-

lems (porous media images are binary) widely-used Gibbs

Random Fields (GRFs) are considered [4]. The Gibbs proba-

bility distribution function is defined as

p(Z) =
e−H(Z)/T

Z (1)

where H(Z) is the energy function (prior model) capturing
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Fig. 2. Statistical fusion of low and high resolution data for

porous media reconstruction.

the interaction between neighboring particles, and Z is a nor-

malization factor.

Given measurements M , the posterior probability distri-

bution is then defined as

p(Z|M) =
e−H(Z|M)/T

ZM
(2)

H(Z|M) = H(Z) + αG(Z; M) (3)

where G is just the constraint asserting the measurement in

the probability distribution and α is a term balancing the con-

tributions of the prior and measurements.

2.1. Prior Model

Two common choices for the energy function in porous media

literature are chordlength and multipoint (histogram) distribu-

tion functions. The chordlength [1] Ci(�) is defined to be the

probability of finding a chord with length � in phase i. Since

porous media contain two phases (pore/black and solid/white)

the chordlength distribution can be defined for one or both

phases and for chords at different orientations. We have con-

sidered dual chordlength model with horizontal and vertical

chords. The prior energy for chordlength distribution func-

tion is

Hc(Z) = ‖C̄ − C(Z)‖ (4)

where C̄ is the learned / estimated model and C(Z) is the

chordlength distribution associated with simulated field Z.

A histogram distribution [3] is non-parametric, keeping

the entire joint probability distribution of a local set of pix-

els within a neighborhood. Choosing eight adjacent pixels as

the neighborhood structure leads to a non-parametric model

containing a histogram of 29 = 512 probabilities. The prior

energy when we consider histogram distribution is

Hr(Z) = ‖R̄ − R(Z)‖ (5)

(a)Both scales re-

solved

(b)Single scale re-

solved

(c)No scales re-

solved

Fig. 3. Porosity measurements at different resolutions. Partic-

ularly in (c) nearly all information of the image structure has

been lost, and the distinction of the two phases in the image

is not inferrable from the measurements.

where R̄ is the learned / estimated histogram distribution and

R(Z) is the histogram distribution of simulated Z.

2.2. Measurements as Constraints

The most common low resolution measurement of a porous

medium is the local porosity, a measure of the pore space in a

material, measured as a fraction between 0 and 1. A low reso-

lution porosity measurement (Mp) basically measures poros-

ity of a given material over the dimensions of a 2D pixel or

3D voxel (Fig. 3).

As a complementary measurement, MRI diffusion mea-

surements (Md) capture information on average pore size,

sensitive even to infinitesimal unresolved pores. The mea-

surement is proportional to Surface-to-Volume (S/V ) ratio.

Although low resolution diffusion measurements may also

fail to provide detailed information on pore shape, it can pro-

vide valuable clues with respect to unresolved structures and

geometry, as illustrated in Fig. 4. Parameter d is related to the

measurement resolution, such that for n × n original image

and k×k measurements, d = n
k . Apart from the real samples

of porous media, we have also shown an artificial example

composed of small and large circle to study this type of mea-

surement on a typical two-scale porous media reconstruction

problem.

Including both measurement in the Gibbs prior distribu-

tion leads to posterior energy

G(Z; M) = G(Z;Md,Mp)

= ‖fd(Z) − Md‖ + γ‖fp(Z) − Mp‖
(6)

where fd(·) and fp(·) are the forward models for diffusion

and porosity measurements, respectively, and γ is a weighting

parameter between the two.
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(a) d = 5 (b) d = 15 (c) d = 25

Fig. 4. Diffusion measurements at three resolutions. The dif-

fusion measurement encompasses information on the size of

different structures at different scales. In sharp contrast to

Fig.3, the delineation of the two regions in the top row is clear

at even very low resolutions.

3. POSTERIOR SAMPLING

Sampling from the Gibbs probability distribution is straight-

forward, in principle, by running the Gibbs sampler [5]. We

run the Gibbs sampler by annealing, starting with a high tem-

perature (T ) which is slowly decreasing. However, in the case

of prior sampling the annealing is applied to the single energy

function H . The challenge in posterior sampling is the an-

nealing subject to two simultaneous constraints of prior H
and measurement function G. In the case of precise mea-

surements, the posterior sampling problem resembles that of

annealing subject to hard constraints [5], where the posterior

sample would be randomly selected from constrained space

{Z | G(Z;Md,Mp) = 0 }. (7)

In the more usual event of unprecise measurements the

setting of the relative weight α as a function of annealing it-

eration is less clear and remains as an open problem.

4. RESULTS AND EVALUATION

We have applied posterior sampling on three types of data, the

small-large circle example and two classes of porous materi-

als. In small-large circle example and carbonate rock porous

media (Fig. 1, part (b)), chordlength distribution is considered

as the prior model, while in sintered glass spheres porous me-

dia Fig. 1, part (a)) histogram distribution acts as the prior

model. We set the parameters (α and γ) in the posterior en-

ergy such that the process starts with the same weight for both

measurements and the prior model. To observe the impact of

diffusion measurement clearly in the reconstruction process,

two types of experiments are done for each type of data: one

only with porosity measurement in G, and the other one with

both measurements. The results are shown in Fig. 5. We have

also shown the reconstructed small scale structures of three

different reconstructed samples in Fig. 6.

(a) Original media

(b) Low resolution porosity measurement

(c) Reconstruction, using porosity measurement only

(d) Reconstruction, using both measurements

Fig. 5. Reconstructed artificial samples using constrained

sampling, for a degree of downsampling of d = 15. Observe

the stunning reconstruction, comparing (d) against (b), in the

two right columns. The failure to properly reconstruct the left

column can be attributed to an inadequate prior.

We have evaluated the results in terms of two aspect: how

much the artificial samples are consistent with the measure-

ments and original data, and whether the results contain valid

porous media structures.

The correlation between the original data, from which the

measurement is generated, and the reconstructed sample is

studied as a function of scale. A pixel in the middle of a

large pore or solid is likely to be the same in the original and

reconstructed images, as opposed to a pixel on a pore/solid

boundary. That is, the original-reconstructed correlation is

likely a function of structure size. If we measure structure size

at a pixel as the number of times a pixel value is unchanged
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Fig. 6. Three posterior samples: observe that large, re-

solved structures (such as the pore, right) remain unchanged,

whereas unresolved details (fine-scale structure) is randomly

synthesized. Thus we construct multiple samples, all repre-

sentative of a given measured medium.

by sampling, then we can compute correlation as a function

of size. Fig. 7 part (a) shows such correlation.

The Mean Squared Error (MSE) between the artificial

samples and the original data has been also studied in terms

of the resolution of the measurements. Fig. 7 part (b) shows

how MSE changes as a function of measurement resolution

(d). We can see that after a sharp increase at d = 10, MSE

does not change significantly as d increases.
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(a) Correlation of the recons.

with the original as a function

of scale

(b) MSE between recons. and

original as a function of mea-

surement resolution

Fig. 7. In (a) we plot the correlation of the ground-truth orig-

inal versus the reconstruction as a function of measurement

downsampling and as a function of scale. For several scales

below the measured resolution, the posterior reconstruction

is positively correlated with truth, meaning that portions of

the reconstructed details may be believed. In (b) we plot the

MSE between the reconstruction and the original as a function

of downsampling d. The three lines show MSE correspond-

ing to a purely random field (top), a prior-free reconstruction

based on measurements only (middle), and the posterior sam-

ple which we produce (bottom).

To study the similarity and consistency between the ar-

tificial and real porous media samples, we have evaluated

the artificial reconstructed samples under statistical models

learned from real samples. The statistical models represent

valid porous media structures and features. The numbers in

Table 1 actually shows the dissimilarity between the recon-

Table 1. Dissimilarity between the artificial and real samples

in terms of statistically learned models.

Measurement
Prior model

Md & Mp Md Mp

Chordlength 0.020080 0.13050 0.02600

Histogram 0.000023 0.00181 0.00016

structed and real samples of porous media in terms of sta-

tistically learned models such as chordlength and histogram.

According to this table, the artificial samples are more consis-

tent with real porous media when both types of measurements

are used as the constraint.

5. CONCLUSION

In this paper we proposed a statistical fusion approach based

on posterior sampling for two-scale porous media reconstruc-

tion. In this approach the statistical model learned from the

high resolution data is fused with the measurements to con-

struct a posterior model. We have considered two types of

measurements. Since the low resolution porosity measure-

ment can only resolve large scale structures, we proposed to

add diffusion measurement in the model as well. Diffusion

measurement can provide information on the size of struc-

tures at different scales. The proposed statistical fusion ap-

proach can provide samples which are more correlated and

consistent with the real porous media samples.
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