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Abstract

The reconstruction of 3D architecture of void space in psnmgdia is a chal-
lenging task, since porous media contain pore structuresitiiple scales. We
propose a statistical fusion framework for reconstructirgh resolution porous
media images from low resolution measurements. The prapibamework is
based on a posterior sampling approach in which informatilaained by low
resolution MRINMR measurements are combined with prior models inferred
from high resolution microscopic data, typically 2D. Indlpaper, we focus on
two-scale reconstruction tasks in which the measuremestdwe only the large
scale structures, leaving the small scale to be inferrad tree prior model.

Key words: Porous media reconstruction, Magnetic resonance imaDiaiz,

fusion, Posterior sampling, Simulated annealing

1. Introduction

The presence of void structure at multiple length scale$ pp8es a major
challenge to understanding fluid transport in natural psroadia. One example
is mineral soils, the void space of which comprises a mixafrpore systems

dominated by dterent pore-length scales in ther to mmsize range and aris-
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ing from the very broad grain size distribution of sandy mateand the large
fraction of clay and silt typically present in soils [20]. &eentary rock for-
mations, both sandstone and carbonate, which are impadaifers and hydro-
carbon reservoirs, can also be highly heterogeneous. $ltypically the case
for carbonate rocks, where multiple pore systems, rangirsigie from less than
onenmto severalmm|[21], are the outcome of complex diagenetic processes
taking place between the initial deposition and explaiatimes. The presence
of a very broad spectrum of pore length scales implies aioettyree of spatial
organization [19], which manifests itself as heteroggneiter multiple length
scales [18].

Three-dimensional images of the void structure are of foref#tal value to
understanding fluid transport in natural porous media. Aai@D image would
be of suficiently large size to capture heterogeneity over multiplegth scales
and of sdficiently high resolution to resolve the finest pore lengtHeso&inter-
est to transport. Unfortunately, despite significant adean22, 23, 24] such im-
ages cannot be obtained using any single imaging modakisemtly available.
The purpose of this contribution is to lay the ground for aeralative approach,
namely the fusion of image data of diverse origin, resolutodimensionality.

3D images of the internal structure of porous media can baimdéd by
stochastic reconstruction [3, 25, 7, 26], sampling proegds/ whichtypical
samples of the porous material of interest are computdtjoganerated. De-
pending on the absence or presence of measurements, $iooEmnstruction is
aprior or posteriorsampling process, respectively. Nearly all published psro
media reconstruction studies concern prior sampling,erstémse that the recon-
struction is based solely on a learned prior model. The pniadel typically con-

sists of one or more statistical functions (e.g. two-poartelation, chord-length
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distribution, etc.) learned from 2D images of the pore spacteiew of the ever
increasing access to 3D imaging tools, the situation in WwiBiD tomographic
or magnetic resonance imaging (MRI) data are available fepexific physi-
cal sample is more interesting. Although 3D tomographiqd (#2VIRI [21, 18]
measurements fail to resolve fine scale pore structure, ikestialas, in fact,
partially constrained by the measurements. Thus, the Imibgsexists to infer
high-resolution details from the pattern of low-resolatroeasurements. Within
the framework of stochastic reconstruction, the process itk one oposterior
sampling aimed at fusing the information present in low-resolut8im image
data with a prior-model based on high-resolution 2D images.

A first attempt at fusing low resolution measurements witlfhhiesolution
data has been recently made by Okabe and Blunt (2007). Thisers. have
considered low-resolution 3D tomographic images of thes mmace, in which
only the larger pores are resolved, and employed stochestanstruction to
resolve smaller-scale structure. In their method, sneallesstructure which is
unresolved in the 3D measurements is generated accordangrtor model in a
manner independent from the 3D measurements. There arerobems with
this approach. One is that the measurements are not elyptonipled to the
prior model in computing a reconstruction. The other, manpartant one, is
that only a small portion of the information provided by tlogvlresolution 3D
measurements is exploited, namely the overall sample ppprasd the pres-
ence of void and solid domains. Low-resolution measures)é&mwvever, can be
rich sources of information. X-ray computed tomography drRIMesolve not
only the relatively larger pores, but also provide inforimaton the local (voxel-
scale) porosity of unresolved scales. In addition, MRI casvigle 3D maps of

parameters sensitive to the geometry and connectivity iaaived scales [12].
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For example, Pomerantz et al. (2008) have recently predepetially-resolved
measurements of the decay of transverse magnetizationdanes ®f sedimen-
tary rocks and analyzed them to obtain the spectrum of demagtants;T,, at
the voxel scale. The physical interpretation df,aspectrum as a distribution of
pore surface-to-volume rati®&/V, affords additional insight into the geometry
(pore size) of unresolved length scales [27]. Such infoimnatan enrich the
stochastic reconstruction process.

In this paper we propose a Bayesian statistical framewarkxplicitly fus-
ing different types of low-resolution measurements with a higbtogi®n prior
model. The paper is structured as follows. We begin by dstahf the ba-
sis of image data fusion and modeling in terms of Gibbs ran@ielus (GRF),
briefly reviewing prior image models and paying particuléetion to the con-
tributions of measurements and prior model in the Bayesiamdwork. In a
subsequent section, we show how stochastic reconstrutiaynbe handled by
simulated annealing as a posterior sampling process. Weetlauate statistical
fusion of low-resolution measurements with a high-resotuprior model for a
variety of real and synthetic images of porous media. Thernsituction results
are shown to possess two-scale structures, consistenthgitheasured samples,
while obeying the same statistical features encoded inribe model. Relative
to the method of Okabe and Blunt (2007), our reconstructamescloser to the
physical sample, show fewer artifacts and are more tolexftiie measurement

resolution.

2. Data Fusion and M odeling

Our proposed fusion method is based on a Bayesian framesuek, that we

wish to fuse low resolution measurements with a high reswoiygrior model.
4



Prior .  Posterior

£6
© s
. , =3
Sampling Sampling § S ﬁ_g
3 i
L <
g
< b
3
§
3
=
3
3
=
¥
R
c
8 c
Weakly Strongly o= No o=
Measured 7 Measured S0 Measurement Measurement 0 =
Vo 54
=z
(a) Sampling Approach (b) Estimation Approach

Figure 1: Sampling and estimation. In sampling (a) there t®@inuum between prior and
posterior sampling, depending on the measurement noimmb-f,l, the degree to which the
unknown random field is constrained by the measurementtivesta the prior. In estimation
(b) there is a continuum between Bayesian and non-Bayesidiigms, depending on the reg-
ularization parametet, the degree to which a prior model is present to constraimahdom
field.

The measurements available for reconstruction may be @klyeonstrain-
ing, (ii) partly constraining, or (iii) fully determininga continuum illustrated in
Figure 1(a). A great many problems in image processingri&dl (iii), such that
the measurements are of such a resolution and quality thptioois needed,
and the image is processed or reconstructed in the absenog specific prior.
At the other extreme (i) the measurements are so weak thaisagmsentially
randomly sampling from a prior model. Our interest lies itviEen, such that
something of a delicate balance is required between thetiasseof measure-
ments and prior model. This is the case with MRI or tomographata of porous
media in which relatively large pores are clearly resolveisinaller scale poros-
ity appears in the images adférent shades of gray.
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In principle, given measurements and a prior model, recocsbn can pro-
ceed as either a sampling or estimation problem, as illi¢stria Figure 1. Since
our measurements fail to resolve many of the fine scale detad at the same
time fine structure must be present in the stochastic recartgin, a sampling
approach is required [8]. Figure 2 shows how the posterimpdiag approach
combines the measurements with the high resolution sartgptgsnerate recon-
structed porous media samples.

We propose to characterize the chaotic and complex morghabporous
media with the widely-used Gibbs Random Field (GRF) [15fira as

e H@/T

p(Z) = =

(1)

whereH(Z) is theenergy functionandZ is a normalization factor, termed the
partition function.

Given measurementd, the posterior probability distribution is

o H@M)/T
p(ZIM) = —Zu (2
H(ZIM) = H(Z) + aG(Z; M) 3)

wherea balances the contributions of prior and measuremeatsonstrainsZ

relative to the measurements,
G(Z; M) = [If(2) - M]| (4)

where the forward modédi(-) describes the physics or mathematics of the mea-
surement process. We use #fenorm for|| - ||, however the Gibbs formulation

allows for other norm choices as well.
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Figure 2: Posterior Sampling: The sample imageas used to learn the prior model. A low
resolution measuremeM is taken from the unknown imagé-. The the unknown imaggr

and the sample imag# are assumed to obey the same statistics.

2.1. Prior Models

A variety of energy function$i(-) used to model porous media have been
reviewed by [1]. These include autocorrelation, chord terdjstribution and
lineal path functions, to name a few. For example the chagttedistribution
function [1] C'(¢) is defined to be the probability of finding a chord with length
¢ in phase. For a two-phase porous medium, chordlength distributcamsbe
defined for either phase and for chords dfedient orientations. It is common
to limit the orientation to the horizontal and vertical ditiens, in which case

chordlength energy in phasés
L —_ J—
HL(Z) = " IC,(K) — Ca(k. 2)Il + ICL(K) - Cu(k, 2)] (5)
k=0

WhereC_L andCj, are the learned model for the horizontal and vertical choegs
spectively, and:‘h andC! are the chordlength distributions of a simulated random

field Z.
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The histogram distribution function [2] is non-parametikeeping the en-
tire joint probability distribution of a local set of pixelgithin a neighborhood.
Choosing eight adjacent pixels as the neighborhood steidéads to a non-
parametric model containing a histogranmof 2° probabilities. The histogram
represent the probability of having each of 512 configuretio the image. The

histogram energy function is defined as

& (IIh(k) - h(k, 2)I
1@ = 3 (Mt ©

whereh is the learned histogram distribution. ah¢Z) is the observed distri-
bution for a given, simulated. The termv is the variance for the respective
histogram entry, to account for sample variation. A smaiistante is intro-
duced to avoid divisions by zero, especially in the compait common case
of unobserved configuratiokscorresponding ttbl_(k) =0.

In this paper we use a combined chordlength and histograneineltdere the
chordlength model asserts nonlocal statistics while teogram model gives a

detailed description of local structure.

2.2. Measurements as Constraints

A typical low resolution measurement of porous media oletiby com-
puted tomography or MRI measures fbeal porosity of a given medium. The
low resolution measuremeni,, measures the porosity of a given material
within a pixel in 2D or a voxel in 3D. Therefore, each datum lwe {porosity
measurement corresponds to the void fraction of a giverkibdpixels of the
underlying high resolution field.

Figure 3 plots porosity measurements at threégedknt resolutions for two
fields, the first synthetic and the second from sintered dlaasls. The decima-

tion parameted measures the reduction in resolution fr@to M, such that
8



(a) Both scales (b) Single scale (c) No scales

resolvedd =5 resolvedd = 15 resolvedd = 50

Figure 3: Porosity measurements dtelient resolutions (with decimation facidy. Particularly
in (c) nearly all information of the image structure has bkest, and the distinction of the two

phases in the image is not inferrable from the measurements.

each single measurement measutesd elements in two-dimensional In (a)
the measurements resolve all aspects of the field, leavitgtlh do for a prior
model, whereas in (c) the measurements are relatively umijogrey, meaning
that any reconstructed sample is unlikely to bear a resamoblto the measured
physical sample. Of greatest interest in this paper are gmsarements of (b),
in which large-scale pores are resolved, but fine-scales@meenot, leading to a
balancing of assertions and contributions between the and measurements.
Other measurements can be defined which can provide compiarpen-
formation on fine-scale structures. Consider, for examgplepatially-resolved
measurement of the decay of transverse nuclear magnetizistj(t) [18]. This

measurement is generally described in terms of a multi4eeptial distribution



of apparent relaxation timeg;

Ml\;l(ot) _ Z f, exg~/T) @)

wheref; is the volume fraction of fluid relaxing at a rat¢TL;. A number of pro-

cesses can potentially influence magnetization decay imusanedia, including
bulk and surface-enhanced relaxation and relaxation ddéfigsion in the in-
ternal and external gradients. Thieets of relaxation due to fiusion can be
minimized by a proper choice of the pulse sequence andffbet®f bulk relax-
ation can be accounted for, so that the distribution of serenhanced relaxation
timesT,s may be extracted from the distribution of apparent relaxatimes. A
T,s-distribution may be interpreted as a volume-weighted gare distribution.
That is, each relaxation ratg T, corresponds to a fierent pore length scale
¢, where( is the ratio of pore volume to pore surface arég,S, of a region of
pore space where uniform magnetization is maintained byeoutdr difusion
over measurement times [27]. MRI is thus able to provide asmeamentMy,
reflecting information on the average surface-to-volunim naithin a pixel in
2D or a voxel in 3D. Each datum in measurembhtreflects the average pore
size of a given block of pixels of the underlying high resmatfield Z. Such a
measurement provides valuable clues with respect to urssbstructures and
geometry, as illustrated in Figure 4.

Including both measurements leads to a modification of tis¢gpimr energy
of Eq. (4) as

G(Z; M) = G(Z; Mg, Mp) = [Ifa(Z) — Mdll + 711 fp(2) — Myl (8)

where f4(-) and f,(-) are the forward models for surface-to-volume ratio and
porosity measurements, respectively, ans a weighting parameter between

the two constraints.
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(@)d=5 (b)d = 15 (c)d = 50

Figure 4: Surface-to-volume ratio measurements at thregluttons. The measurement is a
function of pore structure, even at unresolved scales.drpstontrast to Figure 3, the delineation

of the two regions in the top row is clear at even very low regohs.

The forward model for obtaining the local porosity measwemf, is de-
fined based on downsampling the simulaZfed herefore a datumm in f,(Z) is

defined as .

LEDIELIC ©
whered is the decimation factor arig is ad x d block inZ corresponding to the
ith data in the measurement.

Defining f4 requires having surface and volumes, equivalently pegnsetd
area in 2D, of pores for a datum in the measurement. For a block of pixels

in Z, B, the perimeter is defined based on the fraction of pixels whre at the

perimeter of pores, and the area is simple the local poras#gsurement.
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3. Posterior Sampling

Sampling from the Gibbs probability distribution is stdaifiprward, in prin-

ciple, by applying the Gibbs sampler [13, 14] to the postezitergy Eq. (2):
e-H@Mm)/T

p(ZIM) = —Z. (10)
In practice such sampling is challenging, since we do notnkwhat value of
temperaturd to select for the sampler. This uncertainty stems from hosvggn
modelsH(Z|M) are developed faZ — we really don’t know any “true” model,
rather we infer plausible constraints from sample datéh sat implausibl&|M
is associated with a larger energy and very likelyZ|M with a correspondingly
small value. Because of the highly qualitative notions @ugibility and im-
plausibility, it is difficult (impossible) to select a value ®f which leads to an
accurate posterior distributiga(Z|M).

Instead, the posterior sampling problem is md&atively understood in the
context of simulated annealing [13]. Simulated annealingsra Gibbs sampler,
initially at a high temperature where the image containelyurandom struc-
tures, then at progressively lower temperature until thetesy reaches a con-
verged state. In other words, the annealing procedure g&ses Markov chain
which converges in distribution to the uniform measure aklerminimal energy
configurations.

If we view the measurements as noiseless and the prior easrgget of em-

pirical hard constraints, then the set of minimal energyfigomations becomes
{Z|H(Z) = 0 andG(Z; M) = 0} (11)

That is, the posterior sample is a rand@thosen from the combined null-

spaces of the prior modél and measurement modsl
12



In practice, there are multiple reasons why this hard-caimgtperspective

becomes impractical:

1. Itis possible for the null spaces HfandG to be non-intersecting, mean-
ing thatno solution exists forZ. In other words, there might be incon-
sistencies between the information provided by the priodeh@and the
measurements, such that a valid structure in one may belftgbiin the
other.

2. An energy function which contains terms which either geiwn forbid
hypothesized states leads to an energy map with very deaprtogima,
which present dficulties to simulated annealing. Continuous energy func-
tions are more likely to lead to robust convergence.

3. Given a finitely sized sample, it is not possible to infigiid rules and
constraints regarding the prior model. At best we can irtfiet tertain
behaviors are more or less likely to occur, again leading ¢ordinuous

definition for the prior energA.

If the measurements are treated as exact, then our postariguling problem
is an example of annealing subject to hard constraints, blgmowhich has
previously been investigated [13]. We now seek a random kafmpm p(2),

subject to precisely matching the measurements:
{Z ~ p(2)1G(Z; M) =0}. (12)

Since the hard constraint is not easily asserted, in pedhis is most easily
accomplished within the context of annealing by assertiegiard constraint to

an ever increasing degree, annealing over

H(ZIM) = H(Z?? + aG(Z; M) (13)
1



such thatr — o0 asT — 0. The result of this annealing is to produce a posterior
sample, forced to be consistent with the measurements,asnadmly sampled
from the prior within the constrained space.

In practice we have used an exponential cooling schedulB.f@his process
starts with high temperature, large and smalky, and continues by decreasing
T very slowly with constant or slowly increasiag The sampling process starts
with a purely random binary image, without any special atigation or porosity
assertion, since the measurement in the energy functidrntsélf constrain on
the local porosity during the annealing process. When thasomement con-
straints are satisfied, the temperature is fixeda¢ 0 and the Gibbs sampler
continues sampling from the constrained space in Eq. (12)p@zero temper-
ature. At the end the posterior samples are consistent widn model while
being faithful to the measurements.

In the more usual event of imprecise measurements, thageftthe relative
weighta as a function of annealing iteration is less clear and resnamopen

problem.

4. Results and Evaluation

We have applied constrained sampling on various data showigure 5
(a): the small-large circle toy problem, a sample of realgyugarbonate rock,
and two physical models of vuggy carbonate rick made of sedtglass spheres,
recently studied by Padley et al. (2007). Based on repeatts, tall examples
are based on a chordlength prior was selected, with the Bzioepf the first
sintered spheres, for which a histogram distribution asttha prior model. In

all cases an exponential annealing schedule was used|@sgdol

Tk = 131 pk-1) (14)



wherek indicates the iteration anf, is the starting temperature. The parameter
v in Eq. (8) was set to make equal the initial energies of thegityr and surface-
to-volume raio measurements, and the initial value: af Eq. (13) was set to
make equal the initial energies of the prior and measureteemis.

A first set of samples, generated by the proposed constraeregling ap-
proach, are shown in Figure 5. In row (d) of this figure we cam &astunning
enhancement of the low-resolution measurements of rowar(®)(c). Indeed,
(d) reproduces many of the finer-scale features seen in ij@arimages of (a),
but which are completely lost in the measurements (b). Algficthe prior model
does not have any specific preference for the tviedgnt structures represented
in the small-large circle data, the reconstructed sardpkscontain structures
at two distinguishable scales due to using the informatrowided by the mea-
surements. The samples are not perfect, of course, and dieufzaly limited
by the sophistication and quality of the prior model. In pautar, our use of a
single, stationary prior model has somdidulty in reproducing fine details in
the nonstationary fields of the leftmost and rightmost caiamm Figure 5.

Figure 6 shows three posterior samples of sintered glassrephall three
drawn from the same prior model and the same measuremends.thghthree
samples are élierent, despite being drawn from identical prior and measure
ments, serves to emphasize tteedomposterior sampling nature of our ap-
proach. Features which are resolved by the low resoluticasomements, such
as large pores, are preserved the same way in each imageasheresolved
features are randomly sampled.

To evaluate our results we begin with Figure 7, which showscthrrelation
between the original (original) and reconstructed datacaBse a pixel in the

middle of a large pore or solid is likely to be the same in thginal and recon-
15



Small-large circle Real carbonate Sintered glass Sintered glass

toy problem rock sphere(1) sphere (2)

(d) Reconstruction, using both measurements in (b) and (c)

Figure 5: Artifically reconstructed samples (bottom), ggdosterior sampling, based on the low-
resolution measurements in (b) and (c). Tri%improvemermiaikin (d) relative to (b) and (c)

is striking.



Figure 6: Three posterior samples: observe that the laggejwed structures (such as the pore,
top-right and bottom) remain unchanged, whereas unredaletails (fine-scale structure) are
randomly synthesized. Thus we are constructing multiptepdas, all representative of a given

measured medium.

T T T
—&— (i) small-large circle

=—©— (ii) real carbonate Rock

0.8 —#— (iii) sintered galss sphere sample (1)
—@— (iv) sintered glass sphere sample (2)

0.6

0.4

0.2

Correlation between original and reconst.

| | | | | | i |
0 0.5 1 15 2 25 3 35 4 45 5
Dyadic scale above finest

Figure 7: The correlation between the reconstruction tesukigure 5(d) and their correspond-
ing original images. The dotted line shows the measure@ sttab clear that the reconstruction
is correlated with the true field one or two scales finer thansueed. That is, the proposed pos-
terior sampling approaatioesadd value below the measured scale; the fine-scale detaitear
justrandom rather they are consistent with the measurements, whestrained by the mea-

surements, and consistent only with the prior model wheteowstrained by the measurements.
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structed images, as opposed to a pixel on a pore or solid laoyride correlation

is computed as a function of scale, where the scale of eaehipidefined as the
number of scales over which a pixel's value is unchanged uregeeated deci-
mation. The resulting figure reflects the degree to which éiselts in Figure 5

(c) are consistent with the original data. As seen in Figyrih& correlation is

significant even below the measured scale, shown as a Veftittad-line, em-

phasizing that the structures in the reconstructed relaltavthe measurement
scale remain consistent with the original data.

We have also compared our proposed method with another chddszribed
by Okabe and Blunt (2007), which proposes a modified form stgr@or sam-
pling, in which areas where measurements are purely whh&aok (i.e., pore or
solid) are preserved, with all of the remaining values fille@y prior sampling.
Because the fraction of black or white pixels in the measergmis clearly a
decreasing function of the decimation facthias shown in Figure 8, the perfor-
mance of the method of Okabe and Blunt (2007) is likely tidesitasd increases.
Indeed, the results in Figure 9 confirm this conjecture, anth&érmore show the
strength of the proposed posterior sampling approach.r&ig(c) sdters from
blocky structures and pores completely disappearing asféildo be explicitly
resolved in the poorer measurements. The key to our restitatia given feature
is not either perfectly resolved or fully unresolved, raitthe degree to which the
measurements resolve a feature lies on a continuum. Evgnlgnreresolution
measurementsfi@r someconstraint on the reconstruction, and it is theerac-
tion between measurements and prior model which provides thestobsults,
specifically with respect to the middle pore, in Figure 9(d).

Next, Figure 10 shows the correlation, computed as in Figubetween the

reconstructed samples and original data for thréeint approaches:
18
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Figure 8: Fraction of purely black or purely white pixels etmeasurements as a function of

downsampling for the sintered glass spheres.

1. Random sampling (no prior) constrained by the measuremen
2. Prior sampling constrained on pure black and white pipdell§ and

3. Our proposed posterior sampling.

In the first method no prior is involved and the results areegated randomly
so that they would be only consistent with the measuremeimtghe second
method proposed by Okabe and Blunt (2007), the pure soligparelareas are
unchanged in the reconstructed image, while the rest arergiea through a
prior sampling approach. Asis expected, using only measemgs (first method)
or using uncoupled measurements and prior (second metsadljd reconstruc-
tions in which little or no relevant detail is created at sediner than the mea-
sured one, whereas our coupled, measurement-prior pmsgampling approach
leads to positively correlated details.

A similar conclusion can be reached by examining the ovesathnstruction

accuracy, measured in terms of Mean Squared Error (MSE degtthe original
19



(a) The original data

Decimationd = 10 Decimatiord = 15 Decimatiord = 20

(c) Reconstruction, using prior sampling constrained ore filack

and white pixels in the measurements [11]

(d) Reconstruction, using the proposed posterior samphith

porosity and surface-to-volume ratio measurements

Figure 9: Reconstructed artificial samples. Bgcause thieadedf (Okabe and Blunt, 2007) relies
on the presence of purely white and black measuremerdsnaseases the reconstruction$fsu
from blocky artifacts and lost pores (see middle of each mpaBosterior sampling, on the other
hand, is able to use shades of grey as constraints on themafield, and therefore is able to

tolerate reduced resolution more gracefully.
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Figure 10: Correlation between reconstructed and origlatd (for sintered glass spheres) com-
paring our proposed approach (posterior sampling) with oter methods, as a function of
scale, for four diferent values of the decimation parameterThe dotted line shows the mea-
sured scale in each case. The proposed method is more dutaessconstructing structures
finer than the measured scale, with the distance betweenubeahd black curves essentially

representing the improvement of our proposed method oe¢oftOkabe and Blunt (2007).
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Figure 11: Mean-Square Error (MSE) between the reconstduand true fields as a function
of decimation factod for sintered glass spheres. The four lines show MSE correfpg to a

purely random field, a prior-free reconstruction based oasueements only the prior sample
constrained on pure black and white pixels in the measurgraed the posterior sample which

we produce.

and reconstructed samples. Figure 11 plots the MSE for tiee tiferent meth-
ods described above as a function of decimation fadto€Compared with the
two other approaches, posterior sampling produces raslés consistent with
the original sample.

Finally, in Figure 12 we illustrate the application of ouoposed approach
to real MRI measurements. The prior model is learned fronurate, high-
resolution images, shown in Figure 12(a). However, in @sttwith previous
experiments, in which we synthesized the measurements liighnresolution
data, in this case the measurements are actual MRI datat§ke}y from a dif-
ferent, but statistically consistent, sample. The resglteconstructed results in

Figure 12(c) are much higher in resolution than the measemésnin (b). We can
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see that the large scale structures in both examples arerpees and that unre-
solved small scale structures are mostly consistent wéhutiderlying statistics
of (a). Since we do not have the measurement correspondBtdor the real
samples at this time, the reconstruction is only based ontygreeof measure-
ment — the porosity measurements shown in (b). We would obtha better
enhancement in resolution and more consistent structifirthe S/V measure-
ment was also considered in the reconstruction processeder, due to the
significant noise in the measurements we also expect, anchglg structures
in the reconstructed samples primarily, we hypothesizealbse the chosen prior

models are indticiently disciminating.

5. Conclusion and Future Work

In this paper we proposed a statistical fusion approachdoaseposterior
sampling for two-scale porous media reconstruction, irtigaar, with prob-
lems having one resolved and one unresolved scale. The kay @pproach is
the simultaneous assertion of prior and measurement eamstrwhich leads to
superior reconstructions, possessing useful detailsaég¢séiner than that of the
measurements.

We have identified a limitation of computational complexdye to the slow
convergence of simulated annealing, and a limitation ofelind sophistication,
due to the assertion of a prior model on a single scale. Ourdwork seeks to
address both of these issues by methods of hierarchicallisgmp

An extension of the proposed approach to three dimensiongddte pos-
sible in principle, however again the method is likely to imeited by computa-
tional complexity, unless based on a hierarchical appreaabssentially along

the lines of what has been proposed in [2]. Consequentlyudurd research fo-
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(c) Reconstruction, using porosity measurement 6532)

Figure 12: Reconstruction of two types of porous media usa$2D porosity measurements.
The prior is learned from a 2D high resolution sample (a), asihgle frame of 3D MRI low-

resolution sample, shown in (b), is used as the measuremaaposterior samples in (c) are the
reconstructed samples of (b), 16 times higher in resolutidre samples in (a) and (b) are not

identical, but are assumed to obey the same statistics.
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cuses on the development of superior prior models, basedeoarthical mod-
eling, both to enable scale-dependent models, and to leaud tmplementation

for 3D reconstruction.
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