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Abstract

The reconstruction of 3D architecture of void space in porous media is a chal-

lenging task, since porous media contain pore structures atmultiple scales. We

propose a statistical fusion framework for reconstructinghigh resolution porous

media images from low resolution measurements. The proposed framework is

based on a posterior sampling approach in which informationobtained by low

resolution MRI/NMR measurements are combined with prior models inferred

from high resolution microscopic data, typically 2D. In this paper, we focus on

two-scale reconstruction tasks in which the measurements resolve only the large

scale structures, leaving the small scale to be inferred from the prior model.

Key words: Porous media reconstruction, Magnetic resonance imaging,Data

fusion, Posterior sampling, Simulated annealing

1. Introduction

The presence of void structure at multiple length scales [19] poses a major

challenge to understanding fluid transport in natural porous media. One example

is mineral soils, the void space of which comprises a mixtureof pore systems

dominated by different pore-length scales in thenm- to mm-size range and aris-
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ing from the very broad grain size distribution of sandy material and the large

fraction of clay and silt typically present in soils [20]. Sedimentary rock for-

mations, both sandstone and carbonate, which are importantaquifers and hydro-

carbon reservoirs, can also be highly heterogeneous. This is typically the case

for carbonate rocks, where multiple pore systems, ranging in size from less than

onenm to severalmm [21], are the outcome of complex diagenetic processes

taking place between the initial deposition and exploitation times. The presence

of a very broad spectrum of pore length scales implies a certain degree of spatial

organization [19], which manifests itself as heterogeneity over multiple length

scales [18].

Three-dimensional images of the void structure are of fundamental value to

understanding fluid transport in natural porous media. An ideal 3D image would

be of sufficiently large size to capture heterogeneity over multiple length scales

and of sufficiently high resolution to resolve the finest pore length scale of inter-

est to transport. Unfortunately, despite significant advances [22, 23, 24] such im-

ages cannot be obtained using any single imaging modality presently available.

The purpose of this contribution is to lay the ground for an alternative approach,

namely the fusion of image data of diverse origin, resolution or dimensionality.

3D images of the internal structure of porous media can be obtained by

stochastic reconstruction [3, 25, 7, 26], sampling processes by whichtypical

samples of the porous material of interest are computationally generated. De-

pending on the absence or presence of measurements, stochastic reconstruction is

a prior or posteriorsampling process, respectively. Nearly all published porous

media reconstruction studies concern prior sampling, in the sense that the recon-

struction is based solely on a learned prior model. The priormodel typically con-

sists of one or more statistical functions (e.g. two-point correlation, chord-length
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distribution, etc.) learned from 2D images of the pore space. In view of the ever

increasing access to 3D imaging tools, the situation in which 3D tomographic

or magnetic resonance imaging (MRI) data are available for aspecific physi-

cal sample is more interesting. Although 3D tomographic [22] or MRI [21, 18]

measurements fail to resolve fine scale pore structure, the fine scaleis, in fact,

partially constrained by the measurements. Thus, the possibility exists to infer

high-resolution details from the pattern of low-resolution measurements. Within

the framework of stochastic reconstruction, the process then is one ofposterior

sampling, aimed at fusing the information present in low-resolution3D image

data with a prior-model based on high-resolution 2D images.

A first attempt at fusing low resolution measurements with high resolution

data has been recently made by Okabe and Blunt (2007). These authors have

considered low-resolution 3D tomographic images of the pore space, in which

only the larger pores are resolved, and employed stochasticreconstruction to

resolve smaller-scale structure. In their method, small-scale structure which is

unresolved in the 3D measurements is generated according toa prior model in a

manner independent from the 3D measurements. There are two problems with

this approach. One is that the measurements are not explicitly coupled to the

prior model in computing a reconstruction. The other, more important one, is

that only a small portion of the information provided by the low resolution 3D

measurements is exploited, namely the overall sample porosity and the pres-

ence of void and solid domains. Low-resolution measurements, however, can be

rich sources of information. X-ray computed tomography or MRI resolve not

only the relatively larger pores, but also provide information on the local (voxel-

scale) porosity of unresolved scales. In addition, MRI can provide 3D maps of

parameters sensitive to the geometry and connectivity of unresolved scales [12].
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For example, Pomerantz et al. (2008) have recently presented spatially-resolved

measurements of the decay of transverse magnetization in a series of sedimen-

tary rocks and analyzed them to obtain the spectrum of decay constants,T2, at

the voxel scale. The physical interpretation of aT2 spectrum as a distribution of

pore surface-to-volume ratio,S/V, affords additional insight into the geometry

(pore size) of unresolved length scales [27]. Such information can enrich the

stochastic reconstruction process.

In this paper we propose a Bayesian statistical framework for explicitly fus-

ing different types of low-resolution measurements with a high-resolution prior

model. The paper is structured as follows. We begin by establishing the ba-

sis of image data fusion and modeling in terms of Gibbs randomfields (GRF),

briefly reviewing prior image models and paying particular attention to the con-

tributions of measurements and prior model in the Bayesian framework. In a

subsequent section, we show how stochastic reconstructionmay be handled by

simulated annealing as a posterior sampling process. We then evaluate statistical

fusion of low-resolution measurements with a high-resolution prior model for a

variety of real and synthetic images of porous media. The reconstruction results

are shown to possess two-scale structures, consistent withthe measured samples,

while obeying the same statistical features encoded in the prior model. Relative

to the method of Okabe and Blunt (2007), our reconstructionsare closer to the

physical sample, show fewer artifacts and are more tolerantof the measurement

resolution.

2. Data Fusion and Modeling

Our proposed fusion method is based on a Bayesian framework,such that we

wish to fuse low resolution measurements with a high resolution prior model.
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(a) Sampling Approach (b) Estimation Approach

Figure 1: Sampling and estimation. In sampling (a) there is acontinuum between prior and

posterior sampling, depending on the measurement noise varianceσ2
M, the degree to which the

unknown random field is constrained by the measurements relative to the prior. In estimation

(b) there is a continuum between Bayesian and non-Bayesian problems, depending on the reg-

ularization parameterλ, the degree to which a prior model is present to constrain therandom

field.

The measurements available for reconstruction may be (i) weakly constrain-

ing, (ii) partly constraining, or (iii) fully determining,a continuum illustrated in

Figure 1(a). A great many problems in image processing fall into (iii), such that

the measurements are of such a resolution and quality that noprior is needed,

and the image is processed or reconstructed in the absence ofany specific prior.

At the other extreme (i) the measurements are so weak that oneis essentially

randomly sampling from a prior model. Our interest lies in between, such that

something of a delicate balance is required between the assertions of measure-

ments and prior model. This is the case with MRI or tomographic data of porous

media in which relatively large pores are clearly resolved but smaller scale poros-

ity appears in the images as different shades of gray.
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In principle, given measurements and a prior model, reconstruction can pro-

ceed as either a sampling or estimation problem, as illustrated in Figure 1. Since

our measurements fail to resolve many of the fine scale details and at the same

time fine structure must be present in the stochastic reconstruction, a sampling

approach is required [8]. Figure 2 shows how the posterior sampling approach

combines the measurements with the high resolution samplesto generate recon-

structed porous media samples.

We propose to characterize the chaotic and complex morphology of porous

media with the widely-used Gibbs Random Field (GRF) [15], defined as

p(Z) =
e−H(Z)/T

Z
(1)

whereH(Z) is theenergy function, andZ is a normalization factor, termed the

partition function.

Given measurementsM, the posterior probability distribution is

p(Z|M) =
e−H(Z|M)/T

ZM
(2)

H(Z|M) = H(Z) + αG(Z; M) (3)

whereα balances the contributions of prior and measurements.G constrainsZ

relative to the measurements,

G(Z; M) = ‖ f (Z) − M‖ (4)

where the forward modelf (·) describes the physics or mathematics of the mea-

surement process. We use theℓ2-norm for‖ · ‖, however the Gibbs formulation

allows for other norm choices as well.
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Figure 2: Posterior Sampling: The sample imageZs is used to learn the prior model. A low

resolution measurementM is taken from the unknown imageZT . The the unknown imageZT

and the sample imageZs are assumed to obey the same statistics.

2.1. Prior Models

A variety of energy functionsH(·) used to model porous media have been

reviewed by [1]. These include autocorrelation, chord length distribution and

lineal path functions, to name a few. For example the chordlength distribution

function [1] Ci(ℓ) is defined to be the probability of finding a chord with length

ℓ in phasei. For a two-phase porous medium, chordlength distributionscan be

defined for either phase and for chords at different orientations. It is common

to limit the orientation to the horizontal and vertical directions, in which case

chordlength energy in phasei is

Hi
c(Z) =

L
∑

k=0

‖C̄i
h(k) −Ch(k,Z)‖ + ‖C̄i

v(k) −Cv(k,Z)‖ (5)

whereC̄i
h andC̄i

v are the learned model for the horizontal and vertical chords, re-

spectively, andCi
h andCi

v are the chordlength distributions of a simulated random

field Z.
7



The histogram distribution function [2] is non-parametric, keeping the en-

tire joint probability distribution of a local set of pixelswithin a neighborhood.

Choosing eight adjacent pixels as the neighborhood structure leads to a non-

parametric model containing a histogram ofn = 29 probabilities. The histogram

represent the probability of having each of 512 configurations in the image. The

histogram energy function is defined as

Hh(Z) =
29
∑

k=1

(

‖h̄(k) − h(k,Z)‖
v(k) + ǫ

)

(6)

whereh̄ is the learned histogram distribution. andh(Z) is the observed distri-

bution for a given, simulatedZ. The termv is the variance for the respective

histogram entry, to account for sample variation. A small constantǫ is intro-

duced to avoid divisions by zero, especially in the comparatively common case

of unobserved configurationsk corresponding tōh(k) = 0.

In this paper we use a combined chordlength and histogram model, where the

chordlength model asserts nonlocal statistics while the histogram model gives a

detailed description of local structure.

2.2. Measurements as Constraints

A typical low resolution measurement of porous media obtained by com-

puted tomography or MRI measures thelocal porosity of a given medium. The

low resolution measurement,Mp, measures the porosity of a given material

within a pixel in 2D or a voxel in 3D. Therefore, each datum in the porosity

measurement corresponds to the void fraction of a given block of pixels of the

underlying high resolution fieldZ.

Figure 3 plots porosity measurements at three different resolutions for two

fields, the first synthetic and the second from sintered glassbeads. The decima-

tion parameterd measures the reduction in resolution fromZ to M, such that
8



(a) Both scales (b) Single scale (c) No scales

resolved,d = 5 resolved,d = 15 resolved,d = 50

Figure 3: Porosity measurements at different resolutions (with decimation factord). Particularly

in (c) nearly all information of the image structure has beenlost, and the distinction of the two

phases in the image is not inferrable from the measurements.

each single measurement measuresd × d elements in two-dimensionalZ. In (a)

the measurements resolve all aspects of the field, leaving little to do for a prior

model, whereas in (c) the measurements are relatively uniformly grey, meaning

that any reconstructed sample is unlikely to bear a resemblance to the measured

physical sample. Of greatest interest in this paper are the measurements of (b),

in which large-scale pores are resolved, but fine-scale pores are not, leading to a

balancing of assertions and contributions between the prior and measurements.

Other measurements can be defined which can provide complementary in-

formation on fine-scale structures. Consider, for example,a spatially-resolved

measurement of the decay of transverse nuclear magnetization, Mz(t) [18]. This

measurement is generally described in terms of a multi-exponential distribution
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of apparent relaxation timesT2i

Mz(t)
M0

=
∑

fi exp(−t/T2i ) (7)

where fi is the volume fraction of fluid relaxing at a rate 1/T2i. A number of pro-

cesses can potentially influence magnetization decay in porous media, including

bulk and surface-enhanced relaxation and relaxation due todiffusion in the in-

ternal and external gradients. The effects of relaxation due to diffusion can be

minimized by a proper choice of the pulse sequence and the effect of bulk relax-

ation can be accounted for, so that the distribution of surface-enhanced relaxation

timesT2s may be extracted from the distribution of apparent relaxation times. A

T2s-distribution may be interpreted as a volume-weighted poresize distribution.

That is, each relaxation rate 1/T2s corresponds to a different pore length scale

ℓ, whereℓ is the ratio of pore volume to pore surface area,Vp/S, of a region of

pore space where uniform magnetization is maintained by molecular diffusion

over measurement times [27]. MRI is thus able to provide a measurementMd,

reflecting information on the average surface-to-volume ratio within a pixel in

2D or a voxel in 3D. Each datum in measurementMd reflects the average pore

size of a given block of pixels of the underlying high resolution field Z. Such a

measurement provides valuable clues with respect to unresolved structures and

geometry, as illustrated in Figure 4.

Including both measurements leads to a modification of the posterior energy

of Eq. (4) as

G(Z; M) = G(Z; Md,Mp) = ‖ fd(Z) − Md‖ + γ‖ fp(Z) − Mp‖ (8)

where fd(·) and fp(·) are the forward models for surface-to-volume ratio and

porosity measurements, respectively, andγ is a weighting parameter between

the two constraints.
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(a) d = 5 (b)d = 15 (c)d = 50

Figure 4: Surface-to-volume ratio measurements at three resolutions. The measurement is a

function of pore structure, even at unresolved scales. In sharp contrast to Figure 3, the delineation

of the two regions in the top row is clear at even very low resolutions.

The forward model for obtaining the local porosity measurement, fp is de-

fined based on downsampling the simulatedZ. Therefore a datummi in fp(Z) is

defined as

mi =

d2
∑

k=1

1
d2

Bi(k) (9)

whered is the decimation factor andBi is ad×d block inZ corresponding to the

ith data in the measurement.

Defining fd requires having surface and volumes, equivalently perimeter and

area in 2D, of pores for a datummi in the measurement. For a block of pixels

in Z, Bi, the perimeter is defined based on the fraction of pixels which are at the

perimeter of pores, and the area is simple the local porositymeasurement.
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3. Posterior Sampling

Sampling from the Gibbs probability distribution is straightforward, in prin-

ciple, by applying the Gibbs sampler [13, 14] to the posterior energy Eq. (2):

p(Z|M) =
e−H(Z|M)/T

ZM
(10)

In practice such sampling is challenging, since we do not know what value of

temperatureT to select for the sampler. This uncertainty stems from how energy

modelsH(Z|M) are developed forZ — we really don’t know any “true” model,

rather we infer plausible constraints from sample data, such that implausibleZ|M

is associated with a larger energyH, and very likelyZ|M with a correspondingly

small value. Because of the highly qualitative notions of plausibility and im-

plausibility, it is difficult (impossible) to select a value ofT which leads to an

accurate posterior distributionp(Z|M).

Instead, the posterior sampling problem is most effectively understood in the

context of simulated annealing [13]. Simulated annealing runs a Gibbs sampler,

initially at a high temperature where the image contains purely random struc-

tures, then at progressively lower temperature until the system reaches a con-

verged state. In other words, the annealing procedure generates a Markov chain

which converges in distribution to the uniform measure overthe minimal energy

configurations.

If we view the measurements as noiseless and the prior energyas a set of em-

pirical hard constraints, then the set of minimal energy configurations becomes

{Z | H(Z) = 0 andG(Z; M) = 0} (11)

That is, the posterior sample is a randomZ chosen from the combined null-

spaces of the prior modelH and measurement modelG.
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In practice, there are multiple reasons why this hard-constraint perspective

becomes impractical:

1. It is possible for the null spaces ofH andG to be non-intersecting, mean-

ing thatno solution exists forZ. In other words, there might be incon-

sistencies between the information provided by the prior model and the

measurements, such that a valid structure in one may be forbidden in the

other.

2. An energy function which contains terms which either permit or forbid

hypothesized states leads to an energy map with very deep local minima,

which present difficulties to simulated annealing. Continuous energy func-

tions are more likely to lead to robust convergence.

3. Given a finitely sized sample, it is not possible to inferrigid rules and

constraints regarding the prior model. At best we can infer that certain

behaviors are more or less likely to occur, again leading to acontinuous

definition for the prior energyH.

If the measurements are treated as exact, then our posteriorsampling problem

is an example of annealing subject to hard constraints, a problem which has

previously been investigated [13]. We now seek a random sample from p(Z),

subject to precisely matching the measurements:

{Z ∼ p(Z) |G(Z; M) = 0 }. (12)

Since the hard constraint is not easily asserted, in practice this is most easily

accomplished within the context of annealing by asserting the hard constraint to

an ever increasing degree, annealing over

H(Z|M) = H(Z) + αG(Z; M) (13)
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such thatα→ ∞ asT → 0. The result of this annealing is to produce a posterior

sample, forced to be consistent with the measurements, and randomly sampled

from the prior within the constrained space.

In practice we have used an exponential cooling schedule forT. This process

starts with high temperature, largeT, and smallα, and continues by decreasing

T very slowly with constant or slowly increasingα. The sampling process starts

with a purely random binary image, without any special initialization or porosity

assertion, since the measurement in the energy function will itself constrain on

the local porosity during the annealing process. When the measurement con-

straints are satisfied, the temperature is fixed atTc , 0 and the Gibbs sampler

continues sampling from the constrained space in Eq. (12), at non-zero temper-

ature. At the end the posterior samples are consistent with prior model while

being faithful to the measurements.

In the more usual event of imprecise measurements, the setting of the relative

weightα as a function of annealing iteration is less clear and remains an open

problem.

4. Results and Evaluation

We have applied constrained sampling on various data shown in Figure 5

(a): the small-large circle toy problem, a sample of real vuggy carbonate rock,

and two physical models of vuggy carbonate rick made of sintered glass spheres,

recently studied by Padley et al. (2007). Based on repeated tests, all examples

are based on a chordlength prior was selected, with the exception of the first

sintered spheres, for which a histogram distribution acts as the prior model. In

all cases an exponential annealing schedule was used, as follows

Tk = T0 b(k−1) (14)
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wherek indicates the iteration andT0 is the starting temperature. The parameter

γ in Eq. (8) was set to make equal the initial energies of the porosity and surface-

to-volume raio measurements, and the initial value ofα in Eq. (13) was set to

make equal the initial energies of the prior and measurementterms.

A first set of samples, generated by the proposed constrainedsampling ap-

proach, are shown in Figure 5. In row (d) of this figure we can see a stunning

enhancement of the low-resolution measurements of rows (b)and (c). Indeed,

(d) reproduces many of the finer-scale features seen in the original images of (a),

but which are completely lost in the measurements (b). Although the prior model

does not have any specific preference for the two different structures represented

in the small-large circle data, the reconstructed sampledoescontain structures

at two distinguishable scales due to using the information provided by the mea-

surements. The samples are not perfect, of course, and are particularly limited

by the sophistication and quality of the prior model. In particular, our use of a

single, stationary prior model has some difficulty in reproducing fine details in

the nonstationary fields of the leftmost and rightmost columns in Figure 5.

Figure 6 shows three posterior samples of sintered glass spheres, all three

drawn from the same prior model and the same measurements. That the three

samples are different, despite being drawn from identical prior and measure-

ments, serves to emphasize therandomposterior sampling nature of our ap-

proach. Features which are resolved by the low resolution measurements, such

as large pores, are preserved the same way in each image, whereas unresolved

features are randomly sampled.

To evaluate our results we begin with Figure 7, which shows the correlation

between the original (original) and reconstructed data. Because a pixel in the

middle of a large pore or solid is likely to be the same in the original and recon-

15



Small-large circle

toy problem

Real carbonate

rock

Sintered glass

sphere(1)

Sintered glass

sphere (2)

(a) Original media

(b) Low resolution porosity measurements, downsampled byd = 15 from (a).

(c) Low resolution surface-to-volume ratio measurements

(d) Reconstruction, using both measurements in (b) and (c)

Figure 5: Artifically reconstructed samples (bottom), using posterior sampling, based on the low-

resolution measurements in (b) and (c). The improvement in detail in (d) relative to (b) and (c)

is striking.
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Figure 6: Three posterior samples: observe that the large, resolved structures (such as the pore,

top-right and bottom) remain unchanged, whereas unresolved details (fine-scale structure) are

randomly synthesized. Thus we are constructing multiple samples, all representative of a given

measured medium.
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(i) small−large circle
(ii) real carbonate Rock
(iii) sintered galss sphere sample (1)
(iv) sintered glass sphere sample (2)

Figure 7: The correlation between the reconstruction results in Figure 5(d) and their correspond-

ing original images. The dotted line shows the measured scale. It is clear that the reconstruction

is correlated with the true field one or two scales finer than measured. That is, the proposed pos-

terior sampling approachdoesadd value below the measured scale; the fine-scale details are not

just random, rather they are consistent with the measurements, where constrained by the mea-

surements, and consistent only with the prior model where not constrained by the measurements.
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structed images, as opposed to a pixel on a pore or solid boundary, the correlation

is computed as a function of scale, where the scale of each pixel is defined as the

number of scales over which a pixel’s value is unchanged under repeated deci-

mation. The resulting figure reflects the degree to which the results in Figure 5

(c) are consistent with the original data. As seen in Figure 7, the correlation is

significant even below the measured scale, shown as a vertical dotted-line, em-

phasizing that the structures in the reconstructed resultsbelowthe measurement

scale remain consistent with the original data.

We have also compared our proposed method with another method described

by Okabe and Blunt (2007), which proposes a modified form of posterior sam-

pling, in which areas where measurements are purely white orblack (i.e., pore or

solid) are preserved, with all of the remaining values filledin by prior sampling.

Because the fraction of black or white pixels in the measurements is clearly a

decreasing function of the decimation factord, as shown in Figure 8, the perfor-

mance of the method of Okabe and Blunt (2007) is likely to suffer asd increases.

Indeed, the results in Figure 9 confirm this conjecture, and furthermore show the

strength of the proposed posterior sampling approach. Figure 9(c) suffers from

blocky structures and pores completely disappearing as they fail to be explicitly

resolved in the poorer measurements. The key to our results is that a given feature

is not either perfectly resolved or fully unresolved, rather the degree to which the

measurements resolve a feature lies on a continuum. Even grey, low-resolution

measurements offer someconstraint on the reconstruction, and it is theinterac-

tion between measurements and prior model which provides the robust results,

specifically with respect to the middle pore, in Figure 9(d).

Next, Figure 10 shows the correlation, computed as in Figure7, between the

reconstructed samples and original data for three different approaches:
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Figure 8: Fraction of purely black or purely white pixels in the measurements as a function of

downsampling for the sintered glass spheres.

1. Random sampling (no prior) constrained by the measurements,

2. Prior sampling constrained on pure black and white pixels[11], and

3. Our proposed posterior sampling.

In the first method no prior is involved and the results are generated randomly

so that they would be only consistent with the measurements.In the second

method proposed by Okabe and Blunt (2007), the pure solid andpore areas are

unchanged in the reconstructed image, while the rest are generated through a

prior sampling approach. As is expected, using only measurements (first method)

or using uncoupled measurements and prior (second method) lead to reconstruc-

tions in which little or no relevant detail is created at scales finer than the mea-

sured one, whereas our coupled, measurement-prior posterior sampling approach

leads to positively correlated details.

A similar conclusion can be reached by examining the overallreconstruction

accuracy, measured in terms of Mean Squared Error (MSE) between the original
19



(a) The original data

Decimationd = 10 Decimationd = 15 Decimationd = 20

(b) Local porosity measurement at different resolutions

(c) Reconstruction, using prior sampling constrained on pure black

and white pixels in the measurements [11]

(d) Reconstruction, using the proposed posterior samplingwith

porosity and surface-to-volume ratio measurements

Figure 9: Reconstructed artificial samples. Because the method of (Okabe and Blunt, 2007) relies

on the presence of purely white and black measurements, asd increases the reconstructions suffer

from blocky artifacts and lost pores (see middle of each image). Posterior sampling, on the other

hand, is able to use shades of grey as constraints on the random field, and therefore is able to

tolerate reduced resolution more gracefully.
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(a) d=3 (b) d=5
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(c) d=10 (d) d=30

Figure 10: Correlation between reconstructed and originaldata (for sintered glass spheres) com-

paring our proposed approach (posterior sampling) with twoother methods, as a function of

scale, for four different values of the decimation parameterd. The dotted line shows the mea-

sured scale in each case. The proposed method is more successful in reconstructing structures

finer than the measured scale, with the distance between the blue and black curves essentially

representing the improvement of our proposed method over that of Okabe and Blunt (2007).
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Figure 11: Mean-Square Error (MSE) between the reconstructed and true fields as a function

of decimation factord for sintered glass spheres. The four lines show MSE corresponding to a

purely random field, a prior-free reconstruction based on measurements only the prior sample

constrained on pure black and white pixels in the measurement, and the posterior sample which

we produce.

and reconstructed samples. Figure 11 plots the MSE for the three different meth-

ods described above as a function of decimation factord. Compared with the

two other approaches, posterior sampling produces resultsmost consistent with

the original sample.

Finally, in Figure 12 we illustrate the application of our proposed approach

to real MRI measurements. The prior model is learned from accurate, high-

resolution images, shown in Figure 12(a). However, in contrast with previous

experiments, in which we synthesized the measurements fromhigh resolution

data, in this case the measurements are actual MRI data [21],taken from a dif-

ferent, but statistically consistent, sample. The resulting reconstructed results in

Figure 12(c) are much higher in resolution than the measurements in (b). We can
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see that the large scale structures in both examples are preserved, and that unre-

solved small scale structures are mostly consistent with the underlying statistics

of (a). Since we do not have the measurement corresponding toS/V for the real

samples at this time, the reconstruction is only based on onetype of measure-

ment — the porosity measurements shown in (b). We would obtained a better

enhancement in resolution and more consistent structures,if the S/V measure-

ment was also considered in the reconstruction process. Moreover, due to the

significant noise in the measurements we also expect, and see, noisy structures

in the reconstructed samples primarily, we hypothesize, because the chosen prior

models are insufficiently disciminating.

5. Conclusion and Future Work

In this paper we proposed a statistical fusion approach based on posterior

sampling for two-scale porous media reconstruction, in particular, with prob-

lems having one resolved and one unresolved scale. The key toour approach is

the simultaneous assertion of prior and measurement constraints, which leads to

superior reconstructions, possessing useful details at scales finer than that of the

measurements.

We have identified a limitation of computational complexity, due to the slow

convergence of simulated annealing, and a limitation of modeling sophistication,

due to the assertion of a prior model on a single scale. Our future work seeks to

address both of these issues by methods of hierarchical sampling.

An extension of the proposed approach to three dimensions should be pos-

sible in principle, however again the method is likely to be limited by computa-

tional complexity, unless based on a hierarchical approach— essentially along

the lines of what has been proposed in [2]. Consequently our future research fo-
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(a) 2D high resolution samples (512× 512)

(b) Real 2D local porosity measurements (32× 32) [21]

(c) Reconstruction, using porosity measurement (515× 512)

Figure 12: Reconstruction of two types of porous media usingreal 2D porosity measurements.

The prior is learned from a 2D high resolution sample (a), anda single frame of 3D MRI low-

resolution sample, shown in (b), is used as the measurement.The posterior samples in (c) are the

reconstructed samples of (b), 16 times higher in resolution. The samples in (a) and (b) are not

identical, but are assumed to obey the same statistics.
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cuses on the development of superior prior models, based on hierarchical mod-

eling, both to enable scale-dependent models, and to lead toan implementation

for 3D reconstruction.
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