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Abstract—The dynamic estimation of large-scale stochastic im-
age sequences, as frequently encountered in remote sensing, is im-
portant in a variety of scientific applications. However, the size
of such images makes conventional dynamic estimation methods,
for example the Kalman and related filters, impractical. In this
paper we present an approach that emulates the Kalman filter,
but with considerably reduced computational and storage require-
ments. Our approach is illustrated in the context of a 512 x 512
image sequence of ocean surface temperature.

The static estimation step, the primary contribution here, uses
a mixture of stationary models to accurately mimic the effect of
a nonstationary prior, simplifying both computational complex-
ity and modelling. Our approach provides an efficient, stable,
positive-definite model which is consistent with the given corre-
lation structure. Thus the methods of this paper may find applica-
tion in modelling and single-frame estimation.

|. INTRODUCTION

There is a tremendous interest in the processing of image
sequences. Although a great deal of this interest stems from
excitement surrounding up-and-coming areas such as multime-
dia and Internet video, much of the fundamental research is
being driven by the fact that storage, bandwidth, and computa-
tional power have, for the first time, really increased to the point
where it is practical to process long sequences of large images.

Since video represents the overwhelming bulk of image-
sequence data, much of the recent literature [5], [7], [16], [34],
[35], [40], [47] is focused here; however image sequences from
a camera or a broadcast source generally do not obey well-
defined spatial or temporal statistics, so the processing of such
signals proceeds heuristically or nonparametrically, and cer-
tainly locally, since image pixels are normally not meaningfully
correlated at long ranges.

Instead, the interests of this paper are considerably more spe-
cialized and focus on the problem of dynamic estimation; that
is, the spatio-temporal statistical processing of random fields,
typically remotely-sensed over time. In particular, our research
is motivated by a need to estimate ocean sea-surface temper-
ature (SST) from sparse measurements, such as those shown
in Figure 1, taken from the Along Track Scanning Radiome-
ter (ATSR) [43], [44]. Ideally, we would like to produce dense
images of SST, smoothed over time, but preserving the local
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Fig. 1. ATSR SST observations for the month of October 1992: the measure-
ments are accurate, but in sparse strips.

features which are present in the measurements. Although mo-
tivated by this context, the methods developed in this paper are
not SST or ocean-data specific, and the approach can be gener-
alized and applied to any image-sequence problem whose spa-
tial statistics can be parametrized (as will be described in Sec-
tion I1).

Generally, solutions to the image sequence processing prob-
lem fall into the generic prediction-update structure as shown
in Figure 2, in which a sequence of observed images y(t) is
processed, predicted estimates x(¢|t — 1) are inferred from an
estimated motion field m,, and the updated estimates x(¢|t) are
driven by a residual field v(¢) which encodes the information
present in y(¢) which is not contained in x(¢]t — 1).

Conceptually the statistical filtering problem is straightfor-
ward, and was solved decades ago in the form of the well-
known Kalman Filter [29], whose structure closely parallels
Figure 2:

Prediction Step:

Tt+1)t) =
P(t +1]t)

Az(t]t) 1)
AP(t[t)AT +Q )

where A captures the system?® dynamics (diffusive, advective
etc.) and @ the process or driving noise.
Update Step:

7 T 5 T
K(t) = P(tlt—1)C(1) (C@O)P(tt—1)C(1)" + R(1)3)
LFor simplicity of notation and presentation we assume the model parameters
A, Q to be fixed over time; the results of this paper apply equally well to the
time-varying case.
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Standard prediction-update process: An image sequence can be used to infer motion information and a residual, which determine the time-to-time

prediction and update. A wide variety of problems can be cast into this framework.

(t]t)
P(t|t)

L(tlt — 1) + K(0)[u(t) — C(O)L(tt - 1)]
[1 - KOC@)]P(tt — 1)

where measurements y(¢t) = C(t)z(t) + v(t) having a mea-
surement error covariance of R(t) are incorporated in order
to improve the estimates. The need to generate and invert
enormous matrices (e.g., in the computation of the gain K (t))
makes the brute-force application of the above equations to
even modestly-sized images computationally infeasible for the
indefinite future. Superficially, it would appear that there are
two predominant challenges:

1) The storage of large matrices A, C(t), K (t), P(t|t) etc;

2) The computation of the update step, involving a large ma-

trix inversion.
In fact, the problem is much more difficult than this: because
the location of measurements will change from time to time,
the statistics of the problem will become nonstationary, there-
fore stationarity assumptions cannot be made. Next, whatever
implicit or sparse representation is chosen for the 2D covariance
P(t|t) must guarantee positive definiteness, which is challeng-
ing. Finally, whatever representation is chosen for P must be
simultaneously compatible with an efficient approach to predic-
tion and estimation.

That is, we require a representation of the problem which
can accommodate spatial nonstationarities, is guaranteed to be
positive definite, can be predicted over time, and is compatible
with an efficient approach to solving the update step.

A variety of alternatives have, of course, been proposed.
The reduced update Kalman filter (RUKF) was proposed
in 1977 [49] as an efficient approach to the estimation of
two-dimensional images. A more recently proposed three-
dimensional version [34], [35] would, in principle, be able to
perform dynamic estimation. The proposed RUKF gains its ef-
ficiency by requiring the estimator to be local. In addition, the
underlying random field is assumed to be stationary and hence,
the filter will reach steady-state after a few iterations. Although
these assumptions are reasonable for processing images, local-
ity leads to undesirable artifacts in sparsely-measured domains,
and the long correlation length of remotely-sensed fields and
the non-stationarity of their statistics pose difficulties.

Another alternative would be to assume a fixed prior over
time Pp = P(t + 1]t). If the gain is also fixed, K = K(t),

(4) then the estimator reduces to the steady-state Kalman filter [29],
(5) which is computationally very fast as one need not propagate or

recompute the huge error covariances at each filter iteration. On
the other hand, the steady-state filter is incompatible with the
SST problem (and virtually any other scientific image-sequence
problem) due to the time-varying measurement locations. Even
if the gain is allowed to vary, a fixed prior precludes the compu-
tation of meaningful estimation error statistics, and causes the
estimator to forget or discard past measurements and estimates
too rapidly.

The 2D domain can be modelled as a collection of piecewise
independent regions, where the different regions obey different
statistics. Such an approach easily produces positive-definite,
nonstationary covariances, however the region boundaries ap-
pear as obvious artifacts in the estimates.

Rather than trying to store or approximate the matrix P(t +
1|¢) itself, an alternative is to build a statistical model for it.
One approach, which has been successful in representing non-
stationary covariances for extremely large problems, is based
on a hierarchical model [13], [38], [21], however the prediction
of such models is very difficult [30], [31].

One promising and widely-used approach is to employ state
reduction [6], [9], [42], [23], via principal components or sub-
sampling, such that the Kalman filter is applied to Lz, where
Lisan M x N state reduction operator, where M < N. The
drawback of this approach is that the state reduction forces a
loss of information, so that detailed, local features cannot be
preserved.

One final approach has been to represent a covariance inverse
P~1interms of a sparse set of diagonal bands [2], [4], [9], [11],
[12]; the number of diagonal bands determines the locality of
the estimator. Although such approaches have been applied to
remote sensing problems, we will see that for problems of prac-
tical interest, involving substantial correlation lengths, a very
large number of bands, with corresponding computational and
storage increases, are required to achieve accurate results.

The conclusion is that there currently exists no practical
method for solving spatially irregular dynamic estimation prob-
lems on large (e.g., megapixel) domains. The key to our pro-
posed approach is the following: rather than a single compli-
cated, implicit, nonstationary representation, we will represent
the nonstationary prior P(t + 1[t) as a spatially-weighted com-



bination or mixture of an ensemble of explicit, stationary priors,
each of which has a simple representation, for which positive-
definiteness is known, and which is compatible with efficient
update methods!

The paper addresses the Prediction and Update steps in Sec-
tions Il and 111 respectively, followed by experimental results in
Section 1V.

Il. PREDICTION

In the prediction step, the system dynamics are used to pre-
dict two quantities:

1) Predicted values of the state estimates at the next time

step, and

2) Predicted values of the error statistics at the next time

step.
Of these, the former is straightforward, whereas the latter is
much more difficult.

As will be seen in Section 3, a crucial requirement of our
proposed update step is that the statistics be representable in
a parameterized, analytic form. Although a variety of dy-
namic models satisfy this criterion, we will focus on the two-
dimensional heat diffusion process:

orit) 0t 9
ot 02 05

where x(3, j,t) represents a process of interest (e.g., temper-
ature) at spatial position (¢, j) and time ¢, and where w() is
unit-variance Gaussian white noise. The diffusion dynamics
(6) have the following desirable attributes:

1) The process correlation function is exponential [14].

2) The dynamics admit a simple, local discretization.

3) Diffusion dynamics are found in a wide variety of appli-

cations.

The model (6) is, of course, an oversimplification of ocean dy-
namics, which are nonstationary and nonlinear. It is not our
goal to propose an accurate ocean model, nor is this needed:
our goal is a novel approach to the estimator, not to ocean dy-
namics; furthermore, in practice the model needs to be only
good enough to regularize the space-time interpolation of mea-
surements.

We discretize our model (6) onto an m x m grid to construct
a system of difference equations

z(t+1) = Az(t) + w(t) )

where z is a column vector of length n = m?2, representing
the whole 2D process (stacked column by column). Under a
Forward-Euler discretization scheme [18], [48] the dynamics
matrix A is penta-diagonal and can be efficiently represented
implicitly by a stationary convolutional kernel Ay:

0 0
Ay =| B B (8)
0 0

QR ™

Simplified by the sparse, implicit kernel representation of A in
(8), the exact state prediction can be computed as a convolution,
as is well known:

B(t+1[t) = Ag % 2(t]1). ©)

The much greater challenge lies in the prediction of the er-
ror statistics. In principle, the estimation error is propagated
through time as

P(t +1|t) = AP(t[t) AT + Q. (10)
For large-scale dynamic estimation problems the exact, brute-
force computation of (10) is impossible. Furthermore, from a
storage perspective the updated estimation error P(t|t) has a
size of O(n?) and is impossible to store explicitly. Finally, from
a computational perspective the O(n?) effort in the multiplica-

tions is infeasible for large 2-D dynamic estimation problems.

To be sure, the sparse structure of A leads to an obvious effi-
cient approach to the matrix multiplication, however the storage

of the resulting irregular and non-stationary P(t + 1|¢) is still
a problem. Our approach for the error prediction step is to pa-
rameterize the error covariances P(t|t), P(t + 1|t). Note that

any positive semi-definite matrix P can be written as a product
of standard deviations o and correlation coefficients p:

1
P = {pp'}?0d (11)
‘7(21,1) 0(1,1)0(2,1) 0(1,1)0 (n,n)
_ T@enI1)  T(a 5
2
L O(n,n)0(1,1) O (n,n)
i 1 P,1)(2,1) P(1,1)(n,n)
P2,1)(1,1) 1 ;
L P(n,n)(1,1) s 1

That is, P is explicitly expressed in terms of its variances p =
diag(P) and its correlation coefficients ®, where © refers to
element-by-element multiplication. So we wish to express the
prediction (10) as

(B BT} © o) ©redietion

(Bt + 1) pt+ 11T} 0 ®(t+1]t).  (12)
This obviously raises new issues: how is the prediction in (12)
to be affected, and how to choose a positive definite ®?

The evolution of p is at least intuitive: the error variance de-
creases near measurements, and increases with every predic-
tion step. The form of & is much less obvious. Naively, one
might (we did, initially) assume that the correlation-coefficient
structure might change relatively little with measurements, and
that the most obvious positive definite structures, either the Lya-
punov solution

P, =

AP,AT +Q (13)
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Fig. 3. The empirical relationship between correlation length I and error standard deviations /5. For the static stationary-exponential case the relationship is
parabolic (that is, [ is linear in p), but nonstationarities (a) spread the relationship. Even for dynamic, simulated diffusion processes the relationship is still very

nearly parabolic, illustrated for correlations lengths of (b) 4.0 and (c) 12.0.

or the Riccati solution?
P, = APAT +Q - AK(t)CP,AT, (14)

might suffice. Empirically, however, not only are the Lyapunov
and Riccati solutions at the large and small extremes in terms of
the estimation error variances, they also lie at the long and short
extremes on the continuum of correlation lengths! Analytically,
for a simple two-element problem

a b

b a ] ’

[2] 7|

Measurements y = Iz + v, cov(v) = [

(15)

/6 0
0 1/6 ](16)

it is easy to derive that a, the estimation error variance, cannot
exceed a and is a decreasing function of §, as expected, but also
that b drops faster than a. That is, that the correlation coefficient
p= B/d of the estimation error is also a decreasing function of
d.

Why should this be so? The errors which remain after mea-
surements have been taken should not be highly correlated, as
a strongly correlated component should have been reflected in
the measurements. Thus, it is the short-range errors, propor-
tionately less observed, which remain. Thus we conclude that
® is strongly sensitive to the measurement structure, and nei-
ther the Lyapunov nor the Riccati correlations are particularly
good choices for ®.

This is challenging and frustrating because the 2D covari-
ance extension problem [26], [36] — how to infer a valid ® from
a sparse subset of correlations — is unsolved. We propose to
circumvent the issue by modelling ® in a parameterized form
which is known to be positive definite. In our particular context,
diffusion dynamics imply an exponential correlation structure
[14], which is known to be positive definite when sampled in
two dimensions. Consequently, we propose to model the error
structures ®(¢|t), ®(¢ + 1|¢) by an exponential model

o |7 |+1751
Ya,g) (kg d+mi)

2Clearly the Riccati solution depends on the number, quality, and distribution
of measurements. If we refer to “the Riccati solution,” we mean the extreme
case of dense measurements, with the measurement error variance set to the
value expected in the problem context.

3There are other analytic positive-definite functions, of course: Gaussian,
spherical, logistic, Bessel etc.

Pij) (i jtry) = € 7

where [ represents the correlation length.

Given (17), our former problem — how to implement the
prediction of (12) — reduces to the prediction of the diagonal
elements p and the correlation lengths L(¢+ 1|¢). Our approach
to both of these follows from the construction of relationships
between the error variances and correlation lengths:

(tt)
Bt +11t)

— L(t|t)

— L(t+1]t) (18)

Such a relationship is not obvious, yet it is implied by the dis-
cussion following (16). Indeed, for the static problem of (16)
(and, in fact, for all stationary exponential cases) the correlation
length is linearly proportional to the variance:

p

]
Po Lo
and justifies the premise of a p < L relationship, where p,, [,
are the process (Lyapunov) variance and correlation length, re-
spectively.

For nonstationary problems, however, this linear relationship
no longer applies, at least in part because of ambiguities in even
defining “correlation length” in such a case, yet the empirical
p & L relationship remains close to linear for all but small
P, as is shown in Figure 3(a), in which posterior nonstationari-
ties are introduced by measuring one pixel out of a state of five
elements.

If we introduce dynamics and run a Kalman filter for a
small-sized problem, this relationship remains, as seen in Fig-
ure 3(b,c). Note that this empirical relationship does not imply
that the correlation length depends on the error variances only,
rather that both are highly-similar functions of other factors:
the quality and number of measurements at a given position,
process covariance, the underlying dynamics etc.

In general the relationship may be assumed linear, or inferred
experimentally over the range [lsmaii , liarge] OF possible cor-
relation lengths:

(19)

lsmall = lRiccati7 llarge = lLyapunov- (20)

We complete the error prediction step by considering the prop-
agation of the updated error variances

B(t + 1|t) = diag(AP(t[t) AT + Q). (21)
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Fig. 5. Fixed correlation-length prior models: Suppose we wish to fuse two new measurements (a) with the nonstationary prior model from Figure 4(c,d). We use
two stationary prior models: (b) a short correlation length {1 = 0.6, and (c) a longer correlation o = 9. The panels plot the degree of approximation (23), where
dark shades represent higher quality. Note that although both (b),(c) contain regions of significant error, an excellent estimated image could be found through the

selection of appropriate subsets of (b) and (c).

Because of the sparseness of A, this product can be undertaken
exactly. Recall that the discretized temporal dynamics matrix
A is represented implicitly; consequently finding any particu-
lar predicted error variance amounts to modulating the kernel
values Aj, by the updated error variances and joint statistics.
Because of the mixing effect of the dynamics, it is important
to recognize that computing just the diagonal elements of the
predicted error will require some of the off-diagonal elements
of the updated error covariance P(t|t). These elements may
be available directly from the algorithm performing the update
step, or computed from the empirical relationship between p
and [. This computation is not demanding as the number of
necessary cross-covariances is very small in comparison to the
size of the covariance matrix.

The prediction step is therefore complete: given the up-
dated estimation error variances p(¢|t), the associated correla-
tion lengths L(t|t) are inferred, leading to the computation of
D(t + 1|t) and L(t + 1|¢), from which the predicted error co-
variance is finally computed as

P(t+10t) = {pt + 1|t) p(t + 1|)T}2 @ D(t + 1]t)  (22)

The process is illustrated in Figure 4: we start with a stationary
covariance model, introduce four sparse measurements and per-
form an exact update, and then apply twenty prediction steps.

I11. UPDATE

Typically the most challenging aspect of the update step is
the matrix inversion in (3). Here we propose to use a multiscale



approach which efficiently solves the update step and produces
p(t|t), as needed for prediction. The method, which has previ-
ously been applied in a wide variety of image processing [13],
[46], [20], [33], [38] and remote sensing contexts [21], [41],
models a two-dimensional field on a quad-tree. The hierarchi-
cal nature of the model admits extremely efficient estimators,
albeit introducing new challenges in terms of finding accurate
and appropriate tree-models. The details of the multiscale ap-
proach are not important; the methods of this paper are in no
way multiscale-specific, and the multiscale method is treated
as a black box. Interested readers will find the multiscale al-
gorithm described in detail in [21], [38] and code is available
on-line.*

Many efficient estimators, including multiscale, apply most
easily to static problems. Challenges arise from dynamic esti-
mation [30], [31] because the error statistics normally become
non-stationary: in Figure 4 the correlation length varies spa-
tially from short (near measured pixels) to large (far away).
Thus even our proposed parameterization has problems, in that
(17) is guaranteed to be positive definite only for a fixed (i.e.,
stationary) correlation length, not a space-varying one. One
possibility is to update the non-stationary prior model (for ex-
ample, that from Figure 4 (c,d)), but approximated by a sta-
tionary prior. We can measure the error in the approximation
relative to the expected size of the estimation error /5(1), pay-
ing a greater attention paid to those pixels where the estimator
should be doing better:

| — Zapprox|

\/E )

where 7 is the best or exact state estimate, computed using the
correct nonstationary prior model, and where Zapprox is an ap-
proximate estimate, using a prior based on fixed (stationary)
correlation lengths.

For example, consider the non-stationary prior model from
Figure 4 (c,d), but approximated with a stationary prior. Fig-
ure 5 (b,c) plots the approximation (23) in the estimates (1),
computed using fixed correlation length . Clearly the estimates
computed using a short correlation length, Figure 5(b), are more
accurate in those parts of the prior, Figure 4 (d), having a short
correlation length, and similarly Figure 5(c) for longer lengths.

The key insight is that although both Figure 5(b),(c) contain
regions of significant error, an excellent set of estimates could
have been found through the selection of appropriate subsets of
(b) and (c). To extend this idea, can we interpolate the two sets
of estimates to acquire even better estimates for intermediate
correlation lengths?

In other words, given two stationary static estimates Z (1),
2(ly) and associated estimation error variances 5(l1),p(l2),
how can we interpolate them effectively such that the validity
or accuracy of the interpolated estimates is high over the whole
domain? In addition, the estimates and error variances should
be smooth, without blocky artifacts at artificial boundaries.®

Approximation Error = (23)

4Several versions of the multiscale estimator are available at
ocho.uwaterloo.ca.
5As would, for example, be introduced by a decoupled piecewise-constant

correlation prior.

Let us generalize the problem by approximating the estimates
Z and error variances p by interpolating K stationary prior mod-
els

K
:‘T\\(ZJ) = Z@(i7j, lk)aw(lkalij) (24)
A k;l
plig) = Y plin g, k) (li, Lij) (25)

~
Il

1

where [;; is the nominal, space-varying correlation length of the
prior model.

There are two issues here: how to compute the best interpo-
lating weights ., o, and how to choose the optimum set of
values [, for the interpolants?

A. Optimum Weight Computation
Suppose we are given the K interpolating lengths

{lsmall = ll, 127 l31 Tty lK = llarge}

which span the entire expected range [Ismaii, liarge] OF COrrela-
tion lengths. Then the weights associated with any fixed length
lomatt <1 < liarge Can be estimated using least-squares.

Suppose we first consider a stationary estimation problem
with a fixed prior correlation length of [. Then the exact es-
timates and error variances may be written as

K
> dlk)aw (k1) + ¢

k=1

(26)

=

ﬁ(lk)ozp(lk,l) +gp (27)

k=1

where e, e, represent the errors in the interpolation. To keep
the interpolation unbiased the sum of the weights is forced to
equal one,

K K
ap(l, 1) =1=Y ax(li,1), op(l,]) =1= ap(lk,1) (28)
k=2 k=2

such that the interpolation becomes

@)=ih+2@m—ﬂﬂ%%DWAM
= @(ll)—i-Ha () +e, (30)
() = B(l) +Z (Ir) — B(11)ap (i, 1) + e, (31)
= (11)+Hpgp(l)+§p (32

In order to estimate o,c, we need the exact estimates

i(l),ﬁ(l). Based on our chosen correlation function (17) we
can generate random sample paths for a small-sized 2D pro-
cess, from which measurements are taken and exact estimates
are computed. The squared interpolation error || e, ||? is min-
imized by solving a least-squares problem, whose well-known
solution is

-1



15 T T
— States
— — Estimation error variances
1k -~ 39(4-0)
’ ~ =
’ o (4.0 —— -

" ’ So a (25 — -
2 1 ~ -
5 ' heS -
]
g o o5 a,(25)
2ost f\ < S
s \J - So
e |\ . -
3] - ~
£ I\ ’ R

1 . L, Seo

fl < /- Se o -

Z =~
L . (0.6]
0 R . I
T ‘e _.am===""
e i mmmm="
-------
a,(06)
~05 I I I I
0 5 10 15 20 25

Correlation length

Fig. 6. The general shape of the interpolating weights for the states o, (solid
lines) and the estimation error variances o, (dashed lines). The weights are
constrained to sum to one.

and similarly for a,(l).  Once the estimated weights
{az(ls, 1)}, {ap(l;,1)} have been computed as a function of 7,
we can express the state estimates z () and the error variance
estimates p(!) at any correlation length /.

Figure 6 shows one example of K = 3 interpolating weights
lsman = 0.6 ,lo = 0.4, liarge = 25]. As expected, the
weights sum to one, and the interpolation is exact at correla-
tion lengths 0.6, 4.0, 25; further, the weights decay in value as
we move away from the corresponding correlation length. The
figure does raise the question how the choice of intermediate
length -, or the inclusion of additional lengths, affects the ac-
curacy of the interpolation, discussed next.

B. Optimum Correlation Lengths

There are two critical factors affecting the computation of the
interpolating weights: the number of interpolating priors K and
the particular choice of correlation lengths {l;}.

We propose to optimize the set of weights by minimizing the
worst-case fractional error (23):

Minimize  max (max 126,51 _””(Z’j’m) . (34)
L b ﬁ(% ja Z)
The sensitivity of this criterion to a change in the correlation
lengths {i;} is depicted in Figure 7. The figure illustrates the
case of K = 3, where two different values are chosen for the in-
termediate length [5. It is obvious that modest changes in /5 can
have a very substantial affect on the quality of the interpolation,
and that the quality can vary significantly with [.

To solve for the optimal lengths, given K, we start with a
heuristic initial guess for the intermediate correlation lengths
la, ..., lx_1, from which the optimization problem (34) is suf-
ficiently straightforward to be solved using a standard direct
search (MATLAB fmins). Two examples are depicted in Fig-
ure 11(a),(b), for K = 3,55 respectively. Examining the two
panels, we observe that the worst-case relative error for X' = 3

6To keep the interpolation simple, only three {I;} adjacent to I are used.
Clearly the choice of three correlation lengths is arbitary, and the method ex-
tends trivially to any number.
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Fig. 7. llustration of the effect of the intermediate correlation length position
on the maximum error in the 2D domain: solid, lo = 2; dashed, 2 = 10.

in Figure 11(a) is 0.1 standard-deviations; as we increase the
number of interpolants to K = 5 in (b), the relative error drops
to just 0.02 standard-deviations. That is, with K = 5, our ap-
proximated update will induce errors no greater than one fiftieth
of a 1o error bar for any stationary process.

Table I generalizes the above figures to give the dependence
of the relative error (34) as a function of the maximum corre-
lation length and the number of interpolants K. Clearly, as the
number of interpolating correlation lengths increases the rela-
tive error drops to insignificance. The maximum correlation
length is normally determined by the context of the estimation
problem; as /;,.¢. increases the interpolation problem becomes
more challenging, so a larger value of K is required to maintain
a fixed level of update accuracy.

Thus, to recap, we have derived weights o, (1x, 1), ap (L, 1)
allowing us to interpolate a modest number of stationary esti-
mates to any desired correlation length. Figure 11 and Table |
both test stationary examples, in which the prior correlation [
is spatially constant. The use of this interpolating approach for
nonstationary [ is considered next.

1V. EXPERIMENTAL RESULTS

Two sets of examples are presented: synthetic toy-problems,
where “truth” is known and where exact estimates can be
computed by brute force, and a large-scale ocean sea-surface-
temperature estimation, to illustrate the applicability of our ap-
proach to large problems of current interest.

MAXIMUM ERROR (34), MEASURED IN STANDARD DEVIATIONS, AS A

Process Number of priors K
correlation length 3 5 7 9
3 0.0109 | 0.0013 | 0.0004 | 0.0002
8 0.0384 | 0.0070 | 0.0022 | 0.0009
17 0.0789 | 0.0145 | 0.0045 | 0.0019
25 0.0996 | 0.0183 | 0.0056 | 0.0024
TABLE |

FUNCTION OF K AND PROCESS CORRELATION LENGTH.




Exact Approx.
Exact Estimation error Std. Dev. Approx.

35
03

0.25

- . i

0.15 15

05

L |

5 10 15 20 5 10 15 20

State Error Std. Dev. Error
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(23); the error in standard deviation is plotted as the absolute difference.
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A. Synthetic: Time-invariant

Consider a two-dimensional 24 x 24 pixel diffusion problem
with a process steady-state correlation length /;4,gc = 7. We
will approximate the estimation problem using the prediction /
update methods developed in Sections Il and 111, with K = 5.

Suppose we have a single measurement, sampled at each
time step with a measurement error variance of 4. Figure 8
depicts the exact estimation results obtained by the Kalman fil-
ter (left) and by our approximate approach (right) after twenty
time steps.

The approximate estimates and error variances are free of er-
ror at the measured position and its neighbouring pixels, with
the approximate filter tending to underestimate the estimation
error variances for elements away from the measured position.
The bottom panels in the figure show the fractional and absolute
errors of the estimates and standard deviations, respectively.
Because of the high accuracy of the update step, particularly
with K = 5 interpolants, the bulk of the error can be attributed
to the prediction step. It is important to note that the single-
measurement test of Figure 8 is really a worst-case example: as
more pixels are measured, the quality of the estimates depends
to a lesser degree on the precision of the prediction and update
steps.

Next, consider measuring more than one pixel. Since the
estimation error variance p is a function of the number of mea-
surements, in comparing update steps with different numbers of
measurements a slight variation on (34) should be considered.

1 15 20
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RMS of fractional error (35) for time-varying measurement positions varying (a) the number of prediction steps per update, (b) the number of
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We define the root-mean-square fractional error as

(-

1 ()2
w2 22 50

RMSFE(l) = (35)

where all of the divisions are point-wise. This measures the size
of the errors (1) —z(1) relative to the estimates z(1), modulated

by the expected size of the estimation error 1/ p(1).

In Figure 9(a) the RMSFE is plotted as a function of num-
ber of updates for various number of prediction steps (five, ten,
twenty) between successive update steps. It is obvious that in-
creasing the number of predictions magnifies the approximation
effect imposed by our method, although the approximation er-
ror never exceeds 10% of the estimates.

A second test, plotting the RMSFE as a function of the num-
ber of measurements, is illustrated in Figure 9(b). As is con-
sistent with expectation, an increase in the number of measure-
ments leads to a reduction in the fractional error.

B. Synthetic: Time-varying

From the remote-sensing perspective, a more realistic prob-
lem has the measurement positions vary over time. The follow-
ing experiment is the same as in the previous section, except
that the number and positions of observations change randomly
over time.
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Figure 10 shows three tests, where the RMSFE (35) is plotted
as a function of the number of update steps for varying numbers
of prediction steps or measurements, and different process cor-
relation lengths. As is expected, fewer prediction steps, more
measurements, or a greater correlation length all contribute to a
reduced RMSFE.

All three tests show a qualitatively similar behaviour in
RMSFE: initially small, growing rapidly, and then decreasing
over time. Because the process is started in steady-state, the
prior model will have correlation length /;,,4e, thus the first
update step will produce exact estimates and the RMSFE be-
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Comparison of the exact Kalman filter with our proposed, parameterized form and with a sparse Kalman filter based on a third-order neighbourhood

gins at zero. As measurements are introduced the problem be-
comes nonstationary, and the resulting approximations cause
the RMSFE to increase. However as the random process be-
comes more thoroughly measured, the error statistics become
more uniform and the RMSFE decreases. Clearly the size and
width of the peak will be a function of the time step, the rate of
change of the random field, and the number and distribution of
measurements.



C. Sparse Kalman Filter Comparison

As discussed in the Introduction, one common approach to
solving dynamic estimation problems is the sparse Kalman fil-
ter [2], [8], [9], [11], [12]. The approach is based on the
premises that the error covariance inverses can be approximated
as banded, implying a Markov structure for the error field. Our
key interests concern testing efficiency, accuracy, and stability.

The computational demands for this method are dependent
on the number of bands by, by kept in the dynamics A and co-
variance inverses P! respectively (and on the number of terms
p in the case of polynomial approximation for matrix inversion).
The dynamics are often banded (penta-diagonal, in our case,
allowing A to be represented exactly); the challenge normally
stems from limiting b, and p. The computational complexity of
the error prediction step is dominated by matrix multiplication,
of order O(2-b1-b2-n). The complexity of the update step is de-
termined by computing the matrix inversion O(b2” -n), the gain
matrix O(bo? -n), and the updated covariance O(by*-n). There
are stability concerns, however, because not every banded co-
variance inverse is positive definite, as we shall see.

For our proposed approach, on the other hand, the error pre-
diction step is extremely fast and has linear complexity O(n),
since each pixel is predicted locally. The complexity of the
update step will depend on the number of interpolants K and
on the estimation algorithm chosen to implement this step. If
the multiscale approach [13], [33], [38] is used, as proposed,
then the update step has complexity O(K - n2), and stability is
guaranteed since each of the K subproblems is constructed to
be positive definite. In this particular example, since we are in-
terested in testing the proposed method of interpolating updates
rather than the details of a multiscale implementation, each of
the individual, stationary updates are computed exactly.

Figure 12 shows the comparison between the two approaches
for the case of a 24 x 24 process. The matrix inversion of the
sparse approach is computed exactly, so Figure 12 presents an
optimistic level of performance for the sparse method, and the
degree of approximation should be expected to be inferior in
more realistic settings. We have chosen b, = 5, representing
the dynamics exactly; the only approximation enters with the
representation of the covariance inverse, with by = 12 bands.
The update step in our proposed method is based on K = 5
interpolants.

The results are depicted after 50 update steps, comparing the
estimates and error variances for the exact, sparse, and proposed
methods. The sparse state estimates and error statistics fail to
propagate very far from the measured location and are quite
poor, compared to the much more accurate results produced by
our proposed method.

For the same experimental context from above, Figure 13
shows the accuracy, measured as RMS fractional error, of the
two approaches. Given that all of the approximation in the
sparse approach lies in the representation of the error covari-
ance, controlled by b,, six different values of b, are tested. Not
only is the RMSFE much greater for the sparse approach than
for our proposed one, but in about half of the sparse experi-
ments the estimator becomes unstable (negative-definite covari-
ances), whereas our proposed approach guarantees stability.
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sponding to increasing neighbourhood orders. The erratic nature of the sparse-
KF curves is attributed to stability problems — closeness to singularity or neg-
ative definiteness of state covariances.

D. Remote Sensing

Ultimately the main motivation of this research is to apply
it in solving large-scale 2D dynamic estimation problems, for
example the estimation of the sea surface temperature (SST)
from a sequence of sparse 2-D satellite measurements (e.g.,
SSM/I1[32], ATSR[43], [44], or AVHRR[15]). SST is a quantity
of fundamental significance in climate monitoring, numerical
weather prediction and oceanography, for example in the early
detection of climate anomalies such as El Nino[44] or global
warming. We are using SST observations from the Along-Track
Scanning Radiometer (ATSR), whose daily global coverage is
less than 20%, and many areas are subject to persistent cloudi-
ness, so there are extensive regional gaps.

We estimate temperature anomalies (that is, mean-removed)
based on mean-removed measurements and a diffusive model
for the ocean dynamics. We set the diffusion parameters to ap-
proximate the empirical statistics, such that the process spa-
tial correlation length is 20 pixels (5 degrees), and a corre-
sponding temporal correlation length of 300 prediction steps
(ten days); in practice an experienced ocean scientist would
set these parameters (possibly nonstationarily), guided by ad-
ditional insights. The model is initialized with a spatial prior
model, isotropic exponential with a correlation length of 20
pixels and a standard deviation of 70 K. The update steps are
twelve hours apart, such that night-time and day-time measure-
ments are separately included, and fifteen prediction steps are
applied between successive updates.

The resulting temperature estimates and corresponding esti-
mation error standard deviations are shown in Figure 14. The
estimated images are dense, smooth, and do not possess any
blocky artifacts arising from the estimation process. The er-
ror standard deviations very clearly show the smooth evolution
over time from certainty to uncertainty, as more recent mea-
surements correspond to regions of greater certainty than past
ones.

Clearly the model employed here is only an approximation,
both in terms of the heuristic choices in diffusion parameters,
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Fig. 14. Anomaly estimates and error standard deviations for the proposed estimator, applied to five months of ATSR sea surface temperature data, starting in
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as well as limiting ourselves to a strictly diffusive model, which
fails to consider any surface motion / flows. An advective term,
based on known or inferred currents, would lead to improved
estimates.

V. CONCLUSIONS

The dynamic estimation and filtering of large data sets over
time is a substantial challenge of considerable interest in remote
sensing. The ability to estimate periodic (hourly, daily, etc)
snapshots is a critical step in the production of operational data
products from sparse satellite data.

In this paper we have proposed a highly efficient approximate
variation of the Kalman filter. The static step, the primary con-
tribution of this paper, uses a mixture of stationary models to
accurately mimic the effect of a nonstationary prior. Not only is
this effective in simplifying the computational complexity, but
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it also simplifies modeling. Given a spatial map of correlation
length, an ad-hoc derived prior model may be negative definite
or very close to singular, and the absence of an efficient solu-
tion to two-dimensional covariance extension precludes finding
an exact prior. However our approach provides an efficient, sta-
ble, positive-definite model which is consistent with the given
correlation structure. Thus the methods of this paper may find
application in modeling, single-frame estimation, and dynamic
estimation.
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