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Abstract— Hematopoietic Stem Cells (HSCs) form blood and
immune cells and are responsible for the constant renewal
of blood. To produce new blood cells, HSCs proliferate and
differentiate to different blood cell types continuously during
their lifetime. Hence they are of substantial interest in stem
cell therapy and cancer research. To classify HSCs to different
groups, they must be observed/tracked over time and their
key features including cell size, shape, and motility must
be extracted. The manual tracking is an onerous task and
automated methods are in high demand.

The first stage of an semi-automatic/automatic tracking
system is cell segmentation. In our previous work we addressed
the cell segmentation/localization problem. Modelling adjacent
or splitting cells is very challenging and our previous methods
might fail to accurately model a group of adjacent cells or a
splitting cell. In this paper we address this issue and propose
a deconvolution method to precisely model individual HSCs as
well as adjacent (splitting) HSCs. An optimization algorithm
is combined with a template matching method to segment cell
regions and locate the cell centers.

I. INTRODUCTION

Advanced techniques in digital image processing and

pattern recognition must be applied to a huge number of

bio-cellular images in semi-automated/automated digital cy-

tometry systems to improve our understanding of cellular

and inter-cellular events and to achieve significant progress

and new discoveries in biological and medical research.

Microscopic cell image segmentation as an object segmen-

tation problem remains an attractive and challenging task

due to the often corrupted or blurred images, high noise,

the presence of clutters, and the difficulties of adapting and

extending available image segmentation approaches to the

applications of cell imaging [1], [2], [3], [4]. A variety of

semi-automatic or automatic methods including thresholding,

watershed, nearest neighborhood graphs, the mean shift

procedure and deformable models have been proposed for

cell segmentation. Geusebroek et al [5] introduced a method

based on Nearest Neighbor Graphs to segment the cell

clusters. Meas-Yedid et al [6] proposed a method to quantify

the deformation of cells using snakes. Kittler [7], Otsu [8]

and Wu [9] have used thresholding methods. The mean shift

procedure method was proposed by Comaniciu et al [2] for

cell image segmentation for diagnostic pathology. Watershed

has been used by Markiewicz et al [10] for segmentation of

bone marrow cells.

This research has been funded by the Natural Science and Engineering
Research Council of Canada (NSERC).

Fig. 1. Left: Original HSC image. Right: After background estima-
tion/subtraction.

In this paper, a novel deconvolution method in the form

of an optimized ellipse fitting algorithm is proposed to

locate the individual Hematopoietic Stem Cells (HSCs).

The proposed method has been successfully applied for

modelling HSCs and identifying their locations in phase

contrast microscopic images.

To produce the data for this study, HSC samples are first

extracted from mouse bone marrow and cultured in custom

arrays having up to forty wells. HSCs are then imaged using

manual focusing through a 5X phase contrast objective using

a digital camera (Sony XCD-900). Images were sampled

every three minutes over the course of several days. A small

fraction of a typical HSC microscopic image is depicted in

Fig. 1.

II. THE PROPOSED METHOD

In our previous work [11] we characterized a typical

HSC in a microscopic image as an approximately circular

object with a darker interior and a bright boundary. The

proposed cell model works well to localize a specific HSC

phenotype, however the performance of the algorithm drops

if there are significant illumination variations during phase

contrast imaging. Moreover it is developed for a specific

HSC phenotype and performs poorly for the phenotypes

that do not maintain a uniform bright boundary and dark

interior. In [12] we introduced a more general model which

is robust against noise and can be applied to the different

HSC phenotypes.

Although our previous methods [11], [12] perform well to

locate non-dividing and dividing cells, they are not capable

of accurately model splitting or close by cells. As a result
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Fig. 2. (a) Original HSC image after background subtraction. (b) Elliptical
mean square of (a). (c) Binary image of (b) showing cell regions.

they might fail to precisely locate the adjacent cells and in

turn are prone to generate erroneous results in such cases.

To address this issue, assume that in advance we have

segmented the cell areas containing individual or groups

of cells. Then locating the cell centres or cell centroid

(depends on the cell shape parameters) is essentially an

inverse problem which can be addressed in the form of a

deconvolution problem such that a set of cell(s) shape pa-

rameters must be found for optimal representation of cell(s)

segmented area. The proposed method solves the inverse

problem using an optimized ellipse fitting method to find the

optimal cell(s) parameter set and locate the cell centres. This

is a generic method, capable of modelling different cell types

with changes in the model parameters, and robust against

illumination variations. Our proposed method consists of

background subtraction, cell template generation, template

matching, and optimized ellipse fitting.

III. BACKGROUND ESTIMATION

We have employed the same method for background

estimation and subtraction as in our previous work [12]. In

this method we assume F and I are pure and corrupted

sequences, respectively, of N × M images. F is corrupted

by spatial illumination variations v over time and temporal

additive noise n in each frame. We also assume that v and n

are identically distributed, independent from each other and

both independent from I

I = F + e (1)

where e = v + n. Each pixel Iijt represents a pixel in 3

spatio-temporal dimensions such that

Iijt = Fijt + eijt (2)

where

eijt = v
{[1:T ]}
Spatial+n

{[1:N ][1:M ]}
Temporal = v

{[1:T ]}
ij +n

{[1:N ][1:M ]}
t (3)

Then the pure signal F is estimated by

F̂ = I − ê (4)

where for each spatio-temporal pixel Fijt we have F̂ijt =
Iijt − êijt.

 

 

Fig. 3. Sample cell template.

IV. ELLIPTICAL MEAN SQUARE MODEL

HSC can be observed by a set of pixels with significant

intensity variations against the uniform background in the

background corrected image. Hence we model HSCs as

elliptical anomaly to segment the cell regions assuming

(cx, cy) as center coordinates, a and b as horizontal and

vertical radii of the cell. The continuous elliptical cell is

spatially discretized as

(xl − cx)

a

2

+
(yl − cy)

b

2

≤ 1, (5)

where (xl, yl) are coordinates of cell pixels. So the set of

inside cell pixels can be explained by

Cp(cx, cy, a, b, I) = {Iij |
(cx − i)

a

2

+
(cy − j)

b

2

≤ 1 }, (6)

from which we compute the sample mean of square-

intensities of cell pixels

C̄p =

∑

l C
l
p

2

|Cp|
(7)

To discriminate cells from background, the resultant mean

square image is classified to cell and background by min-

imizing the inter-class variance as can be observed in Fig.

2(b).

V. CELL TEMPLATE GENERATION

In contrast with our proposed mathematical cell template

in [11] that was introduced based on attributes of a specific

HSC phenotype such as uniform bright boundary and dark

inside, here using user interactions a more general cell

template applicable to different cell types will be generated.

In this way user selects some cells in a few frames of

the video clip by clicking on the upper-left and lower-right

corners of a rectangular box that the cell is surrounded in.

The selected cells are averaged to generate the cell template:

Ctpl =
1

Nc

Nc
∑

n=1

Cn
rect (8)

where Ctpl and Cn
rect are 2-Dimensional matrices. Then the

cell template is convolved with the background corrected

video clip to generate a correlation map. Cell template and

the correlation map obtained by applying the cell template

are depicted in Fig. 3 and 4(a) respectively. The brighter

pixels in the correlation map show the highly correlated
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Fig. 4. (a) Correlation map obtained by applying the cell template to the background corrected image. (b) Thresholded correlation map. (c) All 1-D local
maxima with distance 1-pixel located in each row and each column of (b). (d) Labelling the cell segmented regions. (e) Superimposing (c) on (d).

points which are more likely to be a cell centre. To remove

the unlikely cell centre candidates the correlation map is

thresholded as depicted in Fig. 4(b).

VI. ELLIPSE FITTING

So far we have segmented the cell regions using classifi-

cation of elliptical mean square map to cell and background

regions, and located the cell centre candidates by applying

the cell template and thresholding the correlation map. The

set of cell parameters in a typical video frame is explained

by f :

f = {(cx, cy, a, b, θ)| (cx, cy) ∈ Ccnt} (9)

where (cx, cy) are cell centre coordinates which will be

extracted from the set of cell centre candidates Ccnt. Radii of

elliptical cell are represented by (a, b) and θ is orientation of

the cell. To locate the cell centres, we propose the following

Maximum A Posteriori (MAP) problem to be solved:

f̂ = arg

{

max
f

P (f | I)

}

(10)

HSCs in our problem have a quasi-circular shape and without

losing the generality we can assume θ = 0 so that (9) can

be simplified to:

fθ = {(cx, cy, a, b)| (cx, cy) ∈ Ccnt} (11)

and as a result (10) can be rewritten as

f̂θ = arg

{

max
fθ

P (fθ| I)

}

(12)

To solve the MAP problem (12) and find the cell centres and

ellipse’s radii for each cell, we apply an optimized search

method by fitting elliptical shapes to the segmented cell

regions and searching for the maximum of R(α, β, δ) defined

as

R(α, β, γ) =
α

β + γ
(13)

where α is covered area of the segmented region by ellipse

(or ellipses), β is the area of the segmented cell region that

is not covered by any ellipse, and γ is the area outside of

the segmented cell region that is covered by an ellipse (or

ellipses). Maximum of (13) must be found over the search

space which consists of cell centre candidates Ccnt and cell

radii candidates Cradi. The former is obtained by locating all

1-Dimensional local maxima with distance one pixel in each

row and each column of thresholded correlation map as it is

depicted in Fig. 4(c). The latter is a 2×Nr matrix which is

set empirically by observing HSC over different video clips,

where Nr is the number of radii pairs.

VII. RESULTS

To derive the results, first the estimated background is

subtracted from the original video clip to eliminate the noise

and illumination variations and to obtain a video clip with

uniform background as depicted in Fig. 1. The proposed

elliptical mean square is then applied to the background

corrected image (Fig. 2(a)) as can be seen in Fig. 2(b). In

the next step the mean square image is classified to the cell

regions and the background as it can be observed in Fig. 2(c).

Fig. 3 shows the generated cell template while the correlation

map, thresholded correlation map, and located 1-D local

maxima with 1-pixel distance are depicted in Fig. 4(a), (b),

and (c) respectively. Fig. 4(d) shows the labelled segmented

regions. The superimposed 1-D local maxima on segmented

cell regions is depicted in Fig. 4(e). Fig 5(a) shows the first

segmented cell region with superimposed cell centre candi-

dates for this region. A typical hypothesis f
Rig1

h is showed

in Fig 5(b) in which we can observe two elliptical cells

are fitted in the segmented region. Optimal hypothesis f
Rig1

best

which maximizes R for this region is depicted in Fig. 5(c).

As we can observe an elliptical cell almost perfectly covers

this region. White and light gray represent α, dark gray

represents β while γ is represented by black in Fig. 5.

Fig. 5(c), (d), and (e) respectively show the segmented region

of a splitting cell with superimposed cell centre candidates,

a typical hypothesis f
Rig3

h , and optimal hypothesis f
Rig3

best for

this region which maximizes R by fitting two elliptical cells.

The proposed method is applied to different HSC video

clips and generated promising results. As can be observed in

Fig. 6, the proposed optimized elliptical cell fitting method is

able to identify both non-dividing and the more challenging

dividing cells so that the cell centres are almost precisely

located for each case.

VIII. CONCLUSIONS AND DISCUSSIONS

Modelling and locating groups of adjacent or splitting cells

is a very difficult and challenging task. Most of the present

cell segmentation methods are not capable of accurately

model splitting or close by cells and fail to precisely locate

them.
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(d) (e) (f)

Fig. 5. Left column: Segmented region with superimposed cell centre candidates. Middle column: A typical hypothesis f
Rigk

h
, fitting two elliptical cells

in the segmented cell region. Right column: Optimal hypothesis f
Rigk

best
which maximizes R for region k; (a),(b) and (c) represent region one (k = 1).

(d),(e) and (f) represent region three (k = 3).

 

 

 

 

Fig. 6. Located cell centres; Left: Superimposed in segmented HSC image.
Right: Superimposed in background corrected HSC image.

In this paper we addressed this issue as an inverse prob-

lem represented in the form of a deconvolution problem.

Our proposed method solves the deconvolution problem by

searching the optimal shape parameters (for each individual

cell) using an optimized ellipse fitting method to represent

the segmented area. This is a generic method, capable of

modelling different cell types by designing the proper shape

model. The optimized cell shape parameters can be then

extracted using the same search method as the proposed

method by optimizing the cost function that fits the cells

in the segmented area.

Moreover our method is robust against illumination vari-

ations. The spatio-temporal background subtraction in the

proposed method removes the temporal noise caused by

illumination variations and spatial noise caused by CCD

camera non-uniformities.
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