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Abstract

Image segmentation is a critical step in building a computer vision algorithm that is able

to distinguish between separate objects in an image scene. Image segmentation is based

on two fundamentally intertwined components: pixel comparison and pixel grouping. In

the pixel comparison step, pixels are determined to be similar or different from each other.

In pixel grouping, those pixels which are similar are grouped together to form meaningful

regions which can later be processed. This thesis makes original contributions to both of

those areas.

First, given a Markov Random Field framework, a Stochastic Nested Aggregation

(SNA) framework for pixel and region grouping is presented and thoroughly analyzed

using a Potts model. This framework is applicable in general to graph partitioning and

discrete estimation problems where pairwise energy models are used. Nested aggregation

reduces the computational complexity of stochastic algorithms such as Simulated Anneal-

ing to order O(N) while at the same time allowing local deterministic approaches such

as Iterated Conditional Modes to escape most local minima in order to become a global

deterministic optimization method. SNA is further enhanced by the introduction of a

Graduated Models strategy which allows an optimization algorithm to converge to the

model via several intermediary models. A well-known special case of Graduated Models

is the Highest Confidence First algorithm which merges pixels or regions that give the

highest global energy decrease. Finally, SNA allows us to use different models at different

levels of coarseness. For coarser levels, a mean-based Potts model is introduced in order

to compute region-to-region gradients based on the region mean and not edge gradients.

Second, we develop a probabilistic framework based on hypothesis testing in order to

achieve color constancy in image segmentation. We develop three new shading invariant

semi-metrics based on the Dichromatic Reflection Model. An RGB image is transformed

into an R′G′B′ highlight invariant space to remove any highlight components, and only

the component representing color hue is preserved to remove shading effects. This trans-

formation is applied successfully to one of the proposed distance measures. The proba-

bilistic semi-metrics show similar performance to vector angle on images without saturated

highlight pixels; however, for saturated regions, as well as very low intensity pixels, the

probabilistic distance measures outperform vector angle.
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Third, for interferometric Synthetic Aperture Radar image processing we apply the

Potts model using SNA to the phase unwrapping problem. We devise a new distance mea-

sure for identifying phase discontinuities based on the minimum coherence of two adjacent

pixels and their phase difference. As a comparison we use the probabilistic cost function

of Carballo [16] as a distance measure for our experiments.
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ΦV (i, j) vector angle distance measure
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Chapter 1

Introduction

Humans can easily, even effortlessly, distinguish between separate objects in an image

scene. This has long been a key problem in computer vision where a number of steps, from

low-level to high-level vision, are needed to understand an image or some portion of it. A

critical step is that of image segmentation [58, 105] — the partitioning of an image into

distinguishable subsets based on the premise that objects having a distinct appearance can

be visually separated. Images are composed of pixels which, depending on the sensors used

to capture them, can represent light intensity values, colors or some other electromagnetic

quantities. Image segmentation requires two distinct components: pixel comparison and

pixel grouping. The pixel comparison function requires the design of a pixel similarity

criterion. The pixel grouping mechanism, on the other hand, aggregates the pixels with

respect to this pixel similarity criterion.

In this thesis, the similarity criterion is examined in light of the advances in the fields

of color image segmentation [5, 24, 93], as well as in phase unwrapping [117]. In color

image segmentation, image partitioning is carried out using chromatic information which

provides a rich set of object cues over and above the brightness levels or textures available

in grayscale images. The chromatic information can improve performance in a variety of

applications such as video surveillance, face recognition, medical imaging, image retrieval

from the Internet or specialized libraries, or color map segmentation. Figure 1.1 shows a

color image and its segmentation. One can already appreciate important challenges such

as region spilling (notice how one of the legs merges with part of the background).

1
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(a) (b)

Figure 1.1: An example color image segmentation: (a) original image, (b) image segmen-

tation.
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While scene analysis using image segmentation has been widely reported in the litera-

ture, the use of image segmentation for phase unwrapping has been less frequent [117, 162].

Phase unwrapping allows us to examine Synthetic Aperture Radar (SAR) interferometry

problems where phase and coherence information can be used to create topographic maps.

Figure 1.2 shows images corresponding to the phase and coherence obtained over Mt.

Vesuvius, as well as a typical segmentation result and the digital elevation model. In this

application, similar challenges to color image segmentation exist. Region spilling is a seri-

ous problem which can have global effects (e.g., wrong elevation being estimated as is the

case in Figure 1.2).

The pixel comparison and pixel grouping components can be both encoded in an energy

minimization framework derived from stochastic physics called Markov Random Fields

(MRFs) [22, 48, 88, 157]. Briefly, MRFs allow us to solve image segmentation problems

using contextual constraints with respect to a chosen pixel comparison criterion. MRF

modelling is an optimization framework that can be either deterministic [7](greedy methods

such as gradient descent which always choose the lowest energy) or stochastic [48] (does

not always choose a lower energy formulation allowing escapes from local minima). Each

of these alternative paradigms has its own advantages and disadvantages. In the next

two sections, pixel comparison and pixel grouping will be examined further and thesis

contributions will be outlined in Section 1.3.

1.1 Pixel Comparison

In pixel comparison, a between-pixel similarity criterion or measure is needed. This crite-

rion needs to reflect the kind of problem that is being solved. In other words, knowledge

about the problem is encoded in the distance measure. Suppose we have two pixels x and

y. The distance (in some feature space) between these two points can be characterized by

a pairwise distance

Φg(x, y) = g(x, y) (1.1)

where g is a function of the two pixels.

There are two general ways how this can be accomplished. First, one can extract

features from the image pixels, effectively transforming the image originally in the sensor
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Figure 1.2: An example of phase unwrapping for creating digital elevation models (DEMs)

using image segmentation: (a) original phase image, (b) original coherence image (each

pixel indicates the reliability of the corresponding phase pixel), (c) segmented phase image,

and (d) digital elevation model (blue is the highest elevation while red the lowest). Notice

the various discontinuities in (d).



Introduction 5

space into anther space [35]. We can assume that a feature space is isotropic, thereby,

computing similarities using the Euclidean distance

ΦE(x, y) = (x − y)T (x − y). (1.2)

However, the isotropic assumption is not always valid. Therefore, the alternative is to

build the feature comparison directly into the pixel distance measure, thereby, operating

directly on the original data [35]. One example of a distance measure which operates

directly on the sensor space is the vector angle [127, 148]

ΦV (x, y ) = 1 −
xT y

|x| · |y| (1.3)

where | · | defines the L2 norm. By working directly on the raw data, the vector angle avoids

assuming that the data space is isotropic and is able to compare color pixels irrespective

of the illumination intensity. This allows for the design of appropriate similarity measures

that can operate without intermediary features, which are usually complex and sometimes

computationally expensive to obtain. However, in the specific case of vector angle, noise

statistics are not preserved due to the non-linear transformation. In addition, distances

for pixels with low intensity values are ill-defined [127, 149].

The pixel comparison measures presented in this thesis will, therefore, be derived from

basic principles to work directly on the sensor space (i.e., either color images or the phase

unwrapping problem). We will endeavor to present metrics which are noise invariant and

carry out reflectance-based distance computation.

1.2 Pixel Grouping

Once pixels can be meaningfully compared to each other, a grouping mechanism needs to

be found to enable regions to be formed and images to be analyzed. In general, grouping

algorithms can be considered visual labelling, graph partition, graph coloring, or discrete

state estimation methods (all terms will be treated as equivalent in this thesis). The goal

is to assign a set of labels L = {1, 2, . . . , K} to a set of pixels {xi} on a regular lattice or

grid S = {i} of size N . This results in the configuration or solution space Ω = LN . If the
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(a) (b) (c)

Figure 1.3: Comparing spatial aggregation and feature-based clustering for image segmen-

tation: (a) original image, (b) image segmented using a feature-based clustering method

[150], and (c) image segmented using a spatial aggregation method [151]. Notice the well

formed regions in (b) with two regions merged in feature space whereas (c) contains some

region-to-region spilling since the two regions contain a smooth transition point at their

border.

label set is discrete with K labels, the size of the resulting space is KN which for images

is very large; for a continuous label set, this space is infinite.

A graph and its constituent nodes correspond to an image and its pixels respectively1.

Image segmentation methods can be roughly categorized as follows: spatial aggregation,

and feature-based clustering. Spatial aggregation concerns all methods that use spatial

relationships to build regions of interest [58] whereas feature-based clustering methods ag-

gregate pixels together based on their similarity into groups or clusters and usually do

not use spatial information [35] (in some cases spatial information is used [64, 165]). In

clustering-based approaches, there is usually no guarantee of spatial compactness, whereas

spatially-based methods suffer from region-to-region spilling (which may occur when two

different color regions, connected by a slowly changing gradient, are joined together). Fig-

ure 1.3 illustrates the difference between the two paradigms of image segmentation2.

Most algorithms presented in the literature are ad-hoc. However, one way to transition

to a principled framework involves finding the optimal solution to an energy function or

1Graphs will be formally defined in the next chapter
2Clustering results for the fruit image originally published in [150].
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model encompassing spatial aggregation, feature-based clustering or both. The optimal so-

lution to fitting the model to the data can be obtained using local (usually deterministic) or

global (usually stochastic) optimization methods. Using spatial aggregation-type methods

based on an energy framework enables us to design an energy function based on a pairwise

comparison predicate between adjacent pixels. In clustering, since spatial information is

usually not used, pixels that are not adjacent can be grouped together based only on the

distance measure.

A significant enhancement of these energy-based methods comes in the form of con-

textual constraints. Contextual constraints can be very easily encoded by using Markov

Random Fields (MRFs) [48, 88, 157] and can be applied to both spatial aggregation and

feature-based clustering methods. In the latter case, clustering algorithms are able to

integrate spatial information with clusters in the feature space [107]. MRFs allow us to

conditionally decorrelate the assignment of a label to a pixel from its neighbors. In other

words,

p(li|lNi
) = p(li| ∪∀j 6=i lj) (1.4)

where li is the label and Ni is the local neighborhood system of pixel i. There are also

other energy based methods which are not based on MRFs and which will be reviewed in

the thesis [167].

In general, energy-based pixel grouping mechanisms [22, 48, 88, 157, 167] rely on the use

of sampling methods. This thesis focuses on Markov Chain Monte Carlo (MCMC) sampling

methods such as Gibbs sampling. These methods are at a considerable disadvantage due

to their high computational complexity when trying to obtain a global minimum. Since

images are usually large, the sampling task becomes impractical as the computational

complexity increases quickly with the number of pixels that need to be processed.

Stochastic and deterministic optimization algorithms are needed for MCMC since the

solution space Ω is very large. A popular stochastic optimization algorithm is simulated

annealing (SA) [19, 48, 76]. Simulated annealing allows solutions to increase in energy

with non-zero probability, thereby, allowing SA to escape local minima in order to reach

the global optimum. However, SA is usually run with sub-optimal parameters in order to

speed up its convergence. Optimal parameters lead effectively to an exhaustive search of
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Ω since the search needs to be carried out for an infinite number of iterations [48]. This is

not an adequate conclusion for practical problems.

Therefore, sub-optimal parameters lead to a lower likelihood of escaping a particularly

deep local minimum and, therefore, the uncertainty of reaching the global optimum. In the

limit, when SA has zero probability of increasing the energy, it becomes a deterministic

method where escaping from a local minimum is impossible (cf. Iterated Conditional

Modes in Section 2.7). Therefore, in practice optimization algorithms seek a local solution

(which is hopefully close to the global optimum). Due to the computational complexity

of stochastic optimization algorithms such as SA and problems with global convergence of

local methods such as ICM, one needs a method to accelerate optimization to achieve the

full benefit of Gibbs sampling.

1.3 Thesis Contributions

The main motivation of this thesis is to contribute to the state of the art in pixel similarity

and pixel grouping methods.

The following contributions augment the state of the art in pixel grouping algorithms

in particular and graph partitioning methods in general:

• We introduce Stochastic Nested Aggregation (SNA), a method which accelerates

discrete state estimation or graph partitioning using stochastic or deterministic ap-

proaches through a hierarchy of graph partitions (in the case of image processing, it

is a hierarchy of image segmentations) in order to minimize a single global criterion.

Stochastic nested aggregation can significantly speed-up stochastic algorithms such

as simulated annealing [48, 76] by allowing fast convergence of the Gibbs sampler to

a stationary probability distribution of the label random field.

There are two main differences between this method and other bottom-up pixel-

aggregation methods. First, its purpose is to discover an optimal stationary proba-

bility corresponding to the optimal partitioning of the graph which usually contains

more than one node (as opposed to merging all pixels/nodes into one region/node

at the ultimate level [99] or applying a stopping criterion at a lower level). Second,

it is scale invariant in that the local minimum of the first level of the hierarchy is
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identical to that of the coarsest (highest level in the graph) level in the hierarchy. It’s

computational complexity is O(N) which is a considerable improvement over O(N3)

for standard Gibbs sampling. The speed-up is more significant when homogenous

regions within an image are large thanks to the pyramidal structure of nested aggre-

gation. In practical terms, Gibbs sampling can be sped up by a factor of 1000-10000

(or more) depending on the graph size and the size of the largest partition in the

coarsest level graph. Furthermore, it is stochastic in nature at each level of the hier-

archy and, therefore, moves are reversible within the level (but not between levels).

Finally, it is restricted to energy models with pairwise comparisons such as the first

order Potts model.

• SNA transforms local optimization methods such as Iterated Conditional Modes

(ICM) [7] into global optimizers. First, as for stochastic methods, there is a con-

siderable computational speed-up obtained due to the use of reduced order graphs

at each level of the hierarchy thus reducing the number of nodes being processed

as the irregular bottom-up pyramid grows. Second, the major problem of local de-

terministic methods is that they get stuck in local minima. Nested aggregation can

break label configuration deadlocks which give rise to these local minima by creating

a new reduced order graph that no longer contains the same node configuration thus

breaking the deadlock. It is thus able to reach a good local minimum from a random

label initialization.

• We present a Graduated Models strategy for Stochastic Nested Aggregation in order

to avoid getting stuck in an undesirable local minimum (e.g., avoid region-to-region

spilling in image segmentation). We apply Graduated Models to the Potts energy

model where we vary the region coupling parameter from a low value (all pixels

or nodes are their own regions) to the desired value (where regions homogenous

in features have formed). Therefore, through careful nested aggregation simulated

annealing and ICM converge to a very good local minimum.

• SNA allows us to change models at a higher or coarser level in the nested hierarchy.

Thus, we introduce a region mean-based Potts energy which uses a gradient between

region means (as opposed to a gradient between pixels in the classic Potts model)
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in order to compute pixel-to-region and region-to-region distances. We use the first

principal component of the covariance matrix of the region pixels (essentially the

mean direction of the pixels) to represent this mean when using vector angle as a

distance measure. We then allow SNA to first aggregate pixels into a region using the

edge-based Potts model and carry out processing at coarser scales using the mean-

based Potts model. When using a region mean-based model, we are no longer solving

the same problem at each level in the hierarchy which makes this process difficult to

analyze. However, practical image segmentation results show the importance of this

adaptation.

• We integrate within Markov Random Fields the Mixture of Principal Components

(MPC) paradigm [34] where regions are defined by the principal component vec-

tor corresponding to the largest eigenvalue of the covariance matrix of the data in

each region. The new algorithm adapts the MPC framework and as a consequence

vector angle to the Markov Random Fields context. Furthermore, the class or re-

gion prototypes are determined probabilistically by sampling from a region prototype

distribution.

In the domain of developing pixel distance measures, two problems are specifically of in-

terest: physics-based color image segmentation of real world images and phase unwrapping

of interferometric Synthetic Aperture Radar (inSAR) images based on image segmentation.

With respect to physics- or reflectance-based color distance measures, several contributions

have been made:

• Due to the unpredictable behavior of the vector angle distance measure for pixels

with low RGB intensities, three new color distance measures are introduced based

on a probabilistic interpretation of color in order to create shading invariant and

noise resistant color distance measures in RGB.

• Showing that projecting RGB pixels into a 2-dimensional subspace results in a high-

light or specularity invariant color space in which a modified vector angle distance

measure can be used additionally to achieve shading invariance thus allowing for

reflectance-based image segmentation.
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• A highlight invariant transformation is applied to one of the three probabilistic shad-

ing invariant distance measures in order to create a new probabilistic distance mea-

sure that is both shading and highlight invariant.

• Since the vector angle distance measure shows unpredictable behavior when pixel

values have very low intensities, a vector angle accuracy criterion that trusts pixel

values with high intensity and distrusts pixel values of low intensity is introduced.

Finally, in the domain of pixel similarity for phase unwrapping problems, a new mea-

sure for carrying out the segmentation based on phase and coherence maps is introduced.

This measure is an approximation of the model-based probabilistic cost function developed

in [17]. Furthermore, the application of a Markov Random Field framework to the inter-

ferometric synthetic aperture radar phase unwrapping problem using both coherence and

phase information is done for the first time in this thesis.

1.4 Thesis Organization

This thesis is organized into nine chapters beginning with a background discussion and

proceeding to the contributions in pixel grouping algorithms and pixel distance measures.

Chapter 2 introduces the reader to Markov Random Fields from model specification to

optimization algorithms used in obtaining a solution. Chapter 3 presents an overview of

pixel grouping methods including spatial aggregation and feature-based clustering, as well

as energy-based methods as a separate category. At the end of the chapter, we discuss the

myriad of methods that can be used to accelerate Gibbs sampling. Chapter 4 describes

the background for pixel similarity distances including the Euclidean distance, the vector

angle and other less often used formulations. The Dichromatic Reflection Model used to

demonstrate physics-based invariances is introduced and explored. The next four chapters

detail the various thesis contributions. Chapter 5 gives a concise description of the stochas-

tic nested aggregation contribution including the Graduated Models strategy. Chapter 6

illustrates the advances in probabilistic distance metrics for color discrimination and in-

troduces a general framework for distance metric derivation based on first principles of the

application being considered. Chapter 7 describes advances in clustering- or prototype-
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based MRFs. Chapter 8 presents the phase unwrapping problem, and the derived image

processing-based solutions. Chapter 9 concludes the thesis and gives recommendations for

future research directions.



Chapter 2

Background: Markov Random Field

Modelling

Markov Random Fields (MRFs) are a family of models used for large-scale statistical anal-

ysis spanning fields such as physics, statistics and computer vision [48, 88]. They provide a

convenient and consistent framework for modelling context-dependent entities such as pix-

els and correlated features through probabilistic distributions of label interactions between

neighboring sites or pixels.

Contextual constraints are necessary when trying to interpret visual information. That

is, the spatial and visual contexts of the objects in an image scene are necessary for the

understanding of the scene; the context of object features at a lower level of representation

allow the recognition of the objects; the context of primitives at an even lower level lets the

object features be identified; and finally the context of image pixels at the lowest level of

abstraction allows for the extraction of those primitives. To create a reliable and effective

image analysis system the use of contextual constraints is unavoidable and, therefore,

crucial. In this research, special attention will be paid to the lowest level contextual

constraints.

The use of the MRF framework in computer vision is very appealing for several reasons:

• Contextual constraints can be easily modelled;

• Effective trade off between local and global constraints;

13
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• A pixel’s region membership through the Markovianity property is dependent only

on its neighbors (which approximates the whole image) and not on one or more of

the previously examined pixels;

• Texture models to enable the segmentation of complex images can be easily inte-

grated;

• There are no special initialization requirements.

The chapter is organized in the following manner. Section 2.1 formulates the graph

partitioning problem. The second section discusses neighborhood systems and cliques.

The third section explains the Markov Random Fields framework. Section 2.4 presents the

Gibbs distribution. Section 2.5 describes commonly used Markov Random Field models

for image processing. Local and global optimization methods are discussed in Sections 2.7

and 2.8 respectively. Next, Section 2.9 explains implementation issues. The final section

concludes and summarizes this chapter.

2.1 Graph Partitioning Formulation

In order to generalize the discussion to any discrete estimation process on a random field, a

graph theoretic framework will be adopted throughout this thesis. Borrowing notation from

both [4] and [88], consider a planar adjacency graph G = 〈V, E〉, where V = {v1, v2, ..., vN} is

the set of nodes that need to be partitioned (e.g., pixels, edges, image features, homogenous

image regions, etc.), E = {(vi, vj)} is the set of edges connecting adjacent nodes and N

the number of all nodes to be partitioned. Alternatively, consider that the graph G can

also be defined on a lattice S = {i | 1 ≤ i ≤ N} which can be a regular or irregular

grid. In the case of an image, of width w and height h, the size of the lattice will be

N = w · h. The image X is composed of pixel values {xi} on the lattice S where pixels

are nodes. In essence, V and S are equivalent. Both formulations will be used throughout

the thesis depending on the emphasis on graphs or images. Note that graph partitioning

is also known as discrete state estimation and graph coloring.

The segmentation problem can than be formulated in mathematical terms. If n is the

number of graph partitions or regions such that 1 ≤ n ≤ N , then an n-partition of the
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graph πn is denoted by

πn = (V1, V2, . . . , Vn)

∪n
i=1Vi = V, (2.1)

Vi ∩ Vj = ∅, ∀i 6= j.

Initially, each node belongs within one subset such that Vi = {vi}. However, through the

process of graph partition each subset Vj , j = 1, . . . , n, will be ultimately composed of one

or more nodes vi, i = 1, . . . , N . The process of finding which vi belongs in which Vj is

called graph partitioning in general and image segmentation in the case of images.

In labelling problems such as image segmentation, we assign a label k ∈ L to each of

the initial subsets Vj for j = 1, 2, . . . , n where n = N . In the discrete case, which is the

primary focus of this thesis, a label assumes a discrete value in the set L = {1, · · · , K}.
The number of labels is usually fixed, but occasionally it is variable [4]. In this thesis,

we consider without loss of generality that each graph vertex vi ∈ V is a pixel or region

with a corresponding label1 li which represents a property or feature of the underlying

image region or pixel. These features are usually based on intensity, color, texture and

other characteristics. Note that one could generalize the concept of label to include model

estimation [4, 140]; however, this topic is beyond the scope of this thesis.

The pixels of image X are represented by xi where i = 1, . . . , N . If the graph vertex is

a region, then the pixels forming this region are deemed homogenous with respect to some

attributes like color or intensity depending on the actual problem definition. The pixel is

by definition homogenous as it is the smallest possible component of an image.

Given the partition representation of an image by

W = (n, πn,L) (2.2)

where 1 ≤ n ≤ N we would like to obtain the solution to W . We set up an optimiza-

tion problem maximizing the Bayesian posterior probability p(X|W )p(W ) or equivalently

minimizing an energy U(W |X) in a solution space Ω,

W ∗ = arg max
W∈Ω

p(X|W )p(W ) (2.3)

1A label is used to distinguish different nodes from each other locally and is not intended as a global

prototype. li = k such that k ∈ L.
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or

W ∗ = arg min
W∈Ω

U(W |X). (2.4)

For W in (2.2), Ωπn
, such that πn ∈ Ωπn

, represents the space of all possible n-partitions

πn of V, which leads to the following solution space for W ,

Ωπ = ∪N
n=1Ωπn

. (2.5)

In order to search Ωπ (or what we earlier called Ω), we need to determine which nodes

should be together and which should not. For discrete labels, this is a finite, but usually

very large space of size KN (in the case of continuous labels, the space would be infinite).

The following sections will give a brief overview of the theoretical foundations of Markov

Random Field theory: neighborhood systems, Gibbs distributions, Markov-Gibbs equiv-

alence, MRF models, as well as local and global optimization methods for obtaining a

solution. For a detailed account of MRF theory with respect to applications in computer

vision please consult [22, 88].

2.2 Neighborhood Systems and Cliques

Before defining a Markov Random Field, it is important to define the notion of the neigh-

borhood system. The neighborhood system is used to relate the sites {i} in S to each other

[88]. S will be assumed to be encoded on a regular lattice or grid (i.e., pixels in an image)

as shown in Figure 2.1. This mathematical formulation is necessary in order to encode the

desired contextual constraints explicitly. A neighborhood system N for S is defined as

N = {Ni | ∀i ∈ S} (2.6)

where Ni is the set of sites neighboring i. There are two properties associated with neigh-

borhoods. First, a site i is not a neighbor to itself; i.e., i 6∈ Ni. Second, the relationship

between two neighboring sites i and i′ is mutual; i.e., i′ ∈ Ni ⇐⇒ i ∈ Ni′ .

On a regular grid, the neighboring sites or nodes are usually defined to be those within

a radius of r from i such that

Ni = {i′ ∈ S|ΦE(i, i′) ≤ r, i′ 6= i} (2.7)
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Figure 2.1: A regular lattice or grid.

where ΦE(i, i′) is the Euclidean distance (1.2) on the grid between the locations of pixels i

and i′, and not the feature distance as discussed in Section 1.1. Other neighborhoods are

possible [31].

For example, Figure 2.2 shows first and second order neighborhood systems which

correspond to four-site and eight-site pixel neighborhoods. A zero-site neighborhood would

contain the examined pixel and no neighbors. Note that in neighborhoods of order three

or greater, the “neighborhood” sites are not all adjacent to the central site.

In addition, the sites at the lattice boundaries have fewer neighbors. For example, for

a first order neighborhood system (or four-neighborhood) where r = 1 on a rectangular

lattice S, the four sites at the corners (bottom-right, top-right, top-left, bottom-left), will

have only two neighbors as opposed to the four neighbors for each of the “interior” sites.

Graph G can also be defined by the pair 〈S,N〉 since S contains the nodes and N
delineates via the neighborhood relationship the edges between the nodes. To encode

a neighborhood structure, we need to define a way to create relationships within that

neighborhood. These relationships called cliques for 〈S,N〉 can be defined as a subset of

sites in S. For a first order model, they contain either a single-site c = {i}, or a pair of

neighboring sites c = {i, i′} [157]. The set of single-site cliques is given by

C1 = {i|i ∈ S} (2.8)
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Figure 2.2: Examples of four-site (left) and eight-site (right) neighborhoods usually used

in image processing. The black square indicates the central pixel being processed while

the white squares are the neighbors.

and correspondingly the set of pair-site cliques is defined as

C2 = {{i, i′}|i ∈ S, i′ ∈ Ni} (2.9)

Possible cliques for first and second order models are illustrated in Figure 2.3. For a zeroth

order MRF, only the clique in (a) would be used. For a first order model, cliques (a)-(c)

would be used (only single sites and site pairs). For a second order model, cliques (a)-(e)

would be applicable. Compare cliques with neighborhood structures shown in Figure 2.2.

As the order of the model is increased, the number and size of cliques rises and processing

the model becomes more computationally expensive. In this thesis, a pairwise distance

similarity measure will be used which restricts us to first order models with pair-site clique

interactions.

In this thesis, we will focus on first order models when defining image segmentation

energy models for three reasons: (a) to allow for pairwise contextual constraints (i.e., no

constraints for the zeroth-site configuration or for triple-site and higher order cliques), (b)

simplification of the joint probability formulation, and (c) lowering computational cost

(with respect to the more computationally expensive second or higher order neighbor-

hoods).

Pairwise constraints are very useful for several reasons. First, they limit the computa-

tional complexity of the models. Second, it is relatively easy to apply ergodic [48, 4] (one

that converges to the stationary probability regardless of initial conditions) optimization

algorithms with reversible moves (that can create a path between any two points in a
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(a) (b) (c)

(d) (e)

Figure 2.3: Cliques on a lattice of regular sites: (a) single site, (b) horizontal, and vertical

pair-site, (c) diagonal pair-site, (d) triple-site, and (e) quadruple-site.

function) to pairwise models. Third, it is easy to analyze them as all interactions are local

while in non-pairwise models the interactions could be highly non-local where cause and

effect are not easily examined.

2.3 Markov Random Fields

A Markov Random Field can be defined as a family of random variables [48, 88] ℓ = {li}
with respect to a neighborhood structure N on the set S if and only if the following two

conditions are met. First, given that the random variables ℓ will take on a set of values

from label set L, the joint probability P (ℓ) needs to satisfy P (ℓ) ≥ 0, for all possible label

combinations. Second, the joint probability P (ℓ) satisfies the Markovianity property [88]

P (li | ℓi) = P (li | ℓNi
) (2.10)

where ℓi = {lj | j ∈ S, j 6= i} (i.e., all labels except for li) and ℓNi
= {lj | j ∈ Ni}. The

Markovianity property allows the formulation of a global optimization problem only in

terms of its local interactions. (2.10) provides a framework for conditionally decorrelating

the assignment of a label li from all other assigned labels in the image and condition this

assignment only on the local neighboring pixel labels. Figure 2.4 illustrates this principle.
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Figure 2.4: (2.10) provides a framework for conditionally decorrelating the assignment of

a label li from all other assigned labels in the image (left) or graph (right), and condition

this assignment only on the local neighboring pixel or node labels respectively.

When applying methods based on Markov Random Fields, two issues become impor-

tant: defining the joint probability of an MRF P (ℓ) and designing an algorithm to find

its maximum point or alternatively minimizing the related energy function U(ℓ). The

optimization algorithms are usually stochastic since the energy function being optimized

is typically non-convex (i.e., has many local minima in addition to at least one global

minimum).

2.4 Gibbs Distribution

Specifying the joint probability of an MRF, P (ℓ), is a difficult if not impossible task for most

applications [88]. For a discrete labelling problem, consider that one of K labels is to be

assigned to each pixel in an image of size N . Then, the number of possible combinations of

labels would be KN . For typical images of size 256×256 with two labels being assigned the

number of solutions is approximately 1019728. If the problem was continuous and therefore

the possible labels were the set (or subset) of all real numbers IR, there would be an infinite

number of possible solutions. However, given a goodness criterion or model for the problem

at hand, there would usually be only a few solutions which would be acceptable.

The practical use of MRF models is largely possible due the improved insights and un-

derstanding provided by the Hammersley-Clifford theorem [87, 88], which allows Markov

random fields to be reinterpreted as Gibbs Random Fields (GRFs) [48, 157]. This theorem
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permits MRF problems to be formulated in the context of energy function minimization.

Gibbs Random Fields provide a natural way of formulating energy functions to model con-

text dependencies between, for example, image pixels of correlated local features [87]. The

second motivating development is the improved insight and available methods for Gibbs

sampling [48] (explained in Section 2.6) which can be effectively used to solve GRF/MRF

problems.

A Gibbs Random Field is defined as a set of random variables ℓ on S with respect to

a neighborhood N if and only if ℓ obeys a Gibbs distribution. The Gibbs distribution is

defined as

P (ℓ) = Z−1e−U(ℓ) (2.11)

where

Z =
∑

ℓ

e−U(ℓ) (2.12)

is the normalizing constant or the partition function assuming discrete random variables

(for continuous random variables an integration would be needed). The energy function or

model U(ℓ) is defined as

U(ℓ) =
∑

c∈C

Vc(ℓ) (2.13)

where Vc(ℓ) are clique potentials over all possible cliques C for a given model order. In the

case of a first order neighborhood, C = {C1, C2} where C2 corresponds only to the horizontal

and vertical cliques shown in Figure 2.3(b).

Now that we have defined the general structure of an energy model, specific implemen-

tations will be considered in the next section.

2.5 Common MRF Models

Several MRF models proposed in the literature are useful for the segmentation of image

regions and defining models for textures. The following models will be discussed in this
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section [88]: auto-logistic or Ising model, the Gaussian Markov Random Field or auto-

normal model [21], and the multi-level logistic model [48] (otherwise known as the Potts

or generalized Ising model).

Contextual constraints on two labels are the lowest order constraints to convey spatial

information. For a first order MRF, these consist of the cliques in Figure 2.3(b). The

constraints are encoded as pair-site clique potentials in the Gibbs energy term, which

takes the form

U(ℓ) =
∑

i∈S

V1(li) +
∑

i∈S

∑

i′∈Ni

V2(li, li′) (2.14)

or equivalently

U(ℓ) =
∑

{i}∈C1

V1(li) +
∑

{i,i′}∈C2

V2(li, li′) (2.15)

where V1 represents a single-site clique potential and V2 a pairwise clique potential, while

C1 and C2 are their corresponding clique sets. Clique functions Vc can take on various

forms. An auto-logistic model is considered when {li,j} is represented by a two-value label

set such as L = {−1, +1}. Then, the energy function used is

U(ℓ) =
∑

{i}∈C1

αili +
∑

{i,i′}∈C2

βi,i′lili′ (2.16)

where αi is a constant and βi,i′ represents the pair-site clique interaction coefficients. This

is also commonly called the Ising model. Briefly, αi and βi,i′ control the relative constraints

on the homogeneity and fragmentation due to the contextual constraints and, therefore,

how much labels of adjacent nodes or pixels will want to be similar or different from each

other. These values define the model. Several techniques for their estimation are detailed in

[88]. Parameter estimation is beyond the scope of this thesis and, therefore, the models will

be determined experimentally. A comprehensive theoretical analysis of these parameters

is provided in [74].

An auto-normal model, also called a Gaussian MRF [21], is created when the label set

L is the real line IR and the joint distribution is multivariate Gaussian. These models have

been mostly used to describe and synthesize textures [22, 88].
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The multi-level logistic model also known as the Potts model is a generalization of the

Ising model [48] where there are K discrete labels in the label set L = {1, · · · , K}. The

Potts model is formally defined as

U(ℓ) =
∑

{i}∈C1

αili +
∑

{i,i′}∈C2

βi,i′V (li, li′) (2.17)

where V (li, li′) represents the Kroenecker δ. The Potts model will be used extensively in

this thesis.

2.6 Gibbs Sampling

Since the solution space Ω is very large, an efficient method needs to be used to explore it.

In general, the problem of finding p(W |X) is NP-hard [70] since the relationships between

nodes in the graph are not independent. Therefore, several simplifications need to be

applied in order to solve it. The main approximation that we will discuss in this section is

assuming the Markovianity property is valid for images thereby allowing graph partitioning

algorithms for image segmentation to use the MCMC framework.

One common algorithm which performs a Markov chain search and is designed to have

a unique invariant (stationary) probability p(W |X) is the Gibbs sampler [48, 88]. The

Gibbs sampler generates the next label configuration according to a conditional probability;

namely, a candidate l
(t+1)
i is drawn randomly from the conditional distribution P (l

(t+1)
i |

ℓ
(t)
i ) to replace the existing label l

(t)
i . Therefore, the transition from ℓ(t) = {l(t)1 , ..., l

(t)
N } to

ℓ(t+1) = {l(t+1)
1 , ..., l

(t+1)
N } is performed by successively drawing samples form the conditional

probabilities which is known as the raster approach [48, 88].

The transitional probability from an initial label configuration ℓ(t) to ℓ(t+1) is given by

P (ℓ(t+1) | ℓ(t)) =
N
∏

i=1

P (l
(t+1)
i |l(t+1)

j , l
(t)
i′ , j < i < i′) (2.18)

where P (l
(t+1)
i |l(t+1)

j , l
(t)
i′ , j < i < i′) defines the conditional distribution from which each

individual node label is drawn. Therefore, the Markovianity property, P (l
(t+1)
i | ℓ

(t)
i ) =
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P (l
(t+1)
i | ℓ

(t)
Ni

), can be reformulated as

P (l
(t+1)
i | ℓ

(t)
Ni

) ∝ e
−
[

V1(l
(t)
i

)+
∑

i′∈Ni
V2(l

(t)
i

,l
(t)

i′
)
]

/T

Z
(2.19)

where T is the temperature parameter which controls the “peakedness” of the Gibbs dis-

tribution. Its usefulness will become apparent when discussing stochastic minimization

methods in the next section. Through this conditional sampling, the Gibbs Sampler pro-

duces a Markov chain {ℓ(0), ℓ(1), ℓ(2), . . . } with an equilibrium point corresponding to the

joint probability P (ℓ) [48, 88]. The Gibbs sampler [48] is given in Algorithm 1.

Algorithm 1 The Gibbs Sampler

1: randomly initialize ℓ to a point in LS

2: repeat

3: for i ∈ S do

4: compute P (l
(t+1)
i = k | ℓ

(t)
Ni

) for all k ∈ L
5: set l

(t+1)
i to k with probability P (l

(t+1)
i = k | ℓ

(t)
Ni

)

6: end for

7: until max P (ℓ)

Therefore, label configuration ℓ is chosen according to a stochastic optimization scheme

where the selected conditional distribution is not always the most likely (i.e., the chosen

configuration has sometimes higher energy). This is in contrast to deterministic optimiza-

tion schemes where the most likely conditional distribution is always chosen.

Gibbs Sampling simulates ergodic and reversible Markov chain jumps in the space

of all graph partitions Ωπ when using a stochastic optimization method like simulated

annealing. In other words, it is possible to go from any configuration of labels ℓ(t) to any

other configuration ℓ(t+1) (i.e., no state is a “sink” from which it is impossible to get to

another state). Finally, Gibbs sampling is applicable to arbitrary posterior probabilities or

energy functions defined on graphs [48, 88].

Other stochastic optimization schemes such as the Metropolis-Hastings [88, 4] algorithm

are also possible. The Metropolis-Hastings algorithm works by choosing a label at random

and testing whether to accept or reject that label. Its major disadvantage resides in
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potentially having to reject many alternatives which can result in getting stuck in an

undesirable local minimum. On the other hand, the Gibbs sampler eliminates this problem

by searching through all possible labels in L.

Local energy minimization methods will be examined next while global energy opti-

mization methods will be examined in Section 2.8.

2.7 Local Minimization Methods

Besag [7] proposed to maximize local conditional probabilities sequentially due to the

difficulty of maximizing the joint probability of an MRF. Iterated Conditional Modes (ICM)

is a “greedy” algorithm which carries out iterative local energy minimization. ICM works

by sequentially updating each l
(t)
i into l

(t+1)
i by maximizing the conditional (posterior)

probability P (l
(t+1)
i | {xi}, ℓ(t)

i ) with respect to l
(t)
i given the data or pixels {xi} and all

other labels ℓ
(t)
i in the image. Markovianity is assumed as before; namely, that ℓ depends on

the labels in the local neighborhood. It follows that we have P (l
(t+1)
i | ℓ

(t)
i ) = P (l

(t+1)
i | ℓ

(t)
Ni

).

Maximizing P (l
(t+1)
i | ℓ

(t)
Ni

) is equivalent to minimizing the corresponding posterior en-

ergy U(l
(t+1)
i | ℓ

(t)
Ni

). For discrete L, U(l
(t+1)
i | ℓ

(t)
Ni

) is evaluated with each possible label

k ∈ L. The label giving the lowest energy value is used to update l
(t+1)
i . The preceding

defines an updating cycle of the ICM when applied to each site i. The iteration continues

until convergence to the maximum conditional probability. The convergence is guaranteed

for serial updating and is rapid [7].

As widely reported [22, 88], the result obtained by ICM depends very much on the initial

label assignment ℓ(0). Unfortunately, a proper initialization to obtain a good solution is

not known. For example, when trying to restore a noisy image, a natural choice for ℓ(0) is

the maximum likelihood estimate which corresponds to the actual data when the noise is

an identically and independently distributed Gaussian [88]. For image segmentation, ℓ(0)

can also represent a result obtained by another algorithm such as those in [44].

The problem with local optimization methods (and all deterministic ones in general)

is that the label of a pixel (or atomic region) under consideration will be flipped only if

a lower energy state can be reached. If a flip is required that will increase the energy in

order to bring lower energy in a subsequent step, this will not happen as these algorithms
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do not allow this. The only way this could be possible is if the energy model was made

to be convex. Essentially, the problem is made convex by moving the non-convexity into

a separate pre-processing step. In image processing, this could be done for example by

disambiguating weak edges by introducing edge linking [4]. However, these types of opera-

tions are certainly error prone as they need a mechanism to decide which edges should be

linked and which should not (e.g., one needs to distinguish between edges within a texture

which are not very useful vs. edges between distinct regions which are crucial).

2.8 Global Minimization Methods

Global optimization includes stochastic and deterministic methods. For global optimization

algorithms the goal is to find the lowest minimum or highest maximum. In general, global

methods were devised to deal with non-convex energy functions such as the Potts model

since non-convex functions contain many local minima. For convex functions, any local

minimum is a global minimum; therefore, global methods are not needed. In this section,

we describe several global methods for non-convex functions.

Kirkpatrick’s and Cerny’s Simulated annealing (SA) algorithm [76, 88] is a stochastic

optimization algorithm used for minimizing non-convex energy functions such as those to

be used in this research. This method tries to simulate the physical process of annealing

when a metal is heated and then slowly cooled down in order to obtain a stronger material

(or in computational terms, to find a low energy configuration). Consider a system in

which any configuration ℓ (cf. Section 2.4) in the configuration space LN has probability

PT (ℓ) ∝ [P (ℓ)]1/T (2.20)

where T > 0 is the temperature parameter governed by an annealing schedule. T controls

the degree of peaking in the probability distribution function PT (ℓ). When T is large,

PT (ℓ) approaches a uniform distribution on ℓ. For T = 1, PT (ℓ) = P (ℓ). Choosing T small

exaggerates the mode(s), thus forcing PT (ℓ) to concentrate on the peaks of P (ℓ). As T → 0

according to a schedule of decreasing T values, the distribution takes shape and samples

of PT (ℓ) concentrate on the peaks of P (ℓ). The SA algorithm is given in Algorithm 2.
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Algorithm 2 Simulated Annealing

1: Set T and initialize ℓ(0) to a random point in LN ;

2: repeat

3: for i ∈ S do

4: Sample li from Ni under T ;

5: end for

6: until T = 0

7: Return ℓ(t), the last label configuration.

At a fixed T , the sampling for each individual site i is done using

PT (li) =
e−U(li)/T

∑

k∈L e−U(k)/T
(2.21)

Usually after the sampling converges to the equilibrium of the joint probability distribution

at the current T , T is decreased according to a carefully chosen schedule until it reaches

zero. This temperature schedule is usually a major design issue when using simulated

annealing. In order to guarantee the convergence to a global minimum (as opposed to a

local one) regardless of the initial configuration ℓ(0), two conditions are sufficient [48, 88]:

lim
t→∞

T (t) = 0 (2.22)

and

T (t) ≥ N × ∆

ln(1 + t)
(2.23)

where ∆ = maxl E(ℓ)−minl E(ℓ). It can be shown that, for any given finite problem, the

probability that the simulated annealing algorithm terminates with the globally minimum

solution approaches 1 as the annealing schedule (2.23) is used [48]. In practice, this implies

that the annealing time required to ensure a significant probability of success will usually

exceed the time necessary for a complete search of the solution space.

Therefore, usually other schedules are adopted which are a trade-off between perfor-

mance (how close the algorithm gets to the global optimum) and its convergence speed

(how fast it can get there). For example, in [76] the authors choose

T (t) = κT (t−1) (2.24)
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where κ ∈ [0.8, 1) is the typical range of values for the exponential decay. The initial

temperature is set high enough in order to essentially accept all configuration changes

(i.e., the probability distribution behaves as if it was a uniform distribution). When there

are no more changes to the label field, the probabilities are then frozen and annealing

stops. In this case, the MRF has converged to the stationary probability P (ℓ).

If a suboptimal schedule such as (2.24) is chosen, then it is not possible to expect the

algorithm will find the global minimum since one of the sufficient conditions has been bro-

ken. However, in practice, optimization results produced using (2.24) are satisfactory. At

T = 0, the algorithm no longer performs a stochastic search; it becomes a form of deter-

ministic gradient descent. This is a special case of SA called Iterated Conditional Modes

(ICM) which is guaranteed to converge to a local minimum [88]. Therefore, simulated

annealing can be considered a generalization of ICM.

An important global deterministic optimization method is the Highest Confidence First

(HCF) algorithm [25]. It is also a serial, deterministic algorithm for combinatorial mini-

mization for discrete label sets. Its main feature is assigning labels first to regions which

when labelled would decrease the overall energy the most, hence the name of the method.

HCF introduces a special uncommitted label and the strategy for committing a site. The

uncommitted label is denoted by 0. Thus, L is augmented into L+ = {0,L}. A label li is

said to be uncommitted if li = 0 or committed if li ∈ L. Initially, all site labels are defined

as uncommitted, i.e., ℓ(0) = {0, 0, . . . , 0}. Once a site has been committed, its label cannot

be changed back to 0; however, it can be updated to another value in L.

The same energy as in ICM, U(l
(t+1)
i | ℓ

(t)
Ni

), is minimized. However, in order to produce

an ordering of which sites should be examined first, the stability of i with respect to li is

computed for all nodes i such that:

Si(k) =

{

−mink∈L,k 6=lmin
[Ui(k) − Ui(lmin)] ifli = 0

mink∈L,k 6=lmin
[Ui(k) − Ui(lmin)] otherwise

(2.25)

where lmin = arg mink∈L Ui(k). The stability Si of an uncommitted site is given as the

negative difference between the lowest and the second lowest conditional energies. The

stability Si of a committed site is the difference between the current local energy Ui(li) and

the lowest possible energy due to any other label. The stability range is −∞ < Si < +∞.

A negative stability indicates that the energy could be possibly lowered. All uncommitted
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sites have non-positive Si. The magnitude of Si is equivalent to the change in energy given

by the change in the label li. A lower value of Si indicates a more stable configuration

while a negative value with a larger magnitude increases the confidence to transform ℓ(t)

into a new configuration ℓ(t+1).

The order of the update depends on which site is least stable, i.e., has the lowest

Si. At each step, only that particular site is allowed to change its label. Suppose that

s = arg maxi Si(li) is the least stable site. Then if ls = 0, change ls to l′s = arg mink∈L Us(k)

otherwise change ls to l′s = arg mink∈L,k 6=ls [Us(k) − Us(ls)]. Therefore, the first committed

label li is the one which corresponds to the maximum local likelihood.

For each iteration, the number of different merging configurations tested is approxi-

mately O(N) since some results from the previous iteration can be reused in the next. At

each iteration after the first, the algorithm needs to compute only the pairwise merging

cost between all groups and the newly-merged group from the previous iteration resulting

in an overall complexity of O(N2) [121].

HCF is an enhanced version of ICM that might prevent the optimization getting stuck

in some local minima. It also appears to be faster than either ICM or SA given that it only

requires (in practice) on average just over one iteration through the data to converge to a

solution for a small graph [94] which might not be the case for very large graphs. However,

HCF is still a deterministic method which might not be able to reach a local minimum

that is close enough to the global minimum.

There are also several global deterministic optimization methods such as Graduated

Non-Convexity (GNC) [9] and Deterministic Annealing [26, 27, 65]. Graduated non-

convexity is a deterministic annealing method which approximates the global solution

for non-convex minimization of unconstrained, continuous problems. The basic principle

behind GNC is the following. Consider that we would like to find the optimum point of a

non-convex function. The energy function U(ℓ) is made convex through application of a

parameter γ which is set to a sufficiently large value to make U(ℓ|γ) strictly convex. The

minimum of this function can be easily found using standard greedy methods (e.g., ICM)

regardless of the initial conditions. The minimum found under the first γ, say γ(0) is used

as the initial value for the next minimization under γ(1) and so on. γ(t) for each new mini-

mization t is then gradually relaxed until the original non-convex function is reproduced.
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If the local minima found for each γ(t) are tracked, it may be possible to find a solution

close to the global optimum of the original non-convex function.

2.9 Implementation Issues

There are several implementation issues: raster vs. random scanning, quality of random

number generators, continuous vs. discrete MRFs, and non-regular lattices.

In MRF algorithms, no two neighboring sites should be updated simultaneously [88]

since the Markovianity property assumes that the neighboring labels li are conditionally

independent. Thus, random scanning is better than raster scanning since in raster scanning

only the first visited node would be conditionally independent from the other nodes whereas

in random scanning the conditional independence would be violated only when two adjacent

nodes are examined one after the other. A more robust method is needed to ensure this

conditional independence.

The “coding method” [6] may be incorporated into Gibbs Sampling to parallelize the

scan and thus force conditional independence. The coding method partitions S into several

disjoint sets S(f), called codings, such that no two sites in one S(f) are neighbors. Figure 2.5

illustrates the codings for the 4-neighborhood system where S(1) and S(2) are needed akin

to a checkerboard set up with squares of 1’s and 2’s. Four codings are needed for the

8-neighborhood system. In general, any neighborhood system can be implemented using

the coding method. This leads to all li on a single coding S(li) to be updated in parallel.

The fact that the sites within each S(f) are not each other’s neighbors provides compu-

tational advantages especially in a parallel processor implementation. Under the Marko-

vianity assumption, the variables associated with the sites in an S(f), conditioned on the

labels at all other sites, are mutually independent.

An important issue is the quality of random number generators used to carry out

the sampling operation. Random numbers produced by computers are usually generated

using pseudo-random number generators. These programs produce long sequences of quasi

random numbers based on some initial seed [144]. A random number generator based

on deterministic computation is not viewed as a true random number generator since by
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Figure 2.5: Codings for the four-neighborhood system. Pixels marked number k belong to

the coding S(k).

definition its output is predictable. However, simple pseudo-random number generators2

can be used instead of true random numbers in many applications as long as the period of

the generator is less than the total number of produced random numbers. In this thesis,

we use a simple pseudo-random generator with a period of 231.

In this thesis, we will examine discrete MRFs. In some cases continuous MRFs will also

be used; however, ultimately, their values will be quantized in order to transform them into

discrete MRFs. The main reason for this solution is the much higher complexity of carrying

out Gibbs sampling on continuous state MRFs than on discrete state MRFs. Discrete

MRFs have usually a large but finite solution space which is much easier to examine and

thus makes the problem easier to solve. For Gaussian MRFs, where continuous parameters

are estimated, the problem is tractable and has been addressed in the texture literature

[22].

Finally, all of these methods can be applied to image patches or regions that have

been obtained by some preprocessing method. For example, regions could be obtained

with respect to color [119] or filled in with a texture feature [21] or delineated with via the

Canny edge detector [15] and described by histograms [4]. In those cases, the neighborhood

grid is irregular. Figure 2.6 shows an irregular grid.

2We are using the rand() function in C.
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Figure 2.6: An irregular grid such as the one shown here is usually applicable to any

underlying structure that is not regular such as pre-segmented image patches or blobs.

2.10 Summary

Markov Random Fields provide a means of conditioning the dependence of the label at one

site on its neighbors rather than on the whole label field. This allows graph partitioning

problems to become tractable in a stochastic framework. Since we are concerned with

image segmentation problems, we will focus on piece-wise constant functions such as the

Potts or multi-level logistic models which are characterized by large areas of constant labels

(e.g., image regions homogenous with respect to some features). A good local minimum of

such functions can be obtained using a stochastic optimization approach such as simulated

annealing.

There are two related issues. First, simulated annealing is in theory guaranteed to

reach a global minimum; however, in practice it is not possible to run this algorithm with

the given parameters (T schedule) as the computational complexity is too great. Second,

iterated conditional modes has no computational issues; however, it converges to a local

minimum even with very good initial conditions ℓ(0). It will be shown in Chapter 5 that

merging the idea of irregular neighborhoods with Gibbs Sampling can lead to solving both

problems with one crucial assumption which can be satisfied with a constraint on models.



Chapter 3

Background: Review of Pixel

Grouping Algorithms

In general, image segmentation can be accomplished by:

• finding regions uniform with respect to some homogeneity criterion (e.g., color, in-

tensity, texture),

• finding the boundaries between different regions,

• using both strategies.

In this thesis, the first paradigm will be examined within the Markov Random Field frame-

work. Boundary or edge detection methods are explored in detail elsewhere [79]. However,

edge detection methods, and gradient computation in particular, can be used as distance

measures and will be discussed briefly later in this chapter. Extensive work has been

done on image segmentation. Readers are encouraged to examine past survey papers on

grayscale image segmentation [44, 58, 105] and color image segmentation [5, 24, 93].

The goal of this chapter is to survey the design and implementation of the algorithms

most commonly used for image segmentation in general and color image segmentation in

particular. Color image segmentation algorithms are considered in detail since most of

this thesis will use color images for testing the algorithms presented herein. Algorithms

used for graph partitioning which can be easily adapted to an image segmentation task are

33
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also examined. Note that many of these algorithms are not suitable directly for real-world

applications. In particular, problem-context sensitive pre- and post-processing steps may

be necessary, as well as parameter estimation or tuning. Thus, this chapter seeks to serve

as a stepping stone illustrating the algorithms and concepts at the heart of color-based

image segmentation systems and not describing full systems.

3.1 Introduction

Haralick and Shapiro argue that there can be no full theory of clustering and, therefore,

no full theory of image segmentation [59] since the types of regions to be extracted are

predicated on the objectives pursued in each application and, therefore, on the kind of

technique used for the segmentation. Subsequently, there exists only a series of different

segmentation techniques, each of them with benefits and drawbacks.

This means that image segmentation techniques are generally ad hoc and differ on

how they emphasize one or more of the desired image properties. Haralick and Shapiro

proposed four guidelines for the general image segmentation problem [59]. The criteria can

be reformulated in the following way for any type of image:

1. Each segmented regions should be uniform with respect to a set of features,

2. Adjacent regions dissimilar in features should be separated,

3. Larger regions should not contain many small regions within, and

4. The boundaries of each region must be spatially accurate.

In this thesis, the first two criteria are adopted given their general presence in the image

segmentation literature as feature discriminators or distance measures. These distance

measures generate a small distance between highly similar regions and a large distance

between dissimilar ones. We will review color distance measures in Chapter 4. The third

criterion indicates that over-segmentation should be minimized as much as possible through

region size constraints, for example [39, 142]. Our Bayesian segmentation framework clearly

incorporates the first two of Haralick and Shapiro’s criteria. The third criterion can be

incorporated through additional constraints on the size of each segmented region Vi, an
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issue which we will not address in this thesis (see [39, 142]). Since the concept of “spatial

accuracy” is ill defined, we will not consider it either.

A huge number of alternative techniques are possible, most problem-context dependent.

The structure of the algorithm will determine how the pixel grouping and therefore the im-

age segmentation is carried out. For example, many contexts have specialized initialization

requirements, the quality of which can significantly influence results. Next, algorithms may

operate in a sequential manner such that the decisions at a pixel may depend on previously

visited pixels as opposed to simultaneous operation (or non-causal) algorithms which are

independent of the sequence of pixel examination [48, 88, 157]. The distance measure may

be point-wise, spatially local, region-based or global. Finally, many algorithms use auxil-

iary information to improve the segmentation result: edge maps [2, 4, 119, 168], texture

models [4, 21], region size [39, 142], minimum or maximum number of regions [35, 69], etc.

Out of these possibilities we consider three general classes of segmentation algorithms,

which parallel the organization of this chapter: clustering [35, 69], spatially-based [59, 138],

and energy minimization [48, 88, 157, 167]. Clustering algorithms aggregate pixels based

on features alone thus they are usually simultaneous with point-wise/global constraints.

Section 3.2 summarizes the state of the art in clustering and point-based algorithms.

Spatially-based methods, described in Section 3.3, use local pixel relationships to segment

images, and are normally sequential in nature with local (and possibly global) constraints.

The spatially local nature makes it easy to incorporate edge information. Finally, energy

minimization is presented as a separate section as the methods, discussed in Section 3.4,

provide a probabilistic framework for simultaneously grouping pixels with local (and some-

times global) constraints, with easy means to incorporate texture and edge information,

but with usually considerably increased computational requirements. Finally, Section 3.5

describes various top-down and bottom-up hierarchies that have been used to decrease the

computational complexity of many energy minimization-based algorithms.

3.2 Clustering

Of the three fundamental approaches to segmentation, this section explores the use of

clustering methods. If a number of objects in an image can be distinguished on the basis
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of color, or other feature then the pixels associated with these objects should lie in tight

clusters in their associated three-dimensional color space or some feature space respectively.

If these clusters can be identified, then the segmentation problem is solved: each image

pixel is labelled or grouped by its associated cluster.

Clustering (also known as vector quantization) has been widely explored in the pattern

recognition literature, so a wide variety of algorithms is available [35, 69]. The main

advantages of clustering are its computational speed, that it aggregates with respect to

global features, and that it will separate differently colored regions regardless of their

spatial location. The main disadvantages are that spatial information is not taken into

account, thereby possibly failing to create spatially compact regions, many small spurious

regions may occur in noisy images and the number of clusters must usually be specified a

priori (the cluster validity problem [35]). Obviously, extensions to standard clustering have

been developed to ameliorate these difficulties. Several researchers have devised problem-

specific solutions to estimate the optimal number of clusters [115, 150], and rather than

clustering just single pixels, the clustering can be applied to pixel neighborhoods (e.g., a 3-

by-3 window) effectively embedding a spatial regularizer or smoother within the algorithm

[148, 149]. In addition, a class of clustering algorithms exists which also includes pixel

position in its feature space [18, 39].

The easiest way to identify a cluster is by defining a prototype (typically its center

or mean) such that wk = 1
Nk

∑

j∈Vk
xj where Nk is the size of regions Vk. Non-prototype

based approaches [35] such as k-NN (where k represents the number of neighbors) and

hierarchical clustering are also possible but will not be discussed in this context due to their

computational complexity (especially for k ≫ 1) and no significant results respectively. The

classical prototype-based clustering problem is defined in Algorithm 3. In this case, the

pixels in one region can be spatially separated.

Algorithm 3 The clustering algorithm

1: Given pixels {i} with their corresponding values {xi} and K, the number of both labels

and regions,

2: Let Vk be clusters of pixels or nodes each with a prototype wk,

3: Then find {wk} minimizing some distance criterion.
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The most widely used prototype-based algorithm for clustering is k-means [35] where

k corresponds equally to the number of labels and regions (each region has an associated

label and prototype). It is shown in Algorithm 4. k-means is based on iterative pixel-to-

prototype distance computations using the Euclidean distance (1.2) and prototype defini-

tion based on the vector mean of pixels in each region or cluster. The main premise of

the algorithm is to try to minimize the variance within each cluster. The main advantages

of the algorithm are its low computational complexity and ease of analytical analysis (not

usually the case for other clustering algorithms). The main disadvantage, however, is the

low likelihood of converging to a global minimum since the iterative algorithm uses gradi-

ent descent [35] to obtain the solution from random starting points. The solution to each

algorithm trial is highly dependent on the starting points. Furthermore, for color image

segmentation problems, it is not necessarily desirable to apply this algorithm as is since the

color space used is not necessarily perceptually uniform; in other words, distances between

colors are not reflective of the perceived distance between them when viewed by a human

observer [68] (a desirable feature when using the Euclidean distance).

Algorithm 4 The k-means algorithm

1: Given pixels {i} with their corresponding values {xi} and K the number of labels and

regions,

2: Let Vk be clusters of pixels or nodes with a meanwk, such that Vk = {i | Φ(xi, wk) <

Φ(xi, wl), ∀ l 6= k },
3: Then find {wk} minimizing

∑K
k=1

∑

n∈Wk
Φ(xn, wk).

Segmentation using k-means has been undertaken in a variety of color spaces: CIE

Lab [148], using the Dichromatic Reflection Model (DRM) to obtain shading invariance

[134], a k-means-like algorithm based on the DRM for highlight and shading invariant

segmentation [125], and other k-means variations to cluster pixels in 2-D chromatic and

1-D intensity space [92, 112]. ISODATA is a common generalization of k-means allowing

cluster splitting and grouping [35].

In the limiting case where the prototypes {wk} are predetermined on a regular grid,

the clustering reduces to the special case of histogram analysis. Because the number of

histogram bins K grows rapidly with the number of dimensions, histogram analysis is
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limited to 1-D, 2-D or possibly 3-D spaces, in contrast with general clustering approaches,

which handle high dimensional data (which would be the case for multispectral images

[125, 136] or texture features) with ease. Histogram-based segmentation methods include

the work of Schettini [120] (a recursive one-dimensional histogram analysis), and Kurugöllü

and Sankur [81] (analysis of 2-D histograms of RGB pairs RG, GB and RB). More detail

on other histogram-based methods can be found in [93].

A very common variation of k-means is the fuzzy c-means algorithm [8]. This algorithm

differs from k-means by creating degrees of membership in any one cluster as opposed to

a pixel being forced to be in a unique cluster. As a consequence calculating the distance

between the pixel and prototype needs to be done using a fuzzified version of the Euclidean

distance (1.2):

ΦF (xi, wk) = (uki)
θ(xi − wk)

T (xi − wk) (3.1)

where uki represents the membership value of the i-th data sample for k-th cluster, and

the weighting exponent θ is added for the fuzzification of memberships. The Euclidean

distance could be replaced in theory by other distance measures. The larger θ is, the

fuzzier the memberships are (usually θ > 1). The sum of uki with respect to k is constrained

to be 1 (for possibilistic approaches this constraint is relaxed [37]). Fuzzy memberships

allow pixels to belong to several classes (with different degrees) at the same time with

usually one predominant class. This relaxes the rigid cluster boundaries by creating a

user defined (based on fuzzy memberships) “gray” zone in the feature space. Lim and Lee

[89] apply the fuzzy c-means algorithm to RGB images. Wu et al. use a fuzzy c-means

clustering algorithm for preliminary segmentation of RGB map images for the purpose

of extracting lines and text [159]. A detailed comparison between the k-means and fuzzy

c-means approaches is reported in [114].

Clustering using Gaussian mixtures is a probabilistic variant of k-means [35, 131]. In

this case, each cluster is one component of the mixture. The pixel distribution in each

cluster is typically defined to follow a Gaussian distribution with a mean (the cluster

prototype) and a covariance matrix (defining the probabilistic relationship between pixels

within that region). The distance measure in this case is the Mahalanobis distance (cf.

Section 4.3.2) and the parameters of the mixture components that need to be updated
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(a) (b) (c)

Figure 3.1: Different distance measures for clustering can greatly affect the segmentation

result: (a) original Image, (b) clustering with k-means (Euclidean distance) using k = 8,

(c) applying Mixture of Principal Components (vector angle) with k = 8. Note that the

segmentation of skin pixels with MPC is much more consistent than with k-means.

are the mean and the covariance matrix. This alternative has been used mostly in energy

minimization approaches [166] discussed in Section 3.4.

The Mixture of Principal Components (MPC) algorithm [34] is similar in structure to k-

means with two fundamental differences. First, distances between the prototype and pixels

are computed using the vector angle (1.3) instead of the Euclidean distance (1.2). Second,

each prototype is represented by the first principal component (the principal component

corresponding to the largest eigenvalue) of the covariance matrix of the pixels belonging

to the cluster [148]. In this way, the average direction of the cluster is obtained and not

the vector average of the color pixels. This is needed since the vector angle captures only

chromaticity-related information which is characterized by the pixel direction in RGB and

not its magnitude. A comparison between k-means and MPC in various color spaces is

presented in [149, 153]. See Figure 3.1 for an illustration of using two different distance

measures in image segmentation.

Clearly all of the above clustering strategies can be generalized from the clustering of

3-element vectors encoding a single color to more general notions of features, which could

include information about texture [18], pixel location [18, 111] or surrounding pixel values

[148]. Park et al. use morphology to expand color clusters nonlinearly in feature space

[111].
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Several other methods make use of a clustering approach as a preliminary step to more

specific region segmentation or merging. For example, Hedley and Yan [64], as well as Zhou

et al. [165], use distance measures which incorporate a spatial component to complement

their color clustering approaches in order to mitigate the effects of outliers and anti-aliasing.

Clustering algorithms are very good at partitioning an image into globally distinct

colors. However, they do not always perform well spatially given their ignorance of local

relationships. The next section will describe spatially-based algorithms which rely on local

pixel information to segment images.

3.3 Spatially-Based Methods

Spatially-based image segmentation algorithms [59, 92, 137] are based on the premise that

local information is crucial in the image segmentation process. Whereas in clustering-

based approaches there is no guarantee of spatial compactness, the goal of spatially-based

methods is to distinguish objects in an image on the basis of pixel adjacency and feature

similarity. The pixels associated with an object should be next to each other in the image

and have similar characteristics with respect to the chosen distance measure Φ. There-

fore, what we seek are spatially compact regions that should also be compact clusters in

feature space. If these two goals can be achieved, spatial regions can be identified and,

therefore, the segmentation problem is solved: each image pixel is labelled or grouped into

its associated spatial region homogeneous with respect to some features.

The main advantages of spatial methods are the generation of spatially compact regions

and their ability (in most cases) not to depend on the cluster number specification (as is

not the case in clustering). The main disadvantages are the ambiguity of selecting starting

seed points [1, 59] and region-to-region spilling [138].

By definition, a region growing algorithm needs to start the process of growing pixels

into regions at a single point, usually called a seed. The algorithm then attaches other

pixels to the seed based on some similarity criteria. Seed points may be manually or

automatically selected points [1] or even all pixels in the image. When regions are grown

by sequentially adding new pixels to the region, it is possible that they absorb multiple

seed pixels in the growth process. After all seeds have been visited, it is possible that some
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pixels lie outside of all regions, in which case a post-processing step may be necessary to

determine whether a given unlabelled pixel should be added to an adjacent region, used

as a new region seed, ignored, etc. The biggest disadvantage of these points is that some

regions might not be detected if there is no seed within to grow into the full region.

An equally serious issue is region-to-region spilling which may occur when two different

regions, connected by a slowly changing gradient, are joined. This occurrence is illustrated

in Figure 3.2. In general, a gradient lower than a threshold means that the pixels belong to

the same regions while a higher gradient value separates them. If there is one low gradient

between two pixels even though all other gradients are high, the pixel will be merged with

the surrounding region.

Three classical spatial image segmentation algorithms are reviewed: region growing

[137], split-and-merge [59], and edge-based methods such as the watershed [122]. An

earlier comprehensive overview of spatially-based techniques may be found in [93]. Region

growing algorithms have been very popular due to the simplicity of their implementation

and intuitive appeal. Trémeau and Borel [137] use region growing in RGB followed by

a merging step. Furthermore, Trémeau and Colantoni propose an adjacency graph to

enhance region growing and watershed transform-based segmentation algorithms [138].

Maxwell and Shafer propose a physics-based method using multiple hypotheses of image

formation for images without [96] and with highlights [97]. Another type of region growing

method creates connected components [146, 147] based on distances between the candidate

pixel and an adjacent pixel belonging to the region, and between the candidate pixel and

the region prototype that are both less than some experimentally set thresholds. The

region prototype is determined by computing the vector mean of the pixels within the

region. The similarity measure is the Euclidean distance as in [137] which in [146] applied

to a five-plane combination of the XYZ space and the normalized uv planes. Region-to-

region spilling 1 is evident in Figure 3.3. A sample region growing method is shown in

Algorithm 5.

Split-and-merge methods operate on the dual basis of region splitting and region merg-

ing [59]. The splitting phase may be an initial partition of an image [50, 77, 78], or an

initial segmentation of the image [59]. The aim is to obtain regions that are homogeneous

1Results taken from [151] with two different parameter sets. Method details in Chapter 7.



42 Stochastic Nested Aggregation for Images and Random Fields

Original Image Seed Pixel (red) Region Growing

Three Critical Points Region-to-Region

Spilling Has Occurred

(green)

Figure 3.2: Region-to-region spilling may occur when two different regions, connected by

a slowly changing gradient, are joined. Starting with some seed pixel, the region growing

algorithm gathers pixels closest to it until it reaches some critical points (i.e., edges between

distinct regions with weak gradients) which are then breached. White pixels indicate strong

edges between regions (gradient magnitude higher than a threshold) while black pixels show

that there is no edge (gradient magnitude less than a threshold). Red pixels illustrate the

entire region growing process from starting with a seed pixel to filling in the whole region.
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Algorithm 5 A Sample Region Growing Algorithm

1: Identify a set of initial or seed points {si} where i = 1, . . . , Ns and Ns is the total

number of seed points such that Ns ≤ N .

2: for All seed pixels {si} do

3: Grow regions {Vk}, each from si, by adding adjacent pixels similar to the pixels

already in the region:

wk =

{

sj

{Vk, j | given i ∈ Vk ∃ i, j adjacent, ∀ Φ(xi, xj) < τ} (3.2)

4: end for

(a) (b)

(c)

Figure 3.3: Region-to-region spilling result: (a) original image, (b) and (c) region growing

results using different sets of parameters. In (b), the thresholds for including a pixel in a

region are very conservative leading to oversegmentation with many small regions while in

(c) the parameters are much more relaxed leading to undersegmentation with few regions

resulting from region-to-region spilling, as happens with the orange and red fruits in the

foreground, colored a single green shade.
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with respect to the chosen criterion Φ. The merging phase is concerned with joining sim-

ilar adjacent regions. These algorithms can be implemented as a two step process or an

iterative one running until there is convergence to some segmentation result. Klinker et

al. [77, 78] determine the principal components of image patches to estimate the shading-

invariant (with respect to the DRM [123]) region color. Patches of similar color are then

merged to form the segmented regions. Gevers [50] implements an incremental Delaunay

triangulation scheme for neighborhood referencing instead of a quadtree structure. The

image is split using edge information until all triangles satisfy a homogeneity criterion.

Next, a merging phase is applied in which the same homogeneity criterion is used to merge

adjacent triangles.

The watershed transform works by considering an image a topographic surface based

on feature gradients [45, 122, 141]. Then, the minima of this relief can be “pierced” and

the image immersed into a “liquid.” As the liquid floods the image, if we prevent the

merging of the liquids coming from different sources/minima, we partition the image into

two different sets: the catchment basins – homogenous image regions – and the watershed

lines – the object edges. In other words, the watershed transform could be considered to

be region growing coupled with edge detection. Shafarenko et al. describe a method for

color texture segmentation [122]. They define a color gradient to measure color similarity in

CIE Luv space. Gao et al. use mathematical morphology followed by a modified watershed

transform to segment images in CIE Lab [45]. Vanhamel et al. use a method which controls

oversegmentation using a multiscale framework [141].

Edges have been used as an alternative to image segmentation methods since in edge

detection the actual boundaries between objects are being sought [59]. Researchers have

long taken advantage of many well established methods [54, 59] to provide additional

context and guidance for spatial methods. For example, [38] applied an edge detector to

an image followed by region growing, where seeds for the region growing algorithm are the

centroids of the initial edge map. Ideally region boundaries will coincide with detected

edges; if not, the adjacent regions are examined for merging or splitting criteria. Thirion

et al. [130] proposed another method which combines regions and edge information in a

Dichromatic Reflection Model framework to detect pipes. First, to detect highlights, they

compared each pixel to the nearest previously calculated linear pipe cluster. Second, the
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anisotropy of the image gray levels at each pixel is calculated to obtain shading invariance

given that the shading of pipes is highly anisotropic: almost constant along the axis of the

pipe and strongly varying in the orthogonal direction. Finally, they used a Canny-Deriche

filter to detect edges followed by a contour closing step. In [168], edges were extracted

using a gradient operator which is followed by a region growing step called pixel fusion.

Finally, in JSEG [32] two independent steps are applied: color quantization and spa-

tial segmentation. First, the authors use a color image quantizer in CIE Luv to obtain

representative color clusters in the image. Next, a segmentation criterion is applied to de-

termine boundaries and interiors of color-texture regions using a region growing method.

Another method uses color watersheds for spatial information extraction and color region

prototypes (obtained with k-means or a Bayesian classifier) for global features [85].

Typically, region growing methods are the simplest to implement and have the least

computational complexity while split-and-merge methods are usually iterative. Region

growing and watershed methods might be also much more prone to error since seed pixels

need to be carefully selected. Watershed and edge-based techniques are also potentially

much better than other methods due to their integration of edge information. However, it

is clear that the JSEG algorithm presents some clear advantages to other methods due to

its inclusion of spatial and color features [32]. Heuristics-based combination of clustering

and spatial methods may work in some cases; however, a principled approach to such a

combination is preferred. This is the topic of the subsequent section.

3.4 Energy Minimization: Energy Models

One popular framework for describing complicated probabilistic problems is energy mini-

mization, a term stemming from its mathematical origins in statistical physics [48]. This

approach to image segmentation can be formulated using elements from both spatially-

based and clustering-based approaches enhancing the advantages of both paradigms while

limiting the drawbacks some of which are illustrated in Figures 3.4 and 3.5. The relative

strengths and weaknesses of the three segmentation algorithm categories are summarized

in Table 3.1. The critical strength of energy-based or probabilistic approaches lies in the

stochastic optimization formulation whereas the methods described in the previous two
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Reference Image Region Growing Region Growing

(spilling failure) (seed point failure)

Clustering (2 Regions) Clustering (3 Regions)

Figure 3.4: An illustration of spatial method failures. In region growing, region-to-region

spilling (the dark blue and orange regions are merged) and not choosing good seed points

(the “black” colored region has not been detected since it is missing a seed point) are

often problematic issues. Using a clustering method, the reference image can be correctly

segmented by choosing the appropriate number of regions to segment. However, the correct

number of regions is only known after the segmentation has occurred (this is the cluster

validity problem). Here both clustering results would be acceptable.

sections were ad-hoc and did not have a well-defined objective function with an optimum

point.

Energy minimization problems in computer vision such as image correspondence [4]

and image segmentation are long-established [48, 88, 157, 167]. These methods are usually

based on a Bayesian framework as defined in Chapter 2 [4, 88]. Computer vision problems

are formulated in such a way as to partition image elements, represented by vertices or

nodes on an adjacency graph, into larger spatial structures in order to optimize a Bayesian

posterior probability or energy function usually derived from statistical physics.

There are two primary concerns: how to define an objective function for the image
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Reference Image Region Growing

Clustering (2 Regions)

Figure 3.5: An illustration of a clustering method failure. Using a region growing method,

the reference image can be correctly segmented since region growing methods usually deal

well with slowly varying gradients in image objects. In this case, region spilling is an

asset. However, when applying clustering (irrespective of how many clusters are chosen),

the method will fail since spatial information is not being taken into account.

Clustering Spatial Energy Minimization

Computational complexity Excellent Good Poor

Implementation ease Excellent Excellent Excellent

Compactness in feature space Excellent Poor Excellent

Spatial compactness Poor Excellent Excellent

Criterion flexibility Poor Poor Excellent

Table 3.1: Comparison of attributes for segmentation algorithms. The computational

complexity of single-site energy methods is poor and as a results accelerated methods are

necessary in order for energy methods to approach the complexity of spatial and clustering

methods.
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segmentation problem, and how to find its optimal solution. The use of local (possibly

global) contextual constraints is indispensable for reliable and effective image segmenta-

tion. It allows energy minimization methods to offer a framework capable of capturing

important aspects of the problem being solved. Indeed, a wide variety of constraints can

be proposed: clustering in color or other feature spaces as in Section 3.2, spatial simi-

larity as in Section 3.3, region size [142], textures [22], edges [48], etc. Gibbs Random

Fields [48, 157, 88] provide a way of modelling these constraints. In particular, given some

stochastic constraints of the form [41]

(

∑

j li,j
T xj

)2

= N (µi, σ
2
i ) (3.3)

implying that some squared function of feature elements is distributed about an expected

value µi with some expected variability, then these constraints imply a Gibbs distribution

on {xn} given by

p ({xn}) =
1

Z

∏

i

e
−

{(
∑

j li,j
T xj

σi

)}2

(3.4)

It is computationally most efficient if the constraints are local, involving only few, prox-

imate pixels, in which case the model is equivalent to an MRF; however, non-local con-

straints on region size are permitted and do not necessarily nullify the Markovianity prop-

erty.

The family of piecewise constant models such as the Potts/Ising models (2.17) are very

suitable for image segmentation problems [11] and will be used extensively in this thesis.

Their main characteristic is the modelling of large constant-label pixel groupings which is

very useful in image segmentation where images are composed of patches of homogenous

features (e.g., black car, green tree, blue sky, etc.). Therefore, the appearance of large

constant-label patches as a solution is an important assumption in the design of our energy

minimization framework.

Finding the optimal solution is often challenging due to the non-convex nature of the

objective function. Several optimization approaches for computing the local or global

optimum have already been discussed in Chapter 2 such as simulated annealing [19, 76],

iterated conditional modes [7] and highest confidence first [25]. However, the computational
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complexity of the global optimization algorithms such as simulated annealing is usually very

high [48]. There are also sampling issues associated with the use of appropriate statistical

samplers (Gibbs Sampling [48], importance sampling [33] or other variants).

3.4.1 Ising/Potts Models

Markov Random Field methods are rooted in the seminal work of Geman and Geman [48]

who formulated a procedure based on the Potts (2.17) model for noise filtering and image

segmentation tasks. MRF methods have been mostly used for parameter estimation of

textures [10, 21, 22, 98, 104, 106] which are later classified using other algorithms. They

have also been used as image segmentation models to actually drive the segmentation

process [48]. The former has been studied extensively in the literature for grayscale textures

[21, 22, 104], and color textures [98, 106]. The latter has been first studied in the context of

noise filtering [48] and was later used as a pixel grouping algorithm in image segmentation

[48, 163]. In [107, 163], the authors introduce methods initialized by vector quantization

or clustering algorithms followed by an MRF-based procedure to locally refine the image

segmentation result. This is done using a modified k-means algorithm and followed by a

Euclidean-distance based MRF model for grayscale images [107] and multispectral images

[163].

Gaussian Markov Random Field-based (GMRF) models were one of the first MRF-

related tools used for image segmentation [21]. This involved deriving parameters for each

texture using a GMRF model and then proceeding with the segmentation process as a

separate hypothesis-testing procedure applied to the GMRF likelihood. The most crucial

part of this type of procedure lies in determining the actual model parameters. This can

be done by using a fuzzy logic-based clustering algorithm [104] or by iteratively estimating

model parameters from the segmentation results [21, 22]. For color image segmentation

the GMRF defines a spatial texture with explicit dependencies between the R, G, B

components [106].

Several early MRF approaches exist [31, 67, 91, 127, 158]. Daily [31] studies an MRF

model based on a normalized color metric [61] and line processes. Daily proposes three

different neighborhood structures: rectangular (used most often), hexagonal and trian-

gular. He segments images by introducing or deleting line processes thereby merging or
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separating individual pixels. Sung [127] uses a MRF model with an angular color difference

measure with objective function components enforcing “closeness” to the original image,

smooth color transition between neighboring pixels and a line process term which forces a

boundary between pixels. Wright describes a method based on Gibbs Random Fields and

line processes [158].

Several MRF/GRF methods have been devised for color image segmentation in recent

years [46, 60, 73, 86, 101, 163]. Most of these methods use similar prototype-driven algo-

rithms [107]. Yamazaki and Gingras [163] propose a method to refine k-means clustering

results using post-processing with an MRF. Gao et al. [46] describe a second order MRF

coupled with an Expectation-Minimization (EM) algorithm to segment color images in

CIE Luv.

Mukherjee [101], on the other hand, first segments the color image using a region

growing approach and refines the result using an MRF. Kato et al. uses a similar approach

also in the CIE Luv space using a coarse segmentation to drive a first order prototype-

driven MRF [73]. Hazel [60] proposes a clustering MRF method coupled with a Gaussian

MRF texture model for general multispectral images.

3.4.2 Region Prototype Models

We can similarly construct GRF models with global constraints, such as cluster means,

along the lines of Section 3.2. The GRF energy now contains a term penalizing the distance

between a pixel and its associated prototype [107]:

U [{li,j, wk}] =
∑

i,j

αΦ(xi,j, wli,j
) +

β
[

(1 − δli,j ,li+1,j
) + (1 − δli,j ,li,j+1

)
]

(3.5)

where {wk} represent the cluster prototypes. The prototypes {wk} may be treated as

deterministic, precomputed by another method such as k-means, or they may be stochastic

and themselves estimated, jointly with region labels, by the GRF optimizer. Whereas the

standard k-means algorithm only involves the first criterion of (3.5), that of pixel similarity,

here we have additional flexibility.
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Several prototype-based GRFs have been developed following Chang et al.’s [20] adap-

tation of Pappas’ [107] original algorithm for color image segmentation by modelling the

components of the color vectors as independent random variables. A multivariate Gaus-

sian with a space-varying mean function was the class conditional probability model for the

image [20, 107]. The means were initialized to the k-means cluster centers. The algorithm

alternates between the MAP estimation of the labels and the determination of the class

means. The means are obtained over sliding windows whose size progressively decreases

thus progressively adapting to the local characteristics of each region. Huang et al. [67],

and Liu and Yang [91] use scale space filters for preliminary clustering and refine their

region boundaries using various types of MRF’s.

Comaniciu and Meer [26] used mean-shift clustering, a method which estimates in a

non-parametric fashion the modes of the underlying density (e.g., color image histogram).

Comaniciu further improved the method by measuring the significance of each cluster using

test statistics that compare the estimated density of the cluster mode with the estimated

density on the cluster boundary [27]. This leads to the suggestion that saddle points lying

on the cluster borders in the spatial domain define the cluster boundary in the feature

domain.

Significant work has been done by Zhu et al. based on Bayesian conditional prob-

abilities [140, 166, 167]. Originally, Zhu et al. [166] proposed the region competition

algorithm which is a formalism unifying region growing [59, 92, 137], snakes [71], and the

energy/Bayes/MDL criterion [84]. This algorithm is robust in the sense that new region

prototypes can be added when needed and the region means adapt to the underlying im-

age (i.e., no special initialization is necessary as in many MRF methods used to refine

clustering results [40, 73, 163]). In [140], the authors present the Data-Driven Markov

Chain Monte Carlo paradigm for image segmentation in a Bayesian framework. This work

attempts to provide a unifying framework for image segmentation by combining edge de-

tection, clustering, region growing, split-merge, snake/balloon, and region competition by

showing how each of these realizes Markov chain dynamics. One key advantage of this

algorithm is its ability to achieve a nearly global optimal solution independent of initial

labelling. However, it is still not much faster than a flat field annealer.
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Top-Down Multi-Grid Top-Down Bottom-Up

Regular Monte Carlo Irregular Irregular

Hierarchy Hierarchy Hierarchy

Figure 3.6: Illustration of various accelerated annealing estimation methods with their

qualitative speeds and other attributes of interest listed in parentheses: top-down regular

hierarchies (slow, blocky regions), multi-grid/multi-resolution (fast, continuous data), top-

down regular hierarchies or graph cuts (fast, arbitrary regions), and bottom-up irregular

hierarchies (fast, arbitrary regions). The arrows indicate the direction of the processing.

The top row represents the coarsest level of processing while the bottom row represents

the finest level.

3.5 Gibbs Sampling Acceleration Methods

The major impediment to using energy minimization methods is the significant computa-

tional complexity of Gibbs Sampling using global optimization methods such as simulated

annealing. A number of methods have been developed in order to speed-up this process.

They include top-down regular hierarchies [72], top-down irregular hierarchies also known

as graph cuts [11, 124, 160], bottom-up irregular hierarchies [2, 17, 99] and cluster sampling

[3, 4]. These different paradigms are illustrated in Figure 3.6.
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3.5.1 Top-Down Regular Hierarchies

There are several ways one could envision speeding up MCMC algorithms. One method

would be to create top-down hierarchies which refine their parameters at ever finer levels

[72]. These top-down methods are problematic since they force a square partition on all

scales and, therefore, the graph partitioning results on image segmentation are “blocky.”

Multi-grid Monte Carlo (MGMC) [55] provides a formulation for interaction between

various components of the energy function from those on a coarser scale to those on the

finest scale. In MGMC, estimates computed at different data granularities or hierarchies

influence one-another through top-down and bottom-up feedback. MGMC has not been

applied to discrete labelling problems and, therefore, it is not possible to comment on its

performance in this thesis.

3.5.2 Top-Down Irregular Hierarchies or Graph Cuts

A graph G = 〈V, E〉 can be partitioned or cut into two mutually exclusive sets VA and VB

such that VA ∪ VB = V and VA ∩ VB = ∅ by removing all the edges connecting VA and VB.

The total weight of the removed edges provide the degree of dissimilarity between these

two parts. The graph cut is then defined as [124, 160]

cut(VA, VB) =
∑

vi∈VA,vj∈VB

(vi, vj) (3.6)

where (vi, vj) is the edge weight between a node (or pixel) in VA and a node in VB usually

computed using Φ(i, j). The optimal partitioning of this graph minimizes cut(VA, VB)

which is equivalent to finding the maximum flow from the VA to VB [11]. Each of the

subgraphs VA and VB is then subdivided in turn until no more partitioning is required

with respect to some criterion [160]. In this way, graph cuts can be viewed as a top-down

irregular hierarchy.

(3.6) is a globally optimal criterion which favors cutting small sets of isolated nodes

in the graph since it increases with the number of edges going across the two partitioned

parts. Thus, the method has a built-in bias for partitioning out small sets of points. In

order to avoid this disadvantage, Shi and Malik [124] developed the normalized cut criterion

to partition the graph based on both the total dissimilarity between the different groups,
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as well as the total similarity within the groups. Instead of looking at total edge weight

connecting two potential partitions, their criterion computes the cut cost as a fraction

of the total edge connections to all the nodes in the graph. Another method consists

of generating an “average” cut in a similar graph based on many sample cuts [47]. The

stochastic nature of their method makes it robust against noise, including accidental edges

and small spurious clusters. Normalized cuts presents many of the problems of clustering

algorithms such as the representation of global spatial clusters in images.

Graph cut methods also include minimum-cut [118] and graph-cut [11] which formu-

late energy minimization problems in a maximum flow framework in order to solve them

in polynomial time, and generalized belief propagation on graphs [164]. These different

graph partition algorithms are all based on adjacency graphs encoding local feature inter-

actions and have difficulties to scale up to global spatial interactions which occur in images.

Furthermore, the transformation of an energy minimization problem into a maximum flow

problem might not be not possible in many cases which is potentially problematic for graph-

cut and minimum-cut. Finally, because it can only be applied to specific energy forms,

generalized belief propagation is inadequate and, therefore, not applicable in general.

In nested graph cuts, [142] creates a top-down hierarchy of regions by starting with a

few large segments or cuts at the beginning and refining those cuts until no more graph

cuts can be made. The presented hierarchy has a stopping criterion in the form of a

threshold on component size (which eliminates the possibility of detecting small objects).

Otherwise, the segmentation would produce a highly oversegmented result as many small

regions would remain.

Graph cuts is a top-down framework for image segmentation that achieves excellent

results as shown in the reviewed research. Irregular bottom-up hierarchical schemes are

reviewed next.

3.5.3 Bottom-Up Irregular Hierarchies

The notion of irregular pyramids or tessellations [99] most closely resembles our framework

in structure with significant differences in the method details. Irregular pyramids provide

a bottom-up framework for gradually building regions in an image based on sampling the

data at lower levels in the hierarchy. The method explicitly uses a stochastic process to
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decimate the number of nodes in a graph. This reduction factor is at least four due to

the condition that no two neighbors may survive. This is a limiting condition for this

method as reduction factors for other methods based on irregular pyramids may be much

larger. Furthermore, the graph is ultimately reduced to one node. This methodology has

several shortcomings. First, since no two adjacent vertices may survive to the next level,

small image regions could easily be eliminated. Second, a stoping or fitness criterion is

needed to determine which level of the hierarchy provides the best segmentation which is

an ambiguous problem formulation. Finally, a representative pixel of the region is kept at

the next level and used for edge weight computation which may not be representative of

the region as a whole.

Several other methods related to irregular bottom-up pyramids have been developed

in recent years and exist under different names; namely, hierarchical watershed-type algo-

rithms such as repeated waterfall [2], hierarchical watersheds [13], combinatorial pyramids

[12] and highest confidence first [25]. All algorithms have greedy or deterministic optimiza-

tion schemes.

The repeated waterfall algorithm [2] applies repeatedly a watershed-like algorithm to

segment images. In [13], Brun et al. apply the watershed algorithm in a bottom-up

framework building a hierarchy of regions until all regions are merged. Both algorithms

need an experimentally devised stopping criterion in order to stop or some other way to

pick the desired segmentation result. Both methods are ad-hoc and do not use a principled

framework to decide on the segmentation result.

Chou and Brown describe the Highest Confidence First algorithm [25] where the group-

ing resulting in the largest total energy decrease is chosen (cf. see Section 2.7 for more

details). They effectively create a hierarchy of regions which differ by one in number from

one level to the next. This method is prone to getting stuck in a local minimum, however

it is computationally efficient at least for small graphs [94].

These algorithms first create region groupings based on some features and then merge

those regions (effectively the nodes in our graph) together. The very nature of image

processing dictates that local pixel-based features are usually very different from global

region-defining features. This naturally leads to the creation of two models: one for defining

a region and one for the merging of regions. However, in a bottom-up accelerator, the
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energy at the coarsest scale and the finest one should be related if not the same. In all of

these methods, a relationship between levels exists, however, the energy being minimized

at the coarsest scale does not correspond to the energy at the finest scale.

A related bottom-up hierarchy is presented in [17]. This method is a computationally

efficient hierarchical bottom-up algorithm based on a “divide-and-conquer” approach to

network flow for phase unwrapping. In this method, the image is subdivided into rectangu-

lar or square blocks where the phase is unwrapped independently of other blocks effectively

creating many small phase unwrapping subproblems. These blocks are recombined to pro-

duce the unwrapped phase at the next higher level creating another unwrapping problem

(which is now easier since the phases within the blocks have been unwrapped and the blocs

themselves are now being unwrapped with respect to each other). The unwrapped phase

in the original blocks has an irregular structure that then grows as the unwrapped phases

are combined at higher levels in the hierarchy.

The reduction in computational complexity depends on the size of the initial blocks the

image/graph is subdivided into. The blocks cannot be too small (since this would mean

that the original partitioning problem might not be addressed) nor could they be too big

(due to increased computational complexity) and therefore some intermediary size needs

to be chosen. In the case of Carballo [17], a block size of 100 × 100 is chosen at the finest

level. This hierarchy reduces the computational complexity by a factor of approximately

10; however, it allows images of virtually infinite size (limited by the computer’s hard disk

space) to be processed. However, this computational complexity improvement might not

be adequate for large images.

3.5.4 Cluster Sampling

To accelerate discrete estimation via MCMC one must look at computations on subgraphs,

regions or groups of vertices. The Swendsen-Wang (SW) algorithm [128], a method used

extensively in computational physics, reduces the computational complexity of the Gibbs

sampler [48]. Specifically, SW splits and regroups subgraphs dynamically; however, in its

original form it is only applicable to Potts models. SW was recently generalized to sample

arbitrary posterior probabilities on graphs [4]. By graph clustering and relabelling this

algorithm realizes the splitting, and regrouping of a subgraph, in contrast to flipping a
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single vertex via the Gibbs sampler [48].

The improved cluster sampling method simulates ergodic and reversible Markov chain

jumps in the entire solution space and is applicable to arbitrary posterior probabilities (or

energy functions) defined on graphs. Three variants exist: SWC-1, samples all edges in

a current subgraph, SWC-2 starts from a single vertex and grows into a subgraph, and

SWC-3 is a SW-based Gibbs sampler. SWC-1 and SWC-2 provide an improvement of

two orders of magnitude over the single site Gibbs sampler whereas SWC-3 is slower as

it has a higher overhead for each site visit [4]. Barbu and Zhu also present a two-level

hierarchic Swendsen-Wang algorithm [3] which carries out graph partitioning on two levels

of granularity: the first as in the original algorithm and a second coarser level.

The Swendsen-Wang algorithm is based on groups of nodes and therefore provides a

considerable (up to 400 times) [4] computational gain over the single site Gibbs sampler. A

more significant speedup is needed if graph partitioning using simulated annealing or ICM

is to be used for practical applications on very large graphs such as images. Furthermore,

the optimization in [4] is done on preprocessed atomic regions which create small graphs

of 500-2000 nodes. The preprocessing steps can introduce a considerable amount of error.

3.6 Discussion and Conclusions

We have surveyed the state of the art in color image segmentation by reviewing three

fundamental segmentation contexts: clustering, spatial methods, and energy minimization.

In most cases, a baseline algorithm will be straightforward to implement or available in

the public domain; however, the quality of the image segmentation will depend greatly on

the selected parameters, subtleties in the distance measure, as well as initialization issues

and, in the case of color segmentation, color space selection.

Since probabilistic segmentation models such as MRFs can effectively integrate any

type of local or global constraint (although some might be difficult to encode), they are

intrinsically more flexible than clustering or spatial methods. Computational complexity

being the primary drawback of such methods, a new bottom-up hierarchical method has

been devised in this thesis and will be discussed in Chapter 5.
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Chapter 4

Background: Review of Color Pixel

Comparison

The second component of an image segmentation or graph partition algorithm defines the

between-pixel or between-node distance measure. This computation is done to ascertain

differences between the data. Without a reliable distance measure, it is not possible to

determine which nodes should go together and which constitute disparate parts. The

appropriate distance measure needs to reflect the kind of problem that is being solved and

thus knowledge about the problem is encoded in the distance measure either implicitly

(by carrying out comparisons in a feature space assumed to be Euclidean) or explicitly

(carrying out comparisons in the sensor space which is not necessarily Euclidean).

Pixel distance measures are computed between adjacent pixels or image patches. In

this context, we will limit our examination to color distance measures. We shall distinguish

between distance measures (or semi-metrics) and metrics. Φ is called a metric on IRd (where

d defines the dimensionality of the feature vector) if it satisfies the following conditions:

1. Positivity: Φ(x, y) ≥ 0

2. Zero property: Φ(x, y) = 0 if and only if x = y

3. Commutativity: Φ(x, y) = Φ(y, x)

4. Triangle inequality: Φ(x, y) ≤ Φ(x, z) + Φ(z, y)

59
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where {x, y, z} ∈ IRd. Φ will be called a semi-metric or a distance measure if it can

only satisfy the first three conditions. When a distance measure is a metric, the triangle

inequality (condition 4) ensures that distances produced can be ordered. This matters

when computing the statistics of the measured distances. However, we often care only

whether a difference between values is small or large when pixel features are close or far

away respectively. This type of information can still be obtained using a semi-metric.

Choosing an appropriate pixel distance measure for a particular application can deter-

mine whether the algorithm devised to solve the problem will be successful [35]. In the case

of color image segmentation, the choice of distance measure will depend on the color space

and color model being used to solve the given problem. In this chapter, we will explore

physics- or reflectance-based color spaces and color distance measures. The literature will

be reviewed and the state of the art described.

4.1 Color Spaces

We need to decide the color space in which the metric or distance measure will be applied.

The use of color information has been studied extensively in image processing [68, 145]. A

color space is a method by which we can specify and represent color, normally as a three-

dimensional vector. The trichromatic model of color representation, commonly known as

RGB, is fundamental to the human perception of color [161]. It is based on the additive

primary colors red, green and blue [145], and corresponds most closely to human physical

sensors for colored light (i.e., the cones in the human eye) implemented as red, green, and

blue filters in most color charged coupled device (CCD) sensors.

Even though CCD image sensors have a linear response [129], sensor amplifiers may

cause the output image to contain nonlinearities. Furthermore, in the case of images

meant for display, an intentional nonlinearity or correction factor is introduced in order

for humans to accurately perceive the displayed image on common display technologies,

such as a cathode ray tube. The γ function (also called the transducer function) describes

the mapping from the CCD values to final image intensity. Its general form follows A · zγ

where z is the CCD value, A and γ are device-dependent constants [129]. Subsequently,

to infer properly CCD signal levels from a final image, we must apply the inverse of the
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transducer function to each image pixel in the final image. However, we will assume that

we do not need to correct the CCD signal for the γ function.

Color can be represented in a variety of interchangeable color spaces [83]. Since RGB

is the physical sensor-based color space, all other color spaces are derived from it. Because

the vector representation of color is space-dependent, clearly the separation between colors

will also be space dependent. Since the three components of the RGB space are highly

correlated, RGB pixels are usually transformed into another color space such as CIE Luv

[68], CIE Lab [68], Hue Saturation Intensity (HSI) [54, 68, 95], or others where correlation

has been reduced.

Human notions of color closely follow the HSI representation; however, this space

and others like it are not actually perceptually uniform – i.e., human perceptual color

dissimilarity is not proportional to the Euclidean distance between two colors [161]. CIE

Luv and CIE Lab are approximately isotropic spaces that were designed to be perceptually

accurate with respect to the use of the Euclidean distance metric. Color spaces provide the

vector coordinates of individual colors for the image segmentation application. However,

for many applications it is not only necessary to operate in some color space, but also to

determine whether a particular color representation can be invariant to various illumination

effects and to noise, based on a physical and/or probabilistic model of color. None of the

above spaces are appropriate for obtaining a physics-based segmentation without some

space-dependent preprocessing.

4.2 Physics-Based Reflection Models and Spaces

Color models allow us to make certain assertions, regarding color generation and percep-

tion, about the color space that we would like to use based on the laws of physics (optics).

Physics-based color models explain how light is reflected from objects in a scene based on

the physical properties of materials. They are used when algorithms need to achieve color

constancy – the perception of objects in the real world without illumination effects – such

as is the case for humans.

Much work has been done on physics-based color modelling over the years [123, 132,

133, 135, 145]. A commonly used physics-based model is Shafer’s Dichromatic Reflection
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(a) (b)

Figure 4.1: The Dichromatic Reflection Model: (a) specular reflection and (b) body reflec-

tion.

Model (DRM) [123, 145], which assumes that light reflected from objects can be separated

into specular reflection and diffuse reflection as shown in Figure 4.1. Specular reflection

or a highlight is characterized visually by a glossy appearance and describes light that

is reflected in a mirror-like fashion from a surface. Diffuse or body reflection is the light

reflected in all directions from a surface, giving a surface its colored appearance. Figure 4.2

illustrates the difference between the two reflections. By using the DRM, pixel difference

computations can be done directly in the RGB space.

A unichromatic version of DRM has been introduced by Healey [62] and DRM has

been described for a variety of materials [135]. Maxwell and Shafer [96, 97] describe

a modification to take into account piecewise uniform dielectric objects by formulating

hypotheses based on shape, illumination and material properties. Zhu and Yuille propose

a modification of the DRM that is not as sensitive to noise and suggest a new method for

highlight detection [166]. Other physical models include Phong’s shading model [66, 110],

and Nayar’s hybrid reflectance model [103]. Buluswar and Draper provide an overview of

these models, as well as an adaptation of the DRM to be used with a new daylight color

model [14]. Finally, atmospheric effect models for outdoor vision are considered in [102].

The focus here will be on inhomogeneous dielectric materials such as plastics and painted

surfaces. We will base our analysis on the work by Tominaga [132, 133].

We will now describe the Dichromatic Reflection Model. Light reflected from an ob-

ject surface o (called the color signal) is described as a function co(λ, i, j) dependent on
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(a) (b)

Figure 4.2: An illustration of specular and diffuse reflections: (a) a sample color image

with secularities; (b) the RGB distribution of the big red pepper.

wavelength λ and pixel location {i, j}:

co(λ, i, j) = Body Reflection + Interface Reflection (4.1)

= ν(i, j)so(λ)e(λ) + η(i, j)e(λ) (4.2)

where e(λ) is the spectral power distribution of the light source, so(λ) is the spectral-

surface reflectance of object o, ν(i, j) is the shading factor and η(i, j) is a scalar factor for

the specular reflection term. The following set of equations can then represent the sensor

responses for a camera using R, G, and B coordinates:







R

G

B






(i, j) =

∫

co(λ, i, j)







RR(λ)

RG(λ)

RB(λ)






dλ (4.3)

where Rk(λ) (k ∈ {R, G, B}) are the spectral sensitivity functions of the camera in the
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visible spectrum. Substituting (4.2) into (4.3), we have






R

G

B






(i, j) = ν(i, j)

∫

so(λ, i, j)e(λ)







RR(λ)

RG(λ)

RB(λ)






dλ +

η(i, j)

∫

e(λ)







RR(λ)

RG(λ)

RB(λ)






dλ (4.4)

= ν(i, j)cb(i, j) + β(i, j)ci(i, j) (4.5)

where cb(i, j) is the body color vector and ci(i, j) is the illumination color vector. These

color vectors are normalized into a unit vector length.

For the sensor outputs R, G, and B to be white balanced, it is necessary to satisfy the

following condition:
∫

e(λ)RR(λ)dλ =

∫

e(λ)RG(λ)dλ (4.6)

=

∫

e(λ)RB(λ)dλ (4.7)

As long as the illuminant e(λ) is a constant white over the visible wavelengths, and the

spectral sensitivity functions Rk(λ) (k ∈ {R, G, B}) have the same area, then the above

condition obviously holds. However, if the illuminant is not white, a color balancing step

[68] is needed where the three sensor outputs are adjusted to be equal in power. In this

thesis, it will be assumed that the illumination light is white or that the image has been

white balanced.

4.2.1 Physics-Based Color Spaces

Some color spaces have been designed using physics-based models of color: normalized color

or rgb [61, 62], c1c2c3 [125], shading and highlight invariant l1l2l3 space [125], highlight

invariant spaces h1h2h3 [153]. In these spaces, distance is usually computed using the

Euclidean distance except in [153] where the vector angle is used.

The rgb space has been used in the literature for several decades [50, 61, 62, 106].

rgb is obtained by dividing the RGB pixel elements by the pixel magnitude. For matte
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objects, the color representation in the rgb space is invariant with respect to illumination

direction and intensity, as well as the viewing direction and surface orientation [49]. It

is still sensitive to specular reflections, and inter-reflection. It is also not well defined for

pixels with low intensives.

The measured colors of a region with a uniform color are on the triangular color plane in

the RGB space spanned by the body and surface reflection components [49]. Therefore, any

expression defining colors on the same linear triangular plane will have similar properties to

hue. The l1l2l3 space was introduced to uniquely determine the direction of the triangular

color in the RGB space [49]. Applying the dichromatic reflection theory, one may observe

that this space is invariant to highlights, viewing direction, surface orientation, as well as

to illumination direction and intensity.

4.2.2 Probability-Based Color Reflection Models

Probabilistic color models were devised to take into account noise in images. The noise

is most commonly modelled using a normal distribution [166] although Sung [127] models

color noise using a Rayleigh distribution. Zhu and Yuille propose a model which separates

light into three components [166]

co(λ, i, j) = Body Reflection + Interface Reflection + Noise (4.8)

= ν(i, j)co(λ)e(λ) + η(i, j)e(λ) + υ(i, j) (4.9)

where υ(i, j) represents the noise or residuals that are Gaussian distributed. The authors

propose a series of operations for highlight or specularity detection. Residuals for body and

specular reflections within a region have sufficiently different distributions to distinguish

between them.

4.3 Distance Measures

The key to color image segmentation is to apply the appropriate color distance measure for

the problem at hand. The choice of distance measure can greatly affect image segmentation

or clustering results [35]; therefore, it is critical to make sure that the similarity measure
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being used is the appropriate for the assumed color space. Several distance measures are

summarized below.

4.3.1 Euclidean Distance

The most often used distance measure due to its mathematical properties and ease of

use is the Euclidean distance. Recall its definition in (1.2) [35] given here for clarity of

presentation:

ΦE(i, j) = (xi − xj)
T (xi − xj). (4.10)

However in the case of color images, where each pixel is represented as a RGB vector,

the Euclidean distance is a particularly poor measure of color similarity because the RGB

space is an-isotropic, especially when lighting effects such as specular reflection and shading

are present in the image. Consider the image in Figure 4.3 where the green (or brown)

colors are closer to each other perceptually than in terms of the Euclidean distance. It is

apparent the Euclidean distance between dark green and dark brown (or similarly light

green and light brown) is small due to their intensity.

On the other hand, in the CIE Lab and CIE Luv spaces, the Euclidean distance repre-

sents approximately the color difference as perceived by humans [122].

The mean of a set of pixels compared with the Euclidean distance can be obtained

using the vector mean of those pixels. For grayscale images, this is just the mean of those

values while for color or other multispectral pixels the mean is computed for each color or

spectral band individually with those values being then aggregated in a vector.

4.3.2 Mahalanobis Distance

The Euclidean distance can be generalized to the Mahalanobis (or general weighted Eu-

clidean) distance [62, 166]:

ΦM (x, x ) = (x − x)T Σ−1(x − x) (4.11)

where Σ represents the covariance matrix for vectors {x} with a mean x. The Mahalanobis

distance is a probabilistic generalization of the Euclidean distance based on the Gaussian

probability distribution. We will come back to probabilistic distance measures in Chapter 6.
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A = (236, 220, 154)

B = (197, 183, 128)

C = (148, 212, 148)

D = (178, 254, 178)

Original Image Original image

(color) (grayscale)

Euclidean Euclidean Vector Angle

(Th = 59) (Th = 70) (Th = π
15

)

Figure 4.3: Color segmentation using different distance measures. The Euclidean distance

cannot properly distinguish between the two regions of green and brown pixels using any

threshold. On the other hand, vector angle is able to separate both regions exactly. Th

represents the thresholds applied to the different distance measures.
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The mean of a set of pixels compared with the Mahalanobis distance can be obtained

using a weighted vector mean of those pixels. For grayscale images, this is just the weighted

mean of the values of a set of pixels while for color or other multispectral pixels the weighted

mean is computed for each color or spectral band individually with those values being then

aggregated in a vector.

4.3.3 Vector Angle

The vector angle measure (1.3) or its variants has been used a few times in the literature

[127, 148]. The vector angle measure in this form is a semi-metric. Its original definition

(1.3) (see page 5) is repeated here:

ΦV (i, j) = 1 −
(

xi
T xj

|xi| · |xj|

)2

(4.12)

Because the dot product between the vectors is divided by the magnitude of the vectors,

vector angle has been shown to be intensity invariant with respect to the Dichromatic

Reflection Model [150]. Figure 4.3(e) shows that two colors of different intensities and an

angle of 0 would be identical with respect to the vector angle. The main problem with the

vector angle is that it gives very “noisy” results for vectors with small magnitudes [127]

and is undefined if |x| = 0 or |y| = 0.

The “mean” of a set of pixels compared with the vector angle distance is an indication

of the general direction of the pixels in that set. Here we no longer care about the intensity

of pixel values and a Euclidean mean; rather, we compute the principal direction of the

set. Calculating the principal direction is equivalent to obtaining the principal component

vector corresponding to the largest eigenvalue of the covariance matrix of the data [34, 148].

A similar approach is adopted by Zhu [166] where the albedo or body “color” of the region

and the average intensity of each pixel is obtained by minimizing the sum of squared error

with respect to the original pixel colors over all points within the region. The minimization

is carried out using steepest descent although other methods can also be used.
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4.3.4 Histogram-Based

For completeness, we discuss the Kullback-Leibler divergence (KLD) [4, 80] used to com-

pute differences between probability distributions. This method is based on region his-

tograms as opposed to feature values like the previous distance measures. Barbu and Zhu

[4] use a Canny edge detector [15] to detect edges which is followed by an edge linking

heuristic in order to obtain atomic regions. The histograms of the regions delineated by

Canny edges are then determined and the differences between these histograms are calcu-

lated using KLD [4, 80]:

ΦKLD(i, j) = e−
1
2
(KLD(hi||hj)+KLD(hj ||hi)) (4.13)

where KLD is the Kullback-Leibler divergence function, i and j are region indexes, and hi

is the histogram of region i. This distance formulation is very useful especially when con-

sidering non-homogenously colored textured areas where a classical between pixel distance

measure cannot be used. However, in order to use this measure one has to preprocess the

image using edge detection and edge linking to create some “homogenous” regions where

the histogram can be computed. This results in a problem formulation which is no longer

contingent on a single model and makes the analysis of the results more difficult (i.e., the

reliability of results in such a scheme would depend a great deal on the accuracy of the

edge detector and not the pixel grouping mechanism). It would be possible to apply KLD

to pixels by computing the histogram based on some window around the given pixels.

However, produced histograms would be unreliable near the occurrence of edges.

4.4 Discussion

The Euclidean distance has been applied to virtually all color spaces whether or not it

was the most appropriate choice. There are many instances where this similarity measure

fails such as in images with a lot of variation due to illumination. In many cases, the

spaces are not perceptually uniform (unlike CIE L*a*b* and CIE L*u*v*) and, therefore,

the Euclidean distance is a poor measure of color similarity [122, 148]. However, it is

appropriate to use this measure if images present little noise. The Mahalanobis distance
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generalizes the Euclidean distance to deal with Gaussian-distributed additive noise and

has proven to be effective [62, 166].

The vector angle is an appropriate tool when intensity invariance is desired in a distance

measure. However, it is not useful for segmenting images other than those with non-zero

chromaticity values, unless these are somehow taken into account [127].

Defining the appropriate distance measure Φ is a crucial part of the challenge to design

a color image segmentation algorithm. It is certain that without an appropriate distance

criterion, segmenting images will not be possible irrespective of the sophistication of the

grouping algorithm. As a result, we distance new probabilistic measures in Chapter 6.



Chapter 5

Pixel Grouping: Stochastic Nested

Aggregation

In this chapter, a major thesis contribution will be described; namely, the speed up of

Markov Chain Monte Carlo (MCMC) methods such as Gibbs Sampling using an effective

strategy by creating a bottom-up hierarchy based on stochastic nested aggregation1 or

SNA. The motivation behind this method is simple. Discrete state estimation or labelling

using stochastic optimization techniques such as Simulated Annealing [76] is usually very

computationally expensive, on the order of O(N3), as is illustrated in detail in Section 5.1.

Although such computationally expensive algorithms can converge to a local minimum

close to a global minimum (convergence to a global optimum is only guaranteed for an

effectively exhaustive search of the solution space [48]), the computational complexity

makes them impractical.

Stochastic Nested Aggregation has the following general characteristics each of which

will be explained in more detail in this chapter:

• SNA is a bottom-up aggregation method where pixels are locally grouped into regions

of increasing size resulting in algorithms with an overall computational complexity

of O(N).

• SNA is a global optimization framework that can be used for stochastic and deter-

1A preliminary treatment of this approach was given in [155, 156].

71
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ministic methods as it helps to avoid many poor local minima.

• SNA is stochastic in nature at each level of the hierarchy and, therefore, moves are

reversible within a level (but not between levels).

• Because of the reversibility of moves, SNA is restricted to energy models with pairwise

comparisons such as the first order Potts model.

• There exists energy models such that SNA is scale invariant and it can solve exactly

the same optimization problem at all levels of the hierarchy.

In this thesis, we are interested using an accelerated framework for stochastic and

deterministic optimization methods in order to partition a graph of labels G (cf. Section 2.1,

page 14) composed of nodes vi and edges (vi, vj) where i, j = {1, . . . , N} and i and j are

each other’s neighbors. The goal of graph partitioning is to obtain a smaller graph by

grouping similar nodes together by assigning them the same label. For example, in image

processing we would want to group nodes or pixels with the same features to partition

or segment an image into objects or other meaningful parts. We partition this graph by

minimizing an energy function U defined on the graph. In image segmentation, we are

especially interested by the piece-wise constant class of functions which is characterized by

large areas of constant label (in image processing terminology) or color (in graph theoretic

terminology). Such an energy function can be devised to have a unique global optimum

and therefore provides the means of partitioning a graph with respect to a single global

criterion that is applicable at the finest and coarsest levels of processing the graph.

One can envision a general technique which first quickly gathers like nodes (as defined by

the model) into small groups in order to estimate their labels collectively. Then, some node

groups can in turn be collected quickly into somewhat bigger groups. This cycle continues

until no more groups need to be aggregated. We are then creating progressively smaller

single site graphs that perform multi-site discrete estimation. The nested aggregation

formulation will proceed from the finest level (in image segmentation: pixels) through

intermediate region groupings to a final region configuration. This concept should also be

applicable to any problem involving stochastic or deterministic2 graph partition. Figure 5.1

shows an example of the progression of nested aggregation.

2Although we refer to deterministic algorithms in this thesis, these algorithms are not entirely devoid of
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Figure 5.1: Stochastic Nested Aggregation: the algorithm starts with a random label

assignment at Level 0 and proceeds to merge regions successively by applying very fast

annealing schedules to the Gibbs Sampler at various levels in the hierarchy until no more

subgraphs need to be merged. The left column indicates the state of the labels at the

start of each level while the column on the right indicates the final label configuration.

Between level pairs, adjacent subgraphs with identical labels are merged before the process

continues. If no subgraphs need to be compressed into single nodes, then the method is

deemed to have converged.
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Interestingly for graph partitioning, nested aggregation can make both stochastic and

deterministic optimization paradigms more effective. First, even though deterministic

methods reach local minima very quickly, using nested aggregation the reduced order graph

created from the local minimum is no longer a local minimum in the new configuration.

This allows nested aggregation to proceed to much better local minima since the algorithm

usually has more than one level. Second, stochastic methods such as simulated annealing

can be run considerably faster while preserving the local minima avoidance property. The

issues of faster stochastic optimization and better local minima avoidance by deterministic

optimization are related and will be discussed in detail in Section 5.2.

The purpose of this chapter is to describe an original contribution to the literature;

namely, the general stochastic nested aggregation framework, as well as the hierarchical

generalization of the Potts model as an example of the methodology. By definition, stochas-

tic nested aggregation simulates ergodic and reversible Markov chain jumps in the space

of graph partitions at each level in the hierarchy as long as the optimization scheme (e.g.,

simulated annealing) permits it and is only applicable to pairwise energy functions defined

on graphs.

This chapter is organized in the following manner. Section 5.1 discusses the Gibbs

Sampler and its limitations. Section 5.2 presents the general concept of stochastic nested

aggregation which is followed by Section 5.3 with a discussion on the adaptation of the

Ising/Potts models to the stochastic nested aggregation framework which also includes pre-

liminary results. A discussion of extensions based on the framework follows in Section 5.4.

A final set of comprehensive results is presented in Section 5.5. The chapter concludes

with a brief summary.

randomness. Namely, a deterministic algorithm could perform gradient descent; however, in flat regions,

depending on its implementation, it might engage in a random walk.
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5.1 Gibbs Sampler and Its Limitations

The difficulty of sampling in the partition space Ωπ can be illustrated using the Ising model

[40, 48, 72, 88, 157]. Consider the following Ising/Potts model

U(ℓ) = −β
∑

(i,j)∈E

δli,lj (5.1)

where δli,lj is the Kroenecker delta and β is the region coupling parameter that is a non-zero

constant. β controls the degree to which we want to create an edge; a larger β means less

edges which will become an important concept later in this chapter. The labels {li} can

take on two distinct values: “+1” and “−1.” To obtain a solution to this model we use

simulated annealing [76]. We can write the Gibbs form (2.11) of (5.1) as

p(ℓ) =
1

Z
e{−

β
T

∑

(i,j)∈E δli,lj}. (5.2)

We will be using the Potts model for our analysis throughout the thesis contribution

chapters as it is a piecewise constant model characterized by large patches of constant or

homogenous areas punctuated by sharp discontinuities or edges. We use this model since it

represents the image segmentation problem in a believable manner. Indeed, by segmenting

an image, we would like to find all the areas in it that are homogenous with respect to

some set of features (e.g., color). Finally, the cliques in the Potts model are also pairwise

making it suitable for the SNA framework.

5.1.1 1-D Analysis

Without loss of generality consider a 1-D sequence N “−1” spins3 between two infinite

groups of “+1” spins shown in Figure 5.2(a) over a homogeneous data field (i.e., the

pairwise data comparisons or differences are exactly zero). Suppose we apply the Ising

model (5.1) to this sequence using the Gibbs sampler. The highest probability for (5.2)

or lowest energy for (5.1) will be obtained when all spins are facing in the same way (i.e.,

“+1”). Irrespective of the value for T , the spins defining the boundary between the two

3Note that in general the computational complexity will be the same irrespective of the initial spin

configuration of the N spins.
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domains do not affect the energy if flipped which leads to a random walk on the boundary

locations. A random walk is one possible formalization of the idea of taking successive

steps (each step being in a random direction), either “−1” or “+1.”

Consider two cases:

• If T = 0, then spins within each domain will remain stable and only spins at the

boundaries will change creating a random walk of spins at the boundaries.

• If T > 0, then spins within each domain can also change with non-zero probability

which leads to having a sequence with some of the spins changing in spite of the

neighboring spins. Therefore, the walk of annealing has more difficulty in converging

to the stationary probability p(W |X). Because we have a non-zero probability of

turning a spin into another in the middle of the sequence, we no longer have a

pure random walk which leads to more complex behavior and higher convergence

complexity.

To simplify convergence speed analysis in 1-D, we will use T = 0 in order to obtain a

random walk (however, for completeness of analysis we will present image segmentation

results for different values of T ). Since the “step” size in the random walk is 1 (i.e., the

magnitude of the spins), then after N steps the average number of spins which will have

the same orientation will be of the order of
√

N . Therefore, to obtain N spins in the same

direction, we will need O(N2) steps or iterations. We devise a simple experiment to show

this. Consider Figure 5.2(b) which shows how many iterations it takes to flip a sequence

of N spins to be either all “−1” or “+1” using a Monte Carlo simulation. Based on the

experiment, it is clear that the Gibbs Sampler needs to wait on average O(N2) iterations

for each of N spins to change the label of this sequence. For simulated annealing, this

results in an overall O(N3) complexity for a sequence of N spins.

5.1.2 2-D Analysis

In 2-D, the convergence of Gibbs Sampling for an Ising/Potts model (5.1) is further com-

plicated for several reasons. First, given a regular grid in 2-D, the boundary is much more

complex with the possibility of moving arbitrarily in the vertical and/or horizontal direc-

tions, not just along one axis, which results in in a complex walk of the boundary locations



Pixel Grouping: Stochastic Nested Aggregation 77

k

+1

-1

}
0 20 40 60 80 100 120 140 160 180

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Ite
r

N

Number of Iterations Needed to Converge to Identical Labels

(a) (b)

Figure 5.2: Illustration of the 1-D slow random walk of annealing. (a) Suppose at T = 0 we

have a 1-D Ising model with k successive elements inconsistent with the remainder of the

domain. The Ising model has some β > 0. The “−1” and “+1” spins that are flipped at

the border create a random walk at the boundary since there is no effect on the energy by

choosing either a “−1” or “+1” and because T = 0 prevents the flipping of elements away

from the boundary. (b) The plot shows how many iterations it takes to obtain a sequence

of N spins of “+1” starting with a set of random spins. A Monte Carlo simulation was

run for 1000 instances to obtain this curve. It is clear from the figure that the number

of expected per spin iterations is approximately O(N2) giving a total complexity for the

algorithm of O(N3).
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Figure 5.3: Consider a slow walk of annealing illustration in 2-D between two regions in

a homogenous image (i.e., no energy gradient) for a two-label assignment (Ising model)

at T = 0. (a) Within the domain of flat energies, the annealer performs a walk similar

to the 1-D random walk described in Figure 5.2 eventually finding (b) one of the optimal

endpoints (in this case a shaded or unshaded region) or (c) a local minimum or deadlock.

These are possible endpoints of the walk of annealing in 2-D which the annealer cannot

escape. Considering that the probability of flipping each vertex from “+1” to “−1“ is

po = 1/2, vertex o has a 50% probability of becoming “+1.” If it does become +1, then

pixels × will have the same choices as pixel o and so on.

as is illustrated in Figure 5.3. Furthermore, for an irregular grid (in the case of atomic

regions), the boundary movement is based on the structure of the graph.

Second, we no longer refer to the walk of annealing as a random walk since there is a

possibility in 2-D of reaching a local minimum from which the annealer cannot escape. The

convergence to the type of local minimum depends strongly on the structure of the lattice

underlying the graph. There are two possible lattices for graph partition: a regular lattice

which is a regular structure imposed on the data, and an irregular lattice which adapts to

the underlying structure of the data where adjacent subgroups are represented by nodes

connected by edges. Examples of these latices are shown in Figure 5.4. If the lattice is

regular a local minimum will occur if a horizontal or vertical border develops. Local minima

are also possible on an irregular lattice; however, they are structure-dependent due to the

arbitrary lattice configuration. Figure 5.4 illustrates the possible deadlocks that can occur

for regular and irregular lattices. Deadlocks do occur on irregular lattices; however, their

exact form is dependent on the local region of the underlying problem.

The computational complexity of the 2-D walk of labels is difficult to evaluate analyt-

ically given the possibility of falling into a local minimum. A test was conducted to assess
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Figure 5.4: Possible deadlocks for piecewise flat models such as the Potts model. (a) If

we use a first order (4-pixel) neighborhood on a regular grid, usually applicable at the

pixel level, the convergence of an Ising/Potts model will deadlock if a horizontal or vertical

boundary occurs (for second order or 8-pixel neighborhoods there would be additional

deadlocks on diagonals). (b) On an irregular grid, usually applicable at the image region

or patch level, deadlocks can occur, dependent on the geometry of the lattice and the

structure of the region neighborhoods.

the minimum computational complexity of using Gibbs sampling with simulated annealing

to fill a region of constant intensity with the same label using Potts model (5.1). ICM was

not used since it is capable of only converging to a local minimum and is prone to getting

stuck in a deadlock such as the one in Figure 5.4(a).

The test was set up in the following manner. Five different label sets were used

with K = {2, 3, 5, 10, 20}. The initial pixel labels were randomly assigned using a

uniform distribution. The region size N was taken from the set {16, 64, 256, 1024,

4096}. To ensure that convergence will occur for large regions, one must use increas-

ingly slower schedules (2.24) for decreasing T until T ≈ 0 and make T larger to allow

for a longer time at higher temperatures (in order to search a larger portion of the solu-

tion space Ωπ). Different schedules were tried with T ∈ {1, 3, 10, 30, 100, 300, 1000, 3000}
and κ ∈ {0.9, 0.93, 0.99, 0.993, 0.999, 0.9993, 0.9999, 0.99993, 0.99999}. This results in 1800

tests which were carried out in order of least computationally expensive to most.

The test was carried out in order to determine the minimum computational complexity

to obtain global convergence (i.e., the label field populated with only one label). 40
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Number of Labels

Region Size 2 3 5 10 20

4x4 2.19 · 102 2.59 · 102 4.55 · 102 3.06 · 102 4.03 · 102

8x8 1.43 · 103 5.23 · 103 6.10 · 103 7.22 · 103 1.06 · 104

16x16 6.88 · 104 7.42 · 104 2.19 · 105 2.51 · 105 2.78 · 105

32x32 1.11 · 106 1.25 · 106 8.15 · 106 1.02 · 107 1.12 · 107

64x64 4.87 · 107 5.41 · 107 5.82 · 107 - -

Table 5.1: Number of site visits for convergence times for 2-D walk of annealing. For

comparison, on a SPARC-10 running at 333 MHz approximately 25, 000 site visits were

carried out per second on a 10-label problem taking approximately 2, 400 seconds.

trials were run for each experiment which included varying the region size, the number

of labels, and schedule parameters. The schedule parameters were arranged in the order

of hypothesized computational time requirement by starting with low T and low κ and

progressing to higher values when convergence was not achieved in 35 out of the 40 trials

(i.e., zero energy was achieved most of the time). The results in Table 5.1 are given on the

total number of site visits.

It is obvious that the computational cost of using the Gibbs sampler to fill ever larger

image regions increases dramatically as ever slower annealing schedules are needed for the

algorithm to converge successfully. Unfortunately, a direct comparison with the 1-D case

is difficult due to the occurrence of deadlocks in 2-D. For higher numbers of labels the

complexity is higher since the label space Ωπ is increasing considerably and the algorithm

needs to explore a higher number of possible solutions before converging. This results

in a very high computational complexity especially for images which contain typically

1, 000, 000 pixels or more.

5.2 Nested Aggregation Framework

In this thesis, the computational complexity of Gibbs sampling is decreased through a

hierarchy of graph partitions called stochastic nested aggregation. The nested aggregation
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framework defines a hierarchy of ever increasing node groupings. The motivation behind

this framework is rooted in the high computational complexity of single site discrete state

estimation. Images which are characterized by the appearance of large constant or ho-

mogenous patches are ideally suited to be segmented using this hierarchical approach. As

Table 5.1 indicates, for increasing region size, Gibbs sampling takes an increasingly large

amount of time to converge: would it not be reasonable to achieve this convergence one

smaller step at a time?

There are several questions that need to be answered before examining the nested

aggregation formulation of the Ising/Potts model. First, what is the benefit of a hierarchical

method? Next, what is the nature of local minima in the energy function? Consequently,

when would either deterministic nested aggregation or stochastic nested aggregation be

preferable? Fourth, are the partitions of each graph in the hierarchy equivalent to each

other? Next, is there a stopping criterion? Finally, is the number of colors or labels K

important? Should it be fixed or variable?

5.2.1 Hierarchical vs. Flat Field

What is the benefit of a hierarchical method?

For example, consider that an image region with size 64 × 64 or 4096 pixels needs to

be segmented using 5 labels. It would take on average 5.82 · 107 site visits to fill the region

with a single label according to the results in Table 5.1. However, if instead of trying to

fill in the entire 4096-pixel region, the algorithm tried to fill in only 16-pixel regions, the

computation would take a tiny 4.55 · 102 site visits. At that point, there would be only 256

regions in the resulting segmented image and not the original 4096. The same algorithm

could be applied again to the segmentation of the 256-region graph by considering the

regions as single sites. This would result in 16 larger regions which would be grouped

using the same algorithm to form a single constant-label region. This would result in an

approximate computational requirement of 1.24 · 105 site visits which is a considerable

improvement over 5.82 · 107 site visits, effectively reducing the computation from many

hours to a few minutes depending on image size and computer speed. This is only possible

once we treat pixels and regions as single-site graph nodes at each level.

Although new graphs are formed at each level of the hierarchy, each of those graphs is
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related to the initial or finest level graph in that each node in a higher level graph represents

one or more nodes in the lower level graphs. Therefore, adjacent graph nodes or vertices

that should be identically colored or labelled are gradually aggregated without merging the

vertices that should remain separated according to the model used. Because the connected

subgraphs at a level of the hierarchy are produced as arbitrary concatenations of connected

components at finer levels, the resulting connected components can naturally fit those of

the data (e.g., image) being analyzed, rather than the poor fit of predefined square regions

in a coarse-to-fine regular hierarchy. That is, irrespective of the their shapes, the connected

nodes at lower levels in the hierarchy fit exactly within the connected subgraphs of at higher

levels. Furthermore, given the reduction in the size of the graph at each subsequent level,

the hierarchical framework allows for ever faster optimizations at successively higher levels

in the hierarchy thus reducing the computational complexity to a fraction of the running

time for the single site Gibbs sampler.

Let s ≥ 0 be the level indicator within the hierarchy where s = 0 corresponds to the

finest or first level (i.e., for an image segmentation problem this is usually the original

image or some preprocessed image patches). Let G(s) define the graph at level s with G(0)

corresponding to the original graph being partitioned [99]. Each level of the hierarchy is

now reformulated as a new graph G(s+1) based on node aggregation in graph G(s). Let

V(s) be the set of all partitions at level s such that |V(s)| ≥ |V(s+1)|, i.e., each higher level

has fewer possible partitions than the previous one since there are fewer nodes at each

successive level. Once |V(s)| = |V(s+1)|, the process stops.

This mechanism allows for faster processing of the original nodes in G(s) since G(s+1)

contains fewer nodes each of which represents a subset of the nodes in G(s). This process is

related to graph contraction or decimation [12, 99]; however, instead of carrying forward

a subset of the same nodes [99], the new reduced graph G(s+1) created from the original

graph G(s) will contain some new nodes (merged regions) and edges that are deduced from

the nodes and edges of the previous graph and some of the same nodes (regions that did

not want to merge) and edges.

An n(s)-partition of G(s), where n(s) is the number of partitions at each level s, is denoted
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by

π(s)
n = (V

(s)
1 , V

(s)
2 , . . . , V

(s)

n(s)),

∪n(s)

i=1 V
(s)
i = V(s), (5.3)

V
(s)
i ∩ V

(s)
j = ∅, ∀i 6= j.

where n(s) = |V(s)|, n(s) > n(s+1) and n(s) ≤ N . The label field at each level s is described

by ℓ(s).

Hierarchies allow us to improve both deterministic and stochastic discrete-state es-

timation techniques in significant (but different) ways. For deterministic discrete-state

estimation (e.g., iterated conditional modes), hierarchies of estimates eliminate most prob-

lems due to local minima by breaking the deadlocks as shown in Figure 5.4. By using a

reduced graph G(s+1) to represent the original graph G(s), local minima created through

labelling deadlocks are avoided since G(s+1) no longer has the structure of G(s). In the case

of Figure 5.4(a), instead of the 12 nodes in G(s) half labelled A and the other half labelled

B, the new graph G(s+1) would only have two nodes labelled A and B. The next step would

be to either merge the two nodes or leave them depending on the underlying data (pixels)

characteristics and the model being used for graph partition.

The labelling deadlocks are caused primarily by the model being used. In this case the

Ising/Potts model of the first order computes the energy based on the 4-pixel neighborhood

(assuming a regular lattice S). If all edge weights between neighboring pixels are equal

(i.e., a region of constant intensity or feature) and if three of the four neighboring labels

are identical, then it is easy to see that a vertical or horizontal edge could be created as

in Figure 5.4(a) since the central pixel wants to keep its existing label. In the case of real

world images, the first reduced graph and all the ones afterwards G(s), where s ≥ 1, will be

created on an irregular lattices where other graph structure-dependent deadlock formations

are possible. For example, Figure 5.4(b) illustrates a deadlock for some pixels with three

neighbors. Those deadlocks will be broken again when adjacent similar nodes are merged

into a new reduced size graph. Therefore, hierarchies allow Gibbs sampling to converge

closer to the globally optimal joint probability P (ℓ) although there is no guarantee that

the global optimum will be reached especially with deterministic algorithms such as ICM

and stochastic ones such as SA when an exponential temperature schedule is used (as will
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always be the case in this thesis).

Let us delve deeper into the workings of the framework. Consider that a level of the

hierarchy is finished after a number of iterations of an algorithm such as ICM or SA. Once

the algorithm has converged at a level, adjacent nodes v
(s)
i with the same label which

form partition V
(s)
j are gathered and turned into a new node v

(s+1)
j in the reduced order

graph that follows; i.e., V
(s)
j = ∪iv

(s)
i for all nodes i which are part of the partition j

since V
(s)
j → v

(s+1)
j . Thus, a new level in the hierarchy is generated and the next pass

through the data will use the labels deduced from the previous level to obtain a new set of

estimates. The labels obtained at the end of any level are used in subsequent levels with

no possibility of reversing results (an approach where reversible moves are allowed at all

levels might be possible but is beyond the scope of this thesis); i.e., the framework is not

ergodic once the transition from G(s) to G(s+1) occurs. However, it is ergodic and moves

are reversible (only is using SA) within any level s by definition.

5.2.2 Nature of Local Minima

Is it possible to reach an inappropriate local minimum on any particular level in the

hierarchy?

If yes, what steps can be taken to minimize this? The local minima in the Potts

model depend on each image being analyzed. There are four possible label configurations

between two nodes which can be reached at any time. Figure 5.5 contains an illustration

of all these cases. When segmentation proceeds in a desirable fashion cases (a) and (b)

occur. In an non-hierarchical algorithm, case (c) leads to a local minimum which is called

over-segmentation in image processing. It might be possible to rectify this error in a post-

processing step. Of course, in a hierarchical algorithm such as nested aggregation, this

merging omission is remediated at one of the subsequent levels. Case (d), however, is

the least desirable as it automatically leads to an erroneous partition of the graph which

cannot be remediated at in the next levels of the hierarchy. The algorithm should be

prevented from reaching such “illegal” configurations. In image processing terms, this is

an under-segmentation result which is not a desirable outcome.

Since the results are fixed after convergence is achieved at each level, under-

segmentation cannot be reversed. Under-segmentation could occur for several reasons:
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(a) the nodes that are supposed

to be merged are merged and

the energy is lowered

(b) the nodes that are supposed

to be separated are kept sepa-

rated and the energy stays the

same

(c) the nodes that are supposed

to be merged are not merged

and the energy stays the same

(over-segmentation)

(d) the nodes that are supposed

to be separated are merged and

the energy is increased (under-

segmentation)

Figure 5.5: There are four possible outcomes when considering two adjacent nodes. Con-

sider diagrams with two adjacent nodes linked by a double line indicating that they should

be merged and a dotted line indicating that they should be kept separate. The circles

around individual nodes indicate that the algorithm will separate the nodes while an el-

lipse around both nodes shows that the nodes will be merged by the algorithm. Outcomes

(a) and (b) are desirable in that they lead us closer to a local minimum. Option (c) keeps

the energy at the same level and delays a possible merging of the nodes to a higher level

in the hierarchy. Option (d) is an illegal configuration which leads to a wrong solution as

it increases the energy and cannot be corrected at coarser scales.
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a label increasing the energy is used due to simulated annealing, or the critical slowing

down phenomenon due to labelling conflicts with a limited number of labels is encountered

forcing a higher energy state even for deterministic algorithms, or region-to-region spilling

(inherently due to model formulation) occurs which is undesirable. For solutions related

to the critical slowing down phenomenon due to the number of labels see the detailed

discussion in Section 5.2.6 below. In the case of simulated annealing, it is necessary to run

the algorithm for several iterations at T = 0 in order to help prevent the choosing of an

illegal configuration as shown in Figure 5.5(d). Effectively the iterations at T = 0 force

the labelling configuration into a local minimum (unless the number of labels is too small).

To ensure a smooth run for SA from T > 0 to T = 0, schedules (2.24) (see page 27) are

chosen so that Tlast ≈ 0.

It is difficult to devise an appropriate model for segmentation which might avoid region-

to-region spilling (see Section 3.3 for a detailed discussion) especially if spilling corresponds

to an optimal result for that model. This model would need to have an appropriate form

(such as the trade-off between node similarity and a smoothness factor in the Potts model)

with an appropriate distance measure for the problem. Distance measures are the focus

of considerable research (see Chapters 4 and 6). In the event that the model does not

perfectly fit the problem (which is often the case), but still reflects the general correct

solution space for the problem at hand (such as piecewise constant Potts/Ising models

for image segmentation), enhanced optimization strategies might be used. Some of those

possible strategies will be detailed in Section 5.3.

5.2.3 Stochastic vs. Deterministic Optimization

When would either deterministic nested aggregation or stochastic4 nested aggregation be

preferable?

To answer this question, it is necessary first to determine whether the global optimum

of a non-convex energy function can be easily found. If the image contains well-defined

edges that separate all homogenous regions, then a deterministic (or “greedy”) method

will be successful with a good initial labelling ℓ(0). For images with well-defined large flat

4See definitions of deterministic and stochastic on page 24.
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areas (e.g., large homogenous regions), nested aggregation can break label deadlocks within

those areas and bring about a solution irrespective of the initial labelling ℓ(0).

However, in the vast majority of images edges are not well-defined and post-processing

algorithms for edge detection such as edge linking [4] need to be applied to create a close-

to-ideal energy function where a global optimum is found in an easier fashion than in the

original problem. In those cases, a stochastic algorithm will be preferred since it is capable

of escaping local minima. Edge linking and other similar algorithms are prone to errors as

they usually operate without any prior knowledge of which region edges should be linked

and which should not (this is a chicken and egg problem). We will not be using these edge

detection postprocessing algorithms as they are irreversible and introduce errors in the

segmentation. If we have imperfect edges, we will assume the function we are optimizing

is non-convex.

Stochastic algorithms have often been shown to be better better than deterministic ones

at solving non-convex problems at a considerable computational cost. This is easily shown

to be true by a counter example. Assume that regions in an image are connected through

the graph shown in Figure 5.6(a). The solution which would minimize the energy would

consist in merging node A with the smaller regions and keeping it separate from node B

as shown in Figure 5.6(b). Another possible solution would result in an increase in energy

through the merging of all nodes into one as illustrated by Figure 5.6(c). The solution

minimizing the energy is only achievable through a stochastic search algorithm since to

merge A with the small regions and not with B would require a temporary increase in the

energy only achieved via some kind of stochastic gradient descent while merging A and B

results in an immediate drop in energy. This situation is typical of image segmentation

problems where a few edge pixels connect two distinct regions, for example see Figure 5.7).

However, in a nested aggregation framework the differences between deterministic and

stochastic optimization are not as significant as when using only a single scale. Conse-

quently, we will use both SA and ICM in our experiments. SA will be used with a very

fast cooling schedule for T . The idea is to allow the method to increase energy some of the

time in order to find a potentially better solution. In algorithms where edge linking is used

to avoid region spilling, a deterministic method might be preferable due to its speed given

that ambiguous edges have been eliminated. ICM will be used for comparison purposes
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A B
A B

A B

(a) (b) (c)

Figure 5.6: A stochastic algorithm will be better than a deterministic one for optimization

since it allows us to escape local minima. (a) Consider the above graph where double lines

represent nodes that want to merge (Φ = 1) and dotted lines represent nodes that do not

want to merge (Φ = 3) and an edge penalty β = 2. (b) Then, the optimal partition of the

graph applying the Potts model would have node A merge with the small nodes and nodes

B be separated from them. (c) A suboptimal result would have all nodes merging into one

region.

since it gives results at a fraction of the computational cost. Furthermore, the ability to

globally converge due to breaking deadlocks is highly desirable in a deterministic algorithm

and will be investigated thoroughly.

5.2.4 Equivalence of Graph Partitions

Are the partitions of each graph G(s) for ∀s ≥ 0 equivalent to each other?

In other words, does each of the reduced order graphs G(s+1) have the same global

minimum and therefore the same optimal solution as their parent graphs G(s)? It can be

easily shown that the global minimum obtained at the coarsest partition is at least a local

minimum of the finest level partition. However, the converse is not true since G(s+1) is a

reduced order graph of G(s) with fewer minima than its parent graph.

The stochastic nested aggregation framework is akin to a smoothing or regularization

process that becomes stronger with every graph G(s) in the hierarchy. As opposed to

initially maximally smoothing the energy function in order to create a convex function in

Granulated Non-Convexity (GNC) [9], SNA tries to transform a non-convex energy into
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Figure 5.7: Ambiguous region merging due to a weak edge: (a) weak edge in an image

between two well-defined regions; (b) pixel across the edge possibly becoming two well-

defined regions; (c) pixels across the edge merging into a sub-region leading to region

spilling and the merging of all pixels into one region.

a convex one by effectively smoothing the function locally at every level of the hierarchy

until it is convex at the highest level. At the end of the convergence process, every node

in the final graph is labelled differently and does not want to change its label. The local

smoothing of the energy at every level allows the optimization algorithm to escape the

local minimum and continue with either deterministic or stochastic gradient descent.

Therefore, a necessary condition for U (s)(ℓ(s)) and U (s+1)(ℓ(s+1)) to have the same global

minimum would be for the energy described by the nodes V(s+1) and edges E (s+1) to be a

smoothed version of the energy described by nodes V(s) and edges E (s). This “smoothing”

is obtained here through between-level transition equations that ensure this equivalency.

Since equations are specific to the model being used they will be derived for the Potts

model in Section 5.3. These equations should in principle transfer the information encoded

in G(s) without any loss to G(s+1) thus ensuring that their global minima are equivalent.

Therefore, the solution to the final level in the hierarchy will also be the optimal solution

for the first level in the hierarchy.

The notion of information loss alluded to earlier is an important one. Consider for

example, the image shown in Figure 5.7(a) with two regions separated by a strong edge

with one point at which this edge becomes weak. If region patches form as presented in

Figure 5.7(b) then two regions will form at the next level. However, if the region patches

form as shown in Figure 5.7(c), then the whole image will become one region at the next

level. From the point of view of the Ising/Potts model, Figure 5.7(c) might present the
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optimal solution given that a high β would merge both regions through the gap and a

small β might create a multitude of small regions within the larger two regions. In practice,

Figure 5.7(b) would be more desirable, but a single Potts model might not exist to actually

produce this solution.

To achieve this solution one of two things needs to happen: either edge linking needs

to be used to fill in gaps in the continuity of the edge or region merging parameters have

to be chosen in such a way as to encourage the formation of these weak edges. However,

there is no guarantee that all such edge gaps will be filled in or that the linking will be

done in appropriate locations [4]. If edges appear that do not exist, a local minimum (and

perhaps not a very good one) will be reached. The deficiency lies in the formulation of the

model. In the case of [4], the edge linking performed on the Canny edge detection results

is critical to the segmentation result.

Furthermore, the second solution seems attractive as it can be integrated into the

overall principled framework developed here. This solution would involve creating a model-

based parameter schedule as mentioned above and as described later in this chapter. This

solution would ensure that region-to-region spilling would not have a significant affect on

segmentation results.

Finally, since SNA needs to speed-up the convergence of SA at each level by accelerating

the temperature schedule, it is very likely that our model will not necessarily converge at

each level to a desirable local minimum and, therefore, ultimately to the energy’s global

minimum. Therefore, G(s) for ∀s ≥ 0 might not have equivalent solutions. For example, if

the labelling of G(s) lends itself to a solution as in Figure 5.7(c), the global minimum at

higher levels of the hierarchy will not correspond to the global minimum of G(0). In other

words, the solution based on each intermediate graph G(s) will depend on its structure. We

must accept this limitation in order to obtain practical results.

5.2.5 Stopping Criterion

Is there a stopping criterion?

In some deterministic approaches where the model is not well-defined, such as in

watershed-based algorithms [2, 13] or other irregular pyramid schemes [99], a stopping

criterion is needed to make sure that all nodes are not ultimately merged into one over-
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all region. Here we study MCMC methods that stop when the optimization algorithm

has reached the problem’s stationary probability distribution function. In other words, an

implicit stopping criterion is encoded in the energy model and is not some ad-hoc threshold.

Therefore, there are no explicit stopping criteria needed as problems are formulated

using an energy model with a well-defined but unknown optimum point. In SNA, the

solution obtained maximizes the joint probability P (ℓ) irrespective of the algorithm being

used to find this optimum point and in practice to find some point close to to this optimum.

Once the algorithm converges to a given labelling or graph partition and partitions do not

change between two levels, SNA is said to have converged.

5.2.6 Number of Labels

Is the number of colors or labels K important? Should it be fixed or variable?

In general, it is well established via the Four Color Theorem [116] that the minimum

number of colors to label a planar graph needs to be at least four. Consider the graph

in Figure 5.8 where two nodes A and B with differing labels need to be merged while

being surrounded by a multitude of neighboring nodes. Changing the labels of A and

B so that they are labelled identically and all other nodes surrounding them are labelled

differently engenders a critical slowing down of the convergence process which can force the

configuration to converge to an undesirable local minimum due to inappropriately assigned

labels. Essentially, the mislabelling forces an inadvertent region-to-region spilling effect.

This is a problem for both stochastic and deterministic approaches.

Suppose regions A and B have labels lA and lB respectively. The M other regions

surrounding them have random labels that could include lA and lB. Regions A and B are

similar in features to each other, Φ(A, B) ≈ 0 while being different from the surrounding

M regions Φ(A, Cj) ≫ 0 and Φ(B, Cj) ≫ 0 ∀j = 1, . . . , M . The necessary condition for

A and B to merge is that none of the small regions adjacent to A can have label lB and

similarly none of the regions adjacent to B can have label lA. It is critical that none of

the regions Cj adjacent to region A (or B) have label lB (or lA) in order to allow region

A (or B) to assume label lB (or lA) at the next iteration. However, the probability of all

labels around A not having label lB is low (and as the number of adjacent regions grows,

this probability decreases) since lB is a legitimate choice for any of the regions Cj.



92 Stochastic Nested Aggregation for Images and Random Fields

A B

Figure 5.8: Critical slowing down can occur due to a fixed number of labels. If two nodes

A and B which should be merged are surrounded by M other nodes Cj∀j = 1, . . . , M , it

might be difficult to assign the appropriate labels to these two nodes without causing one

of the nodes Cj to merge into either node A or node B.
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If we have K labels and M regions surrounding A and B, the total possible number

of labellings is KM+2. The permissible labellings that allow A and B any possible label

(from K choices for each node) while nodes Cj any other label (from N −1 choices for each

of the M regions) giving a total of (K − 1)M · K2 possible permutations. However, the

labelling configurations that are allowed need to assign one label to A (from K choices),

another different label to B (from K − 1 choices), and different labels to the regions Cj

(from K − 2 choices for each of the M nodes). Therefore, the total possible number of

label configurations that is allowed corresponds to (K − 2)M · K · (K − 1). We then take

the ratio of these two quantities and obtain the probability of a satisfactory labelling ℓ of

all the regions:

τ = Pr(ℓ) =
(K − 2)M · K · (K − 1)

(K − 1)M · K2
=

(K − 2)M

(K − 1)M−1 · K (5.4)

which leads to the probability of obtaining the satisfactory coloring after t iterations:

Pr(t) = (1 − τ)t−1 · τ (5.5)

This corresponds to the geometric distribution. The mean of the waiting times is calculated

with

µM,K =
∞
∑

t=0

t(1 − τ)t−1 · τ

=
1 − τ

τ
(5.6)

and a variance of

σ2
M,K =

{

∞
∑

t=0

t2(1 − τ)t−1 · τ
}

− µ2
M,K

=
1 − τ

τ 2
(5.7)

for each {M, K} pair. Figure 5.9 shows plots of µ and σ2 respectively with respect to the

number of labels K and number of surrounding regions M . These figures show that as M

increases, convergence to a desired label configuration becomes ever more elusive. In other

words, the mean number of iterations and the corresponding variance increase drastically
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as M >> K. This is not surprising given that as M → ∞, τ → 0 (this decrease can

be slowed down with increasing K but not avoided). This result would suggest that it is

necessary to keep a high number of labels to avoid falling in an undesirable local minimum

or wait a lot of time to force the regions to merge. This is a worst case result as it does

not take into account the interactions between pixels due to the Potts model.

There are several solutions to the critical slowing down problem:

• Increasing the number of labels K to a high enough number so that critical slowing

down does not occur. This could involve one of a number of strategies. For example,

one could experimentally determine the number of labels to match the highest number

of edges of a node in a graph of the hierarchy (graphs at higher levels could have nodes

that are connected to large numbers of other nodes; e.g., large background areas).

By keeping K fixed, the number of labels that are tested for each node is then limited

to that number. However, the computational cost could increase dramatically as K

is set to a high value. To avoid the increased computational cost of a high number of

labels, energy could be computed only for unique labels found in the neighborhood

Ni of node i. At the finest level the highest number of neighbors for a first order

neighborhood would always be five (one label for each of the four neighbors and a fifth

extra uncommitted label in order to allow the nodes to be all disjointed). The number

of neighbors would usually increase for higher levels in the hierarchy; however, since

the number of nodes decreases, the computational complexity would remain low

(usually only a few nodes would need the high number of labels to compute the

energy). This strategy allows us to virtually specify an unlimited number of labels.

However, one must remember that as the number of uncommitted labels increases the

likelihood of selecting a desirable label is lowered (this would always be the case for

the finest level and for nodes with few edges at higher levels of the hierarchy). Since

this method allows us to increase the number of labels while limiting computation,

we will use this strategy in some of our experiments.

• One could also add a label whenever a new label was needed and therefore increase K

on a case-by-case basis [4]. Labelling conflicts would be automatically resolved since

the new label would, by definition, be different from all other labels. However, every

time a new label is added, we would be solving a different problem as the solution
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Figure 5.9: The mean and variance of the probability distribution function of the number

of iterations to converge to a legal label configuration for critical slowing down due to the

number of labels. The mean µK,M and variance σK,M are plotted as a function of the

number of labels K = {3, · · · , 20} and number of small surrounding regions M . The top

row shows a result for M = {1, · · · , 100} while the bottom row zooms into results for

M = {1, · · · , 20}. In the case of µK,M , the vertical axis indicates the number of iterations

necessary on average to obtain an acceptable labelling while for σK,M the vertical axis shows

the variation about the mean. The functions are capped since there are large differences in

τ values. As the number of surrounding regions M increases above the number of labels K,

the number of expected iterations to reach an acceptable labelling increases dramatically.

This indicates that the number of labels needs to be kept as high as possible.
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space would have suddenly increased. Therefore, a long burn-in period would be

required in order to obtain a stable large set of labels. Furthermore, this results in

a prohibitively expensive Gibbs sampler since the number of computations grows at

least linearly with the number of labels. Therefore, we will not be using this method

especially because of the long burn-in period required.

• Another way to resolve this critical slowing down problem would be to increase

sampling for regions with many neighbors. This would be needed in order to allow

those regions to take on other labels after several of its neighbors have changed

labels (and not just once in every iteration). This procedure would give the regions

with high numbers of connections more chance within an iteration to be labelled

appropriately. The number of extra samples drawn from the highly connected nodes

could be directly proportional to the number of its edges. However, how many more

times should one obtain additional samples? This is an interesting question that is

beyond the scope of this thesis and therefore we will not apply this strategy.

• Finally, one could envision an algorithm to make sure that the labels of large and

highly connected regions are non-conflicting. This could be accomplished with a node

relabelling algorithm illustrated in Algorithm 6. Node relabelling would allow the

nodes A, B and Cj to acquire a (most likely reduced) set of non-conflicting labels that

would then allow some variation in the label assignment at any given level. Node

relabelling would proceed according to region size or region connectivity in order

to allow the larger and highly connected regions to have non-conflicting labels first.

This should then allow Gibbs sampling to avoid the critical slowing down due to

conflicting labels. If the relabelling results in a reduced set of labels compared to the

original set, then for several iterations after the relabelling, the sampler would have

a number of “new” labels to choose from. We will use this method to mitigate the

effects of critical slowing down due to the number of labels. Together with a strategy

to limit the number of computations to only neighboring node labels, the critical

slowing down problem due to the number of labels will be effectively controlled.

Algorithm 6 is simple and effective. It produces a relabelling using as few as five labels

(a more complex algorithm would be necessary to obtain the theoretical limit of four
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labels as discussed in the Four Color Theorem [116]). This does not mean however

that the total number of labels needs to be five. On the contrary, a higher number

of labels would allow the Gibbs sampler to have more flexibility in the assignment of

labels after the relabelling step has been completed. However, K < 5 would result

in many cases in a relabelling failure. We will use this algorithm in many of our

experiments.

Algorithm 6 A Node Relabelling Algorithm

1: Set the maximum number of labels for relabelling to K

2: Sort all regions according to size in descending order

3: for All regions do

4: Assign a label to the current region that does not conflict with neighboring region

labels

5: If an appropriate new label cannot be found then stop

6: end for

5.3 Hierarchical Bottom-Up Ising/Potts

As an illustration of the method’s strength, nested aggregation is applied to the Ising and

Potts family of models using Gibbs sampling [48, 88, 4] (other models such as Mumford-

Shah [143] can also be used but are beyond the scope of this thesis). We use Gibbs

sampling with both a global optimization method like simulated annealing (SA) [76] and

a local optimization scheme such as Iterated Conditional Modes (ICM) [88] (i.e., SA with

T = 0).

The Potts model is one of the models in the family of piecewise constant models [11]

which are suitable for image segmentation problems. The first order Potts model is an ideal

candidate for the new hierarchical framework as it is fairly easy to analyze, has pairwise

cliques and has been used extensively in image processing [11, 48]. Furthermore, it is

easy to adapt this model to other pairwise comparison paradigms at higher levels in the

hierarchy (see Section 5.4 for specific extensions).
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5.3.1 Hierarchical Model Definition

Let’s formulate a GRF for segmentation as follows. Given a distance measure Φ, a trivial

GRF for segmentation would penalize pixel differences within regions

U(ℓ) =
∑

i,j

Φi,jδli,lj . (5.8)

Model (5.8) is flawed, however, since it can be satisfied perfectly by having the region labels

{li} differ for each pair of adjacent pixels, thus segmenting the image into many regions,

each one pixel in size. A prior model is required for labels, penalizing too frequent label

changes.

In Section 5.1, we have assumed that the data were identical everywhere which resulted

in a zero gradient assigned to graph edges between adjacent graph nodes (in equation (5.1),

Φ(·) ≡ 0 for all node pairs). Suppose we are now given a data set with a distance measure

Φ between adjacent nodes. We can write the Potts model for graph labelling as follows:

U(ℓ) =
∑

(i,j)∈E

[

Φi,jδli,lj + βi,j(1 − δli,lj )
]

(5.9)

where Φi,j is the dissimilarity criterion between the features of nodes vi and vj , and βi,j

controls the relative constraints on the degree of region cohesion and fragmentation. This

means that Φi,j and βi,j define relationships between all nodes in the graph (note that they

are identically zero for all non-adjacent nodes). βi,j can be node-dependent or a constant

β throughout the image. In this thesis βi,j = β is determined experimentally by testing

different values on one or more images.

At the finest level, we assume that G has a first order neighborhood structure on a

regular grid shown in Figure 5.4(a). The Potts model then reduces to

U(ℓ) =
∑

i,j Φ(vi,j , vi,j+1)δli,j ,li,j+1
+ Φ(vi,j, vi+1,j)δli,j ,li+1,j

+

β
[

(1 − δli,j ,li,j+1
) + (1 − δli,j ,li+1,j

)
]

The basic interaction between β and Φ is illustrated in Figure 5.10.

Models (5.9) and (5.10) are in many ways region growing-type models [137, 59] where

decisions to integrate a node into a subgraph are done with respect to the criterion Φ. The

major difference between these models and region growing methods is that the first order
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(a) (b)

(c)

Figure 5.10: Boundary constraints: (a) Reference image; (b) A boundary between two

similar green colors is inserted at a cost of b · β; (c) The boundary between two colors

is removed at a cost of
∑

(vi,j ,vi,j+1)∈B Φ(vi,j , vi,j+1) where B represents the set of b edges.

Therefore, if b · β >
∑

(vi,j ,vi,j+1)∈B Φ(vi,j , vi,j+1) then the regions are joined together.
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Potts model (for a fixed β) is essentially a pairwise energy function in which the inclusion

of a pixel or node in a larger region depends only on local comparisons between a pair of

variables. On the other hand, in region growing algorithms, the inclusion of a pixel or node

is non-pairwise as it is very much dependent on the sequence of previously included pixels

in that region.

Region-to-region spilling can still occur when using the Potts model. To verify this,

the concept presented in Figure 5.10 can be used. Essentially, at any point where β > Φ,

region-to-region spilling will occur. Regions connected by slowly varying gradients (i.e.,

regions between which there is no definite or exact edge) or by a small gap tend to be merged

(small edge gaps occur due to errors in the camera lens and in the image capture process

due to aliasing). This could lead to different solutions unless the model is disambiguated

(cf. Section 5.2.2).

Given a distance metric Φ, and a carefully chosen region coupling parameter β, the

algorithm performs an over-segmentation of the image by creating a multitude of small,

compact regions. In practice, any over-segmentation result like the one in [4] or from a

watershed transform [2] can be used as a precursor to the nested aggregation scheme as

long as only the desired pixels were grouped (i.e., no regions that straddle borders are

present in the initial segmentation). Otherwise, the algorithm will never have the ability

to converge to the global minimum (or close to it) since that option would have been

preempted in the first processing stage.

To generalize the Potts model to the stochastic nested aggregation formulation, we

begin with (5.9), a formulation naturally adapted to an irregular grid [88] to allow an

arbitrary number of neighbors, as shown in Figure 5.4(b). The Potts model based on an

irregular grid is written as

U(ℓ) =
∑

(i,j)∈E

{Φi,jδli,lj + βi,j(1 − δli,lj)} (5.10)

where βi,j is the region coupling parameter between nodes vi and vj. We can easily refor-

mulate (5.10) within a hierarchical fine-to-coarse stochastic nested aggregation framework

with

U(ℓ)(s) =
∑

i,j∈V(s),i6=j

{Φ(s)
i,j δli,lj + β

(s)
i,j (1 − δli,lj)} (5.11)
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where Φ
(s)
i,j and β

(s)
i,j define node relationships at level s.

Model (5.11) is non-local in that it operates on node aggregates or subgraphs rather

than on individual nodes in the original graph G(0). For boundaries composed of more than

one edge at level s > 0, Φ
(s)
i,j between two regions i and j is an average of the individual Φ’s;

i.e., Φ
(s)
i,j is averaged over the length of the boundary. However, (5.11) is still a pairwise

model since it compares pairs of regions to each other. A walk of annealing still takes place

at the higher levels; however, since there are fewer nodes in the graph, the walk is faster.

5.3.2 Transition Equations Between Levels

In order to validate the hierarchical Potts model (5.11), we need to show that the optimiza-

tion algorithm applied to it will have the possibility to converge to the same result on all

levels s of Potts model U (s) (global convergence is only guaranteed if simulated annealing

is used with a logarithmic schedule [48]). In other words, arg min U (s+1) = arg min U (s)

needs to be satisfied for ∀s ≥ 0. This means that the energy function formulations at U (s)

and U (s+1) need to be equivalent for the purpose of function minimization.

In Appendix A, we prove that U (s+1) = U (s) + Ū where Ū is a constant representing

the sum of all the edges E (s)
e = {(i, j)} to be erased at level s, or Ū =

∑

(i,j)∈E
(s)
e

Φ
(s)
i,j where

Ee is the subset of edges of E to be erased. This result shows that the minimum of these

two functions is essentially the same and therefore their solutions should lead to the same

solution. In general, this statement is true; however, the use of a pairwise energy function

has some interesting consequences which can prevent a better minimum to be reached.

This issue will be discussed shortly; first, transition equations are summarized.

Based on the proof in Appendix A, transition equations from level s to level s + 1 can

be constructed by summing all the Φ
(s)
i,j and β

(s)
i,j values that are common between the two

adjacent regions. The result will be a new edge in graph G(s) between the two new regions

such that

Φ
(s+1)
r,r′ =

∑

i∈V
(s)
r

∑

j∈V
(s)

r′

Φ
(s)
i,j (5.12)



102 Stochastic Nested Aggregation for Images and Random Fields

and

β
(s+1)
r,r′ =

∑

i∈V
(s)
r

∑

j∈V
(s)

r′

β
(s)
i,j (5.13)

where r and r′ are the node indexes in the new graph G(s+1) while V
(s)
r and V

(s)
r′ are the

corresponding sets of nodes at level s. We now have model (5.11) which governs how the

labelling is done at each level s together with level-to-level transition equations (5.12) and

(5.13).

The edge between two new regions at level s+1 can easily contain one or more old edges

between subsumed nodes from level s. In Figure 5.3(c), the two regions share four node-to-

node edges. Once both regions become nodes at the next level (to break the local minimum

due to the node deadlock), the relationship between the new nodes should be based on

the relationship between the old nodes. Only the edges in E (s) that survive in E (s+1) will

be retained while all other edges become irrelevant since they have been subsumed inside

newly formed regions V (s+1).

To illustrate how the transition equations work consider two levels of the hierarchy

shown in Figure 5.11. Consider that nodes I, J , L, and M will be merged into node IJLM .

When nodes I, J , L, and M are merged into one node, all the relationships between them

governed by Φ
(s)
r,r′ and β

(s)
r,r′ must be eliminated since they cease to be individual nodes. The

relationships between nodes I, J , L, and M and nodes G and H will now become the

relationships between node IJLM and nodes G and H . To accomplish this, we need to

sum the appropriate Φ
(s)
r,r′ and β

(s)
r,r′. For example, Φ

(s+1)
G,IJLM = Φ

(s)
G,I + Φ

(s)
G,J .

5.3.3 Stochastic Nested Aggregation for the Potts Model

Finally, we can summarize the stochastic nested aggregation algorithm in Algorithm 7. We

use simulated annealing with a schedule for temperature T . If one would like to use the

deterministic Iterated Conditional Modes algorithm this can be done by setting T = 0 for

all computations. The relabelling algorithm is optional. Since both algorithms are nested

versions of the original SA and ICM, we will refer to them as SNA-SA and SNA-ICM

respectively.
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Figure 5.11: Region merging: nodes on Level s are merged into fewer nodes at Level s+1.
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Algorithm 7 Stochastic Nested Aggregation Graph Partition Algorithm

1: Split the image by assigning random labels to all nodes {v(0)
i } or obtaining preprocessed

atomic regions {V (0)
j }

2: for s = 0, . . . , smax (from finest to coarsest) where smax is the dynamically-determined

final level in the hierarchy do

3: Relabel images according to Algorithm 6.

4: repeat

5: for v
(s)
i , ∀i do

6: Minimize the energy in model (5.11)

7: Update the node’s label based on Gibbs sampling Algorithm 1

8: end for

9: Update T according to the desired schedule (2.24)

10: until |V(s)| = |V(s+1)|
11: Apply transition equations (5.12) and (5.13) to transition from level s to s + 1

12: end for

The algorithm is divided into two parts: a trivial image splitting part in the first step,

and a region merging part in subsequent steps. The image splitting part could consist of

either considering each individual pixel its own region or by using a preprocessing algorithm

(e.g., [4]) in order to create atomic regions.

This algorithm is specified for a Potts model using Simulated Annealing and stochastic

nested aggregation. Other stochastic/deterministic optimization algorithms and energy

models can be used instead for different types of problems. The same general principles

would still apply as long as the problem can be framed as a graph partition problem using

pairwise node comparisons.

5.3.4 Computational Complexity

Next, to ascertain the computational complexity of nested aggregation, we consider the

Potts model optimized using SNA-ICM and SNA-SA. In Figure 5.2 (see page 77), we

have seen initially that simulated annealing applied to the Ising model in 1-D converges

approximately in O(N3) site visits where N is the size of the region (i.e., O(N2) iterations
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per each of the N pixels or nodes).

We can also easily analyze convergence speed for the 1-D hierarchical model. Consider

that the effort to group pixels in an image or graph G(0) of size N into size R regions

is O(N · R2) since we have to group N nodes/pixels each of which will require O(R2)

computations. Then, once we have groups of size R, if we want to group them into groups

of size R2, the effort will be O(N
R

R2) or O(N ·R) since we have N
R

nodes in graph G(1). This

goes on until we have groups of size N = Rs (the largest possible region in the image/graph

is the image itself) where s is the level of the hierarchy. In practice, images seldom consist

of a single color or feature and we have Rs ≪ N

We can summarize the complexity as follows:

Level 0 1 → R O(N · R2)

Level 1 R → R2 O(N
R
· R2)

Level 2 R2 → R3 O( N
R2 · R2)

...
...

Level s − 1 Rs−1 → N O( N
Rs−1 · R2)































O(N · R2)

where the first line represents the work at the finest scale to group regions of size one (i.e.,

pixels) into regions of size R with an effort of O(N · R2). The subsequent rows represent

the successive grouping of regions into larger regions increasing at each level the region size

by a factor of R. Note that level s is the last level of the hierarchy corresponding to the

graph partition result. Furthermore, R is not selected by the user. Instead, R is estimated

based on the reduction in number of nodes from G(s) to G(s+1).

The complexity for the overall process is essentially the same as that for the first level

of the hierarchy since the region merging happens in a geometric fashion. Notice that

the region computation has a constant factor due to the geometric progression which is

summarized by 1 + 1
R

+ 1
R2 + · · · + 1

Rs−1 or Rs+1−1
Rs(R−1)

≤ 2 for all R ≥ 2. For 1 ≤ R ≤ 2,
Rs+1−1
Rs(R−1)

> 2 will result in a slight increase in the computational complexity. Namely, when

R ≈ 1 for all levels, Rs+1−1
Rs(R−1)

≈ s which indicates that, the overall complexity will still

remain low as long as the number of levels is small with respect to N . For large images

(which are of interest to us), this is not a problem as most of the reduction in the number

of nodes should happen in the first few levels of the hierarchy which would be followed
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by a few levels of small adjustments to region sizes before the algorithm converges to the

desired stationary probability.

We contend that R is not a function of N since if we partition the image into smaller

pieces, the same geometric reduction of graph size will happen for those images. Further-

more, R grows as a function of the number of site visits at a given level and, when using

the Potts model, R grows as a function of β. If β is small, R can approach 1 after very

few iterations; therefore, when a long T schedule is used for SA, there are many extra

iterations (in comparison to ICM) which do not contribute to increasing R in a significant

way resulting in a higher complexity depending on the number of levels s. Note that the

number of levels is also not chosen and is a result of the discrete state estimation process.

For ICM, by limiting the number of iterations through the graph to a minimum and,

therefore, creating large regions quickly, the complexity of the 1-D nested aggregation

algorithm is at most O(N) which is a considerable improvement over O(N3). In practical

terms, the highest computational complexity occurs at the pixel level. Our experiments

have been conducted assuming that the model is being applied directly to the smallest

possible regions, i.e., pixels (this algorithm could easily be applied to image patches or

atomic regions such as in [4]).

When applying nested aggregation to 2-D data like images, the estimation of compu-

tational complexity is more difficult. It must be done using a Monte Carlo simulation as

it was done for the non-hierarchical annealer in Section 5.1. We performed the following

experiment using the stochastic nested aggregation Algorithm 7. As in Section 5.1, five

different label sets were used with K = {2, 3, 5, 10, 20}. The initial pixel labels were ran-

domly assigned using a uniform distribution. The region size N was taken from the set {16,

64, 256, 1024, 4096}. A single value was used for β; however, this value is inconsequential

since the regions have Φ ≡ 0.

For the hierarchical test, both SA and ICM experiments were done since now ICM can

be used as a global optimization method. For SA experiments, we chose an annealing

schedule (2.24) with an initial temperature T = 0.3, and an exponential decay of κ = 0.1.

Each level of the hierarchy was run for six iterations (three iterations at T > 0 and three

iterations at T = 0). The iterations at T = 0 ensured that the configurations in SA

experiments converged to a legal label configuration (effectively a local minimum after
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Number of Labels

Region Size 2 3 5 10 20

4x4 2.25 · 100 2.58 · 100 4.45 · 100 2.99 · 100 3.85 · 100

8x8 3.61 · 100 1.29 · 101 1.50 · 101 1.72 · 101 2.53 · 101

16x16 4.41 · 101 4.69 · 101 1.36 · 102 1.52 · 102 1.66 · 102

32x32 1.79 · 102 1.99 · 102 1.27 · 103 1.55 · 103 1.67 · 103

64x64 1.97 · 103 2.16 · 103 2.28 · 103 - -

Table 5.2: Ratio of computational complexity between a flat field annealer (i.e., no hierar-

chies) and a nested annealer (hierarchies via stochastic nested aggregation) using simulated

annealing as a function of region size and number of labels. The ratios reflect the compu-

tational gain over the results in Table 5.1.

high energy states in SA). For ICM experiments, only T = 0 was used and each level of

the hierarchy was run for only one iteration (in order to obtain a low R.

The results for the hierarchical annealer reflect convergence in 40 out of 40 trials which

means that all experiments converged on the homogenous label field for both ICM and

SA. We compute ratios between hierarchical and non-hierarchical convergence times for all

image size and number of labels combinations for the SA and ICM shown respectively in

Table 5.2 and Table 5.3. Note that now ICM converges to the minimum configuration (in

this toy problem) irrespective of initial conditions whereas it was not considered for flat

field experiments in Section 5.1 due to getting stuck repeatedly in local minima. For more

complex energy functions we will see that there is some dependence on initial conditions

however specifying ℓ(0) is no longer crucial for ICM’s success. This is one of the fundamental

results of this thesis.

We can compare results in Table 5.2 and Table 5.3. For an image size of at most

32 × 32 and using ten labels, SA will be on average 179 times faster than when using a

non-hierarchical annealer (shown in Table 5.1). For ICM when using only one iteration

at T = 0, the same image could be filled in 768 times faster as shown in Table 5.3. This

result shows that nested aggregation gives a considerable improvement in speed for both

the SA and the ICM algorithms. It is also clear that as the maximum size of a region in

an image to be filled in with a single label increases, the benefit of using the hierarchical
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Number of Labels

Region Size 2 3 5 10 20

4x4 1.15 · 101 1.27 · 101 2.08 · 101 1.30 · 101 1.52 · 101

8x8 2.07 · 101 7.14 · 101 7.64 · 101 8.10 · 101 1.08 · 102

16x16 2.59 · 102 2.65 · 102 7.23 · 102 7.39 · 102 7.36 · 102

32x32 1.06 · 103 1.14 · 103 6.87 · 103 7.68 · 103 7.52 · 103

64x64 1.17 · 104 1.24 · 104 1.23 · 104 - -

Table 5.3: Ratio of computational complexity between a flat field annealer using simulated

annealing and nested aggregation using ICM (simulated annealing with T = 0) as a function

of region size and number of labels. The ratios reflect the computational gain over the

results in Table 5.1.

approach augments correspondingly. This is another fundamental result of this thesis.

Note also the significant difference in speed between the SA and ICM results. It is clear

that ICM is considerably faster than SA (in this case by roughly a factor of 5). We used

a very aggressive schedule for SA to obtain results in Table 5.2. For longer T schedules

which might be necessary for complex graphs like images, this difference will be even more

pronounced.

5.3.5 Comparison to Existing Acceleration Methods

Stochastic Nested Aggregation shares similarities and differences with other approaches

described in Section 3.5.3.

Stochastic Nested Aggregation generalizes previous work in irregular bottom-up ap-

proaches such as hierarchical watersheds [2, 13], one-at-a-time region merging [25, 94],

irregular pyramids [99, 12] and highest confidence first [25, 94]. First, stochastic nested

aggregation works directly with either stochastic or deterministic methods; whereas all

methods reviewed in Section 3.5 are deterministic in nature. Second, SNA is a hierarchical

method that stops when the stationary joint probability distribution function has been

reached whereas all other methods produce an irregular pyramid that ends in a single node
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[99, 12]. Under certain conditions, the maximum joint probability of the coarsest level is

the same as that of the finest level and thus SNA endeavors to produce hierarchies that

end with the “optimal” label configuration that is a solution to the finest level. Third,

we introduce a lower bound on the number of labels to be used and show that a critical

slowing down due to a low number of labels can occur. All methods either use an infinite

number of labels or some experimentally determined number without any justification.

Fourth, SNA is applicable to any model in which the various levels of the hierarchy are

optimizing the same energy function. Other methods are dependent on a particular data

representations and are not easy to generalize to other frameworks or to analyze. Finally,

SNA bears some resemblance to Carballo’s hierarchical network flow approach [17] which

achieves a speed up of at least a factor of 10. Within each regular block there exists an

irregular partition of the subgraph with possibly many different nodes which are merged

with irregular partitions of the adjacent blocks.

Stochastic Nested Aggregation is similar to the graph cuts and cluster sampling frame-

works in that both are irregular grid-based methods. Graph cuts [11, 142] carries out a

progressive subdivision of an image or graph based on a unique global criterion from the

top down. The global criterion is usually the same one which we use (i.e., the Potts model)

[11]; however, the direction of the partitioning is different. The speed-up of the single site

annealer is considerable resulting in a partitioning algorithm with O(N) complexity [11]

which is comparable to our bottom-up irregular approach.

Cluster sampling partitions the space of piece-wise constant functions such as the Potts

model by dynamically splitting, merging and regrouping sizeable subgraphs of the image.

As the partitioning progresses the subgraphs become gradually larger. The main advantage

of cluster sampling over graph cuts and nested aggregation is that it simulates ergodic and

reversible Markov chain jumps in the space of all partitions. Therefore, cluster sampling

can reverse a move whereas in hierarchical approaches moves are only reversible within a

level of the hierarchy and not between levels.

Stochastic Nested Aggregation is very different from top down regular grid-based tech-

niques [72] which produce undesirable blocky partitions without a considerable speed up.
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Original image ICM SA

Figure 5.12: ICM converges to a local minimum. SA also converges to a local minimum

with an exponential T schedule. This result is a better than the one arrived at with ICM.

5.3.6 Preliminary Results

We will motivate results by first showing image segmentation carried out using ICM and

SA. Figure 5.12 presents an example of using ICM and SA on a Potts model. The label

deadlocks are clearly present throughout the image for the ICM result. SA achieved a

better result with an long exponential schedule (but obviously not long enough since a

desirable local minimum has not been reached!). An optimal solution obtained with SA

is not presented here due to extremely high computational complexity. It would have

taken approximately more than 2 × 1010 site visits to converge or more than one day of

processing5!

Figure 5.13 gives an illustration of SNA-SA with K = 10 labels6. SNA-SA was set up

to run with three iterations at a non-zero temperature (for schedule (2.24) starting with

T = 1.0 and τ = 0.9) and three iterations at T = 0. With this schedule, SNA-SA ran

usually between one and two minutes due to the long T schedule. One can easily discern

which pixels at one level were merged into regions at the next level. Depending on the

model and T schedule, there may be more or fewer levels. The fewest levels will be obtained

for very small and very large β (small β discourages merging and large β merges all nodes)

5All running time results in this section and all subsequent sections are given for C code run on a 2.4

GHz Intel Pentium-based PC.
6Note that most segmentation results are usually shown using five labels as they are captured after the

relabelling scheme has been applied which reduces the number of labels to four or five.
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with the largest number of levels somewhere between the two β extremes. Note that

Besag’s coding method was implemented [6] for all levels in the hierarchy (cf. Section 2.9).

At level s + 1, a coding corresponded to the graph partition obtained at level s such that

all regions given label k ∈ L were assigned to coding S
(s+1)
k . There were as many codings

as distinct labels. Note that due to relabelling which produces a graph with only four or

five distinct labels, the number of codings remained small.

The assumption of only grouping nodes which should be grouped at each level s is

paramount and depends very much on the type of model and the underlying problem. In

the case of using the Ising/Potts model for image segmentation, the assumption holds only

if at each level of the hierarchy βi,j < Φi,j for all pixels where placing an edge would lead

to the optimal solution.

From this point of view, determining the appropriate β for segmenting each image is

important. β and sums of β (when edges between regions are longer than one pixel) will

determine what should and should not be grouped at each level. In this thesis, β is chosen

experimentally for each image in order to produce a desirable segmentation result. The

automatic estimation of β is a topic that is beyond the scope of this thesis.

Consider the results presented in Figure 5.14 and Figure 5.15 showing image segmenta-

tion for different β for SNA-ICM and SNA-SA respectively7. SNA-ICM was set up to run

for two iterations at each level thus providing the fastest possible convergence times (see

the computational complexity discussion in Section 5.3.4). SNA-ICM results ran on aver-

age in less than a minute (the algorithm ran faster for higher values of β since more nodes

were being merged at the lowest level) with no special preprocessing (e.g., edge detection,

clustering, etc.).

These figures show clearly that applying stochastic nested aggregation to either ICM

or SA for the Potts model leads invariably to region-to-region spilling for higher values

of β. Note that different results might be obtained for models other than Potts and

therefore we limit this analysis to the Potts model. Qualitatively the spilling is not as

severe for SNA-SA as it is in SNA-ICM, especially if one compares the results for each

β value in Figures 5.14 and 5.15. At the lowest value of β, more small regions form and

7Result images are indicative of general results for the algorithms/models and are not chosen to show

a “nice” result.
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Level 0 Level 1 Level 2

Level 3 Level 4 Level 5

Level 6 Level 7 Level 8 (final)

Figure 5.13: Detailed level by level results for SNA-SA using vector angle in model (5.11)

with a β = 0.0045 model.



Pixel Grouping: Stochastic Nested Aggregation 113

β = 0.001 β = 0.0025

β = 0.0045 β = 0.0055

Figure 5.14: SNA-ICM results using vector angle in model (5.11) with different β values.

Region spilling occurs for the different models starting with β = 0.0025 where region

spilling occurs (top of the left shoulder) while at the same time major image components

(near the bottom of the image) are not merged into one region.
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β = 0.001 β = 0.0025

β = 0.0045 β = 0.0055

Figure 5.15: SNA-SA results using vector angle in model (5.11) with different β values.

Region spilling occurs for the different models starting with β = 0.0025 and especially for

β = 0.0045 (foot at the bottom of the image, parts of the jacket) while at the same time

major image components (red area at the bottom of the image) are not merged into one

region. However, results appear less prone to region spilling than SNA-ICM.
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the image segmentation result looks very fragmented and no spilling occurs. However,

as β is increased, the fragmentation slowly disappears and region spilling starts to occur

with increasing frequency. At very high values of β, large distinct regions start to merge

with each other. Ultimately, choosing a very high value of β results in all regions merging

together. Qualitatively, those preliminary results obtained using SNA-SA appear better

than those obtained with SNA-ICM. This is most likely due to SA’s ability to find lower

minima by going to a higher energy state with non-zero probability (see Section 2.8).

In summary, for higher values of β, the nodes in the graph will have a higher likelihood

of merging. The spectrum of β values ranges from a very low value (e.g., lower than the

smallest Φi,j in the graph) when all pixels are individual regions to a very high value (e.g.,

higher than the largest Φi,j in the graph) when all pixels merge into one node or pixel.

The desirable β is usually somewhere between those two extremes.

Figure 5.16 shows the end result of SNA-SA runs with different temperature schedules

(2.24) all for β = 0.0045. As temperature schedules become longer, we can say qualitatively

that results improve. This is an expected result as longer schedules lead to results closer

to the global optimum [48]. However, due to the persistence of region spilling, longer

schedules do not seem to warrant the significantly increased computational cost. It should

be added that the number of iterations at each level is not important for ICM from the

point of view of convergence, as it performs gradient descent; i.e., always choosing a better

local optimum point at each iteration. The fewer the iterations at each level, the faster

SNA-ICM will be since the algorithm will quickly benefit from the increased region/node

size. The only variable will be the structure of G(s) which will influence to some degree the

type of local minimum reached.

5.3.7 Preventing Region-to-Region Spilling: Graduated Models

We now come back to discussing the issue of a pairwise energy function. Consider the

artificial image in Figure 5.7 (see page 89) reflecting an ambiguous region-to-region spilling

scenario. A small gap exists in the (much longer) edge between the two regions. In

other words, βi,j > Φi,j for edges {(i, j)} ∈ Egap where Egap represents all edges in the

graph that define the gap. Because the energy function is pairwise, the labels are decided

by considering the pairwise relationships of one pixel with its neighbors at any one time
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T = 1, τ = 0.7, iter = 3 T = 3, τ = 0.7, iter = 6 T = 15, τ = 0.7, iter = 10

T = 100, τ = 0.7, iter = 20 T = 100, τ = 0.8, iter = 40 T = 100, τ = 0.9, iter = 70

Figure 5.16: SNA-SA results using vector angle in model (5.11) with β = 0.0045 run

using different T schedules (2.24). It is clear that region spilling occurs for the different

temperature schedules (even for the last one). However, the results indicate that a slower T

schedule can improve results at the cost of computational complexity. The SNA-SA using

the first schedule of (T = 1, τ = 0.7, iter = 3) ran on average in approximately 60 seconds

while using the last tested schedule of (T = 100, τ = 0.9, iter = 70) took approximately

490 seconds which was primarily due to the 70 iterations at the finest scale.
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without simultaneously considering other pixels (and therefore non-pairwise relationships).

This leads to the gap being breached since both pixels on either side of the edge want to

merge. These nodes also want to merge with their other neighbors and so on.

However, placing an edge in this small gap would produce a lower energy than carrying

out the region-to-region spilling. Inserting an edge in this small gap could only be guar-

anteed with the current methodology if a non-pairwise function was used since deciding

which “gap” to fill-in is a non-local problem. However, this might be difficult as SNA is

based on the premise of pairwise comparisons. It might be possible to apply SA with a

very slow schedule; however, there is no guarantee that region-to-region spilling will not

occur since a result containing region spilling might be the optimum point for SA. However,

there are ways to simulate non-local interactions in the current framework by using region

prototypes (see Section 5.4).

Another way would be to guide the simulated annealer to closer to the global minimum

via edge linking [4]. However, edge linking fixes region edges and if a wrong decision is

made, that decision cannot be undone. We can call this explicit edge linking. However,

there is potentially, a better way to carry out the same operation using implicit edge

linking. Let’s examine again Figure 5.14 and Figure 5.15. Would the edges in the results

for model β = 0.001 contain the edges of the results for model β = 0.0025 and so on?

Suppose, one applies thresholds ι(1) = 0.001 and ι(2) = 0.0025 to a graph with pixel

differences Φ. The edges that will appear for ι(1) will certainly contain the edges for ι(2)

since all values of Φ < ι1 also satisfy the relationship Φ < ι(2); however the converse is not

true. One could then build a hierarchy of nested thresholds ι(s) in order to successively

eliminate edges from the graphs on lower levels of the hierarchy.

Because Φ is averaged over the length of the boundary at higher levels of the hierarchy,

we tend to believe Φ more for large regions than for small ones. Furthermore, inappropriate

merging or region spilling occurs more frequently at the lower level of the hierarchy since

the edges at those levels are shortest and therefore least certain. Therefore, to minimize

the likelihood of merging two regions through a “gap,” we need to use a very conservative

β at the finest level. At higher levels, β would be progressively relaxed as the boundaries

increase in length. Thus, by using a series of nested β’s in this fashion, we create a series

of nested models.
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Nesting models introduces a β schedule for the Potts model such that {β0, . . . , βb, . . . , β}
is a set of different βb values with the characteristic βb < βb+1 and where β is the desired

model. In other words, we start with a small edge penalty and increase it according to the

schedule until we reach the desired edge penalty β.

Introducing a β schedule which we also call a set of Graduated Models (GMs) has

several advantages:

• It represents another kind of smoothing operator. To a certain extent a β schedule

can be thought of in the same way as Graduated Non-Convexity [9] since we are

starting with a strictly convex function when β is the minimum edge strength value,

min(i,j)∈EΦi,j, and all pixels are then separated into their own regions by the model.

By slowly increasing βk −→ β, the function assumes increasingly its β-dependent

non-convex shape. However, whereas in GNC we can recover the original non-convex

function by reducing the convexity parameter to 1, in a β schedule we must be careful

not to choose a β value which is too high since this could lead to poor graph partition

results.

• GMs allow the grouping of pixels and regions which are very close together with

respect to the similarity criterion. Pixels or regions that are very similar can then

create larger regions at higher levels. Next, the creation of ever larger regions avoids

the problems described in the previous section as well as in Figure 5.7 and thus

discourages region spilling. It is easy to show that at the finest level (graph G(0)),

edges obtained with βb contain all edges βj for all b < j. However, due to boundary

geometries, the same cannot be said of graphs G(s) for s > 0 since region spilling can

still occur depending on the schedule for β.

A slower schedule with a finer grading of β should have a lower likelihood of causing

edge spilling while a faster schedule will have a higher likelihood. The reason for this

is that regions will have more time to form as β is slowly increased which will allow

them to grow on both sides of an edge as in Figure 5.7. If the β schedule is not fine

enough, then large regions might not be able to form on both sides of an edge and

there would not be enough structure to ensure that the Φ for the gap in the edge is

averaged into the other Φ values. Note that two regions separated only by one or two
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pixels (even for a high β) would spill into one another as there wound not be enough

edge length to build regions on both sides of the edge. The proof for an optimal β

schedule would be an interesting future study.

This procedure can also be compared to the watershed and repeated waterfall algo-

rithms [2]. By increasing β, we are essentially increasing the level of the liquid “flooding”

the image and making the catchment basins ever deeper. Instead of stopping at the highest

peak (the criterion for the watershed transform), our algorithm stops when the stationary

conditional probability has been found. Each time the level of the liquid is increased, lower

level dams are flooded and thus only the highest dams remain. At the final level, all but

the highest dams/ridges are left. One important feature distinguishes our algorithm from

the watershed transform. Namely, when using the Potts model in a nested aggregation

framework, the edge weights are averaged over the length of the edge while in the water-

shed a single edge gap which is lower than the threshold (e.g., β) causes region-to-region

spilling.

Computational requirements are going to increase with the β schedule since we will

be converging to a new model for each of the chosen values in the β schedule. However,

this increase will be tempered by the nested aggregation framework since after running

the first model on the full image, subsequent models should run on considerably smaller

graphs (depending on the initially chosen β). One must be careful not to choose an initial

β0 that is so small that nodes in G(0) do not want to merge. In any event, the decrease in

the graph size will not be as fast as in the single model case and could be very slow for

long β schedules.

Note that in the limit the finest possible grading of a β schedule would be given by the

sorted list of unique Φ values in the graph G(s). There are at most 4 · N of those edges.

The computational complexity at this extreme graduated model would be at best O(N2).

Using this particular β schedule results in the Highest Confidence First algorithm (cf. Sec-

tion 2.8). Stochastic Nested Aggregation with Graduated Models is then a generalization

of HCF.

Finally, we modify the stochastic nested aggregation graph partition algorithm found

in Algorithm 7 to include graduated models in order to prevent region-to-region spilling.

The updated method is presented in Algorithm 8. We will refer to this as the Stochastic
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Algorithm 8 SNA Graph Partition Algorithm with Graduated Models

1: Split the image by assigning random labels to all nodes {v(0)
i } or obtaining preprocessed

atomic regions {V (0)
j }

2: for βt = {β0, . . . , βb} do

3: for s = 0, . . . , smax (from finest to coarsest) where smax is the dynamically-

determined final level in the hierarchy do

4: Relabel images according to Algorithm 6.

5: repeat

6: for v
(s)
i , ∀i do

7: Minimize the energy in model (5.11)

8: Update the node’s label based on Gibbs sampling Algorithm 1

9: end for

10: Update T according to the desired schedule (2.24)

11: until |V(s)| = |V(s+1)|
12: Apply transition equations (5.12) and (5.13) to transition from level s to s + 1

13: end for

14: Update βi,j and Φi,j based on the next betat+1

15: end for

Nested Aggregation Graduated Models (SNA-GM) framework. If only one β value is

desired then the β schedule can be disregarded and the algorithm reverts to the one shown

in Algorithm 7. The algorithm is similarly divided into two parts: a trivial image splitting

part in the first step, and a region merging part in subsequent steps.

5.3.8 Discussion

In summary, potentially three different types of smoothing are at work when using stochas-

tic nested aggregation on the Potts model: a bottom-up region aggregation (i.e., from the

original non-convex function to a convex one), a top-down smoothing in the form of the

simulated annealing T parameter schedule, and another top-down smoothing using a β

schedule (i.e., from a convex function to the original non-convex one). These three pro-

cesses interact in order to allow the solution to converge close to the global optimum. The



Pixel Grouping: Stochastic Nested Aggregation 121

bottom-up process is intrinsically part of the framework. Both top-down processes are

model- and optimization algorithm-dependent. Eight different algorithms can be derived

from these three interactive processes.

Iterated Conditional Modes or ICM is a strictly local optimization method. It is only

suitable for optimizing convex functions or non-convex functions starting with very good

initial conditions. It is generally very fast but this advantage is outweighed by its high

dependence on a good initialization.

Simulated Annealing or SA improves on ICM by allowing for convergence from any

initial conditions. SA is ergodic and reversible in that any point in the function can be

reached from any other point. However, SA has very high computational complexity and

therefore is not practical. To make SA more practical a set of parameters is used (a

schedule) that does not guarantee global convergence yet allows SA to escape most local

minima. However, the complexity of these more practical versions of SA is still too high.

SNA-ICM applies the nested aggregation framework to ICM-based optimization allow-

ing the breaking of label deadlocks and thus escaping local minima with each progression

in nested levels. This simple change makes ICM a very powerful global greedy optimization

method for graph partition problems. However, in some cases deep local minima far from

the optimum are reached (e.g., some forms of region-to-region spilling).

SNA-SA allows SA to converge considerably faster to the conditional probability dis-

tribution function than the flat-field version making SA a viable stochastic alternative to

deterministic approaches such us ICM.

SNA-GM-ICM benefits from the nested aggregation’s framework ability to avoid most

local minima including some cases of region-to-region spilling. The algorithm benefits from

the combination of the high speed of ICM and the acceleration due to SNA. The model pa-

rameter relaxation due to the Graduated Models strategy further enhances the convergence

properties of SNA-GM-ICM by allowing the optimization algorithm to converge gradually

close to the non-convex function’s global optimum. This algorithm would be less expensive

than standard GM-ICM (i.e., no hierarchies) and more expensive than SNA-ICM. When

the β schedule corresponds to a sorted list of all edge strengths in the graph (from low-

est to highest), SNA-GM-ICM corresponds to Highest Confidence First [25]. Therefore,

SNA-GM-ICM is a generalization of HCF.
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SNA-GM-SA might allow the optimization process to escape some particularly deep

local minima that would otherwise not be escapable. Given the same β schedule, the

SNA-GM-SA would be usually much more expensive than SNA-GM-ICM due to the T

schedule.

For completeness, we include the description of two algorithms based on graduated

models that are not nested and that will not be tested in this thesis.

GM-ICM is a model relaxation method which allows a deterministic algorithm to get

close to the global optimum of a function through transforming the energy function into

a convex function and then gradually relaxing the model parameters to obtain a solution

to the desired non-convex function. A very fine grading of this parameter relaxation is

necessary to obtain a result close to the global minimum; however, this requires a very

high computational complexity. As the grading is made coarser, the ability to reach a

point close to the global optimum is compromised. Furthermore, the algorithm might run

into a deep local minimum as is the case with SNA-ICM.

GM-SA algorithm would allow GM to avoid some local minima created through a

non-optimal parameter grading since a very fine model parameter grading might be to

computationally expensive. However, some particularly deep local minima might still not

be avoided.

The most beneficial of those eight algorithms are the four based on SNA as they al-

low fast convergence and enable the practical study of Markov Random Fields for image

segmentation-type applications as well as other problems where computational efficiency is

necessary to obtain practical results. Furthermore, SNA gives us a framework which allows

the use of other model types at different levels in the hierarchy. One of these alternative

models will be discussed next.

5.4 Region-Based Characteristics: The Mean Model

Up to this point, we have assumed that the dissimilarity of two regions is computed based on

a pixel-to-pixel distance measure which in image processing would be a simple edge gradient

computed using the Euclidean distance (4.10) or some other distance measure. Since a 4-

neighborhood is used, this gradient is usually computed in the vertical and horizontal
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directions for all adjacent pixels using Φ(vi,j , vi,j+1) and Φ(vi,j , vi+1,j) respectively. These

pairwise criteria are then used in the assessment of similarity and dissimilarity of adjacent

pixels and at higher levels, of adjacent regions. This assumes that the image is a piecewise

constant function with large constant homogenous areas punctuated by sharp transitions

or edges. We assume that the essential information for computing the difference between

two regions lies in the transition or edge areas and not in any other part of the image.

When using pairwise distance measures, all computations are based on comparisons of

two variables or nodes in a graph. The main implication of this computation for SNA is

that on any particular level of the hierarchy some nodes that are far apart spatially could

be given the same label due to identically labelled intermediate nodes linking those two

nodes. This is especially problematic at the finest or pixel level where many nodes in the

same vicinity can be assigned the same label forming small regions or patches. However, a

major advantage of pairwise computations is that we do not have to base our comparisons

on more than two quantities (i.e., two pixels or regions). Furthermore, using specifically the

pixel-to-pixel gradient allows us to solve the same model at higher levels in the hierarchy

given that G(s) are equivalent. It is important to note that even when computing distances

between groups of edge pixels for G(s) with levels s > 0, the distances are all pairwise since

at higher levels of the hierarchy a single node represents many underlying pixels.

However, if a non-local relationship between nodes is used, the labelling of those nodes

might end up being closer to what we would consider a “correct” labelling. Non-local

relationships are defined by pixel neighborhoods that are larger than the 4-neighborhoods

used in the Potts model at the finest scale. For example, the relationships between regions

at higher levels in the SNA could be considered non-local if the number of pixel edges is

greater than one.

One very attractive extension of the notion of graph partitioning involves using the

finest scale model to create small regions with one Potts model (5.11) which can then be

aggregated using different and more perceptually correct Potts models at the higher levels

in the hierarchy. As the levels in the hierarchy increase and the regions become larger, one

could envision using two or three different models to obtain a partition with each set of

subsequent levels using a model appropriate for the given scale.

In image processing, this would be necessary as the edge-based region formation model
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(especially without a β schedule) is prone to region spilling. One way to mitigate this effect

might be to compare regions according to their means. Computing the mean of a region

averages all the pixel values within that region including the edge pixels making it difficult

to merge two different adjacent regions connected by a slowly varying gradient8. The

mean-based model assumes that the pixels in the inner part of the region are as important

to assessing region similarity as edge pixels. The segmentation model still insures that the

image is a piecewise constant function; however, the nature of this function is now altered

to include all pixels in the image (not just edge pixels).

The mean-based model is exactly the same in appearance as model (5.11). However, the

distance computations between regions are now carried out using means. This introduces

a subtle shift in the way larger regions form. At higher levels of pixel organization edges

do not matter as much as they do when forming small region patches or blobs. The region

mean (and in the case of vector angle the first principal component or principal direction)

is able to describe regions in a fuller manner by taking into account all pixels in the region

and not just the edge pixels. If region spilling occurs at the finest level s = 0, then no

region-to-region spilling avoidance strategy will work. To mitigate the errors at the finest

level by having a very low initial β that restricts merging to the closest adjacent pixels.

In this mean model, the transitions take on a different form for Φ
(s)
r,r′ (they remain

identical to the edge-based model for β
(s)
r,r′). Given that the model no longer cares about

individual pixels but groups of pixels, the transitions need to account for changes in the

number of pixels in a region, as well as the change in region mean values. The new

transition equations for Φ
(s)
r,r′ are defined by

m(s)
r =

∑

i∈V
(s)
r

m
(s−1)
i

n
(s−1)
i

n
(s)
r

(5.14)

n(s)
r =

∑

i∈V
(s)
r

n
(s−1)
i (5.15)

Φ
(s)
r,r′ = Φ(m(s)

r , m
(s)
r′ ) (5.16)

where at any level s, n
(s)
r are the number of pixels in a given region r and m

(s)
r represent

the region means.

8Preliminary work was presented in [156].
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The Potts mean model is related to the Potts edge model and is another possible

generalization of the finest scale Potts edge model as each initial node or pixel can be

considered to be a region with just one node whose mean is its own vector (e.g., scalar for

grayscale images or vector for color or multispectral images). However, the energy models

U (s+1) and U (s) no longer represent exactly the same models as was the case for the energy

model due to the non-local interaction built into the region means. Because of this, a β

schedule (however short) should be used in order to allow pixels and then regions to be

grouped at a slower rate.

As before the image segmentation algorithm is divided into two parts: a trivial image

splitting part in the first step and a region merging part in subsequent iterations. The only

difference with Algorithm 7 is that the region means are updated after the iterations on a

particular level s have been completed.

Nested aggregation will converge to a local or global minimum for the last graph G(s)

just like it does for the edge model. However, this will not be the same minimum as in U (0)

due to the nonlinear transformations from model U (0) to U (smax). Due to this non-locality

property, convergence to a good local minimum in U (smax) hinges on a delicate balance of

β(s) and Φ(s) at each level. In this thesis, we ensure this balance through the use of a β

schedule.

Other more creative models can also be used where the relationships between the regions

are more complex combinations of mean-based and edge-based calculations. Furthermore,

more complex distance measures such as those used in edge detection can be used instead

of the simple metrics examined here.

5.5 Results

Several images are shown in this section to demonstrate how nested aggregation performs

in an image segmentation task in conjunction with a Potts model. We use here a simple

color-based non-texture model to determine similarity between pixels: the vector angle

measure (4.12).

Remember that because the dot product between the vectors is divided by the magni-

tude of the vectors, the distance is naturally intensity invariant with respect to the Dichro-
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matic Reflection Model [148]. In addition, one of the problems with vector angle is that it

produces very “noisy” results for vectors with small magnitudes [127, 150]. Furthermore,

any areas without chromatic information will be grouped together.

We will examine results for Stochastic Nested Aggregation with Graduated Models and

ICM (SNA-GM-ICM) and with SA (SNA-GM-SA) using both the edge-based and mean-

based Potts models. Figure 5.17 shows the images which will be tested. In each section

below, we will first examine results in detail for Figure 5.17(a). Other images will be briefly

examined at the end of each section. All segmentations are carried out for K = 10 labels

except where indicated together with a relabelling process applied at the end of each level

(example of not applying relabelling will be shown shortly in order to motivate the need

for it). Parameters for the ICM and SA algorithms used in the optimization are given

together with each result (some parameters vary from image to image). In general, the

number of nested levels is unbounded and varies from image to image and algorithm to

algorithm.

The assessment of results will be made from a qualitative rather than quantitative point

of view. This is because quantitative segmentation evaluation would need to be based on

an ideal segmentation of an image which is difficult to determine without an application at

hand. When phase unwrapping will be considered in Chapter 8, some quantitative results

based on the computed digital elevation model will be provided.

5.5.1 Potts Edge Model

In this section, we show results for the Potts “edge” model. The SNA-GM-ICM

algorithm was run with two iterations at each level in a similar fashion to SNA-

ICM (see Section 5.3.6). Figure 5.18 shows results for a short β schedule, β =

{0.0010, 0.0020, 0.0030, 0.0040, 0.0045} which ran on average 60 seconds. The SNA-GM-

ICM produces much more desirable results on average than SNA-ICM. Many local minima

are avoided thanks to this graduated models strategy.

However, since we are using ICM, the results do not always converge to a desirable

minimum. They still depend very much on the initial conditions; namely, the initial la-

belling. Several results for the exact same set of parameters (but different initial labelling)

are shown in Figure 5.19 and indicate that initial conditions affect the performance of
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(a) (b)

(c) (d)

Figure 5.17: Test images: (a) woman (image size: 310 × 442), (b) peppers (image size:

512 × 512), (c) house (image size: 255 × 192) and (d) jelly beans (image size: 256 × 256).

All images have been chosen such that few texture appear in them since this thesis does

not address the issue of texture segmentation and aims to illustrate function minimization

using stochastic nested aggregation. Many texture descriptors exist in the literature [4, 22,

32, 75, 106, 167].
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SNA-GM-ICM to some extent.

Figure 5.20 shows that image segmentation results improve as we increase the grada-

tion of the β schedule. A finer schedule such as β = {0.0004, 0.0006, . . . , 0.0058, 0.0060}
generates considerably better results than those shown in Figure 5.19. Thus, initial con-

ditions seem to have a lesser effect when a longer β schedule is used. However, with this

new schedule the SNA-GM-ICM now takes on average 210 seconds to complete. Note

that increasing the final β to 0.0060 does not seem to have affected the result significantly

(e.g., create widespread region merging) whereas already a β = 0.0055 merged most of the

regions as shown in Figure 5.14. Therefore, SNA-GM-ICM seems to be also more robust

with respect to the model (i.e., β) selection due to the gradual formation of regions.

Figure 5.21 shows examples of image segmentation for a small number of labels with

no relabelling. The effects of region spilling due to the labelling critical slowing down

effect can be seen in all images and are quite severe. Relabelling, shown for example in

Figure 5.19, has been very effective at mitigating the effects of critical slowing down. It is

also computationally much more efficient than increasing the number of labels. Increasing

the number of labels (e.g., to K = 100) and then computing energies based only on

neighboring labels has an effect on image segmentation. Figure 5.22 shows three individual

results which contain region spilling errors or unfinished segmentation (background is not

one separate region but two). They are perhaps slightly better than results shown in

Figure 5.19. Furthermore, the computational cost is high with an average of 606000 total

site visits, 275 seconds running time and 18 levels. Therefore, although results for using

a large number of labels might be comparable (and slightly better at best) than those

obtained using relabelling, due to the computational cost of the procedure, we will use

relabelling.

SNA-GM-SA was also run using the above β schedules with the results presented in

Figure 5.23 using a long temperature schedule in SA (To = 5, τ = 0.8 and with 29 iterations

followed by 3 iterations at T = 0). Results show considerable improvement over SNA-GM-

ICM especially in the case of the longer β schedule. However, the computational cost of

obtaining those results is significantly higher. For the shorter β schedule the average run-

ning time was 5.5 minutes (16 levels and 8.8 million site visits) while for the longer schedule

it took on average 16.5 minutes (60 levels and 25.5 million site visits) to converge to the
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Level 4 Level 5 Level 7

Level 8 Level 10 Level 11

Level 13 Level 14 Level 17 (final)

Figure 5.18: Detailed example of SNA-GM-ICM with the vector angle distance measure

in Potts model (5.11). A β = {0.0010, 0.0020, 0.0030, 0.0040, 0.0045} schedule was used.

The transitions between β values resulted in significant numbers of pixels being grouped

together: e.g., Level 4 was the last level for β = 0.0010 while Level 5 was the first level for

β = 0.0020.
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SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

Figure 5.19: Initial conditions still affect the performance of ICM in SNA-GM-ICM when

using a short β schedule. The same parameters were used as for results in Figure 5.18.

Three independent results are shown. The computational cost was on average 60 seconds.

SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

Figure 5.20: Initial conditions still affect the performance of ICM in SNA-GM-ICM even

when a longer β schedule is chosen: β = {0.0004, 0.0006, · · · , 0.0058, 0.0060}. However,

the results are better than in Figure 5.19. This could be attributed to the gradual creation

of regions with a longer edge next to region-spilling pixels thus preventing region spilling

from occurring. Three independent results are shown.
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SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

Figure 5.21: A small number of labels (K = 10) was applied to the image segmentation

task using SNA-GM-ICM with the short β schedule. Results are worse than when using

K = 10 with relabelling shown in Figure 5.19. Region spilling is severe and present in all

examples. The computational cost was on average 60 seconds.

label configuration shown. This indicates that SA should only be used when considerable

processing power is available. One way to reduce this computational burden is to change

the model from an edge-based one to a mean-based one. We will show in Section 5.5.3

that we can achieve similar results to SNA-GM-SA using SNA-GM-ICM with an order

of magnitude lower computational requirement thanks to changing the model. Otherwise

it would be more reasonable to use SNA-GM-ICM and try to mitigate initial conditions

considerations by using a very low β to obtain a better set of initial atomic regions.

It is interesting to note that the results for the long β schedule for both ICM and SA

are very similar (compare Figure 5.20 and bottom row of Figure 5.23). This is most likely

due to the small number of nodes being merged at each level due to the fine grading of

the graduated models. For images where region spilling problems are more accentuated,

SNA-GM-ICM might not perform as well as SNA-GM-SA. This is left as a future exercise.

Figures 5.24, 5.25 and 5.26 summarize results for the peppers, house and jelly beans

images. Two or three final independent results are provided for each of these images (and

in each case for SNA-GM-ICM and SNA-GM-SA) in order for the to evaluate the range of
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SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

Figure 5.22: A large number of labels (K = 100) applied to the image segmentation task

using SNA-GM-ICM with the short β schedule and no relabelling. Results are comparable

to the relabelling cases (see results in Figure 5.19), but none are as good as the results

for SNA-GM-ICM with a long β schedule (see Figure 5.20). There is region spilling in the

first two examples and the third example has a large region that is separate from the main

background region.
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β1 schedule β1 schedule β1 schedule

β2 schedule β2 schedule β2 schedule

Figure 5.23: Detailed example of SNA-GM-SA with the vector angle distance measure

in Potts model (5.11). A (short) schedule β1 = {0.0010, 0.0020, 0.0030, 0.0040, 0.0045}
was used for the top row while in the bottom row the results are for (long) schedule

β2 = {0.0004, 0.0006, · · · , 0.0058, 0.0060}. The transitions between β values resulted in

significant numbers of pixels being grouped together producing a desirable final result. SA

was also effective at avoiding many local minima evident in top row results (as compared

with results in Figure 5.19). Three independent results are shown for each of the schedules.
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the obtained local minima.

The use of a stochastic optimizer such as SA appears to give on average better results.

However, they are not stunningly better as in the case of Figures 5.12. It would appear that

applying SNA-GM has narrowed the differences between ICM and SA considerably. SA-

based algorithms are still better than ICM due to ICM’s dependence on initial conditions

as shown in Figures 5.19 and 5.20. SA is able to avoid this dependence by going to a higher

energy state and in effect finding a better set of initial conditions. However, SA with the

exponential schedule still does not guarantee convergence to a global minimum (and to

some extent is still dependent on initial conditions since the T schedule does not decrease

slowly enough). However, the SA- and ICM-based algorithms used here are able to obtain

very good local minima and show that graph partitioning of a finest scale energy model

can be accomplished in a fast and efficient way. Our approach is much faster than the

cluster sampling approach [4] where the authors obtain a 400-fold speed-up and compares

favorably in speed with the fastest graph cuts approaches [11].

5.5.2 Potts Mean Model

The pixel dissimilarity criterion Φ was chosen to be the vector angle measure following

[148] which is invariant to illumination intensity and shading. Furthermore, the region

mean was replaced by its vector angle analogue, namely, the first principal component of

the covariance matrix of the pixel vectors as was done in the MPC [34, 148]. This value

represents the most prevalent vector direction in the region.

The results in Figure 5.27 show image segmentation using the mean model with opti-

mization done using SNA-GM-ICM. Region spilling is much more prevalent than in the

edge-based Potts model case. The mean Potts model exhibits more region spilling due to

using means to represent regions instead of edge pixels. This can be easily explained by

the way the algorithm works. At the first level, the pixels are gathered into some small re-

gions. Then the means of those regions are computed and compared. However, many pixels

might not have had the chance in those first two iterations to coalesce into small regions.

Therefore, these pixels are merged into adjacent regions in similar manner to the process a

region growing algorithm would use. Since the mean of each of those regions changes with

every level due to the inclusion of new pixels, we have now a lot more variability in the
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SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

SNA-GM-SA SNA-GM-SA SNA-GM-SA

Figure 5.24: Segmentation results for the peppers image using SNA-GM-ICM and SNA-

GM-SA with β = {0.0010, 0.0020, 0.0030, 0.0040, 0.0045}. SNA-GM-SA was run with To =

1, τ = 0.4 and with 7 iterations followed by 3 iterations at T = 0. The peppers image gives

very stable results for either algorithm. Some region spilling can be observed; however,

it is very limited in extent. All the large peppers in the forefront are segmented in a

desired fashion. The average statistics for the SNA-GM-ICM algorithm are 140 seconds

running time, 19 levels and 1.25 million site visits while for the SA with the given T

schedule they are 350 seconds, 17 levels, and 5.9 million site visits. The SNA-GM-SA was

considerably more expensive for the slightly better qualitative performance. Note that the

large highlight parts of the green and red peppers are still segmented as different objects.

Three independent results are shown for each algorithm.
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SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

SNA-GM-SA SNA-GM-SA SNA-GM-SA

Figure 5.25: Segmentation results for the house image using SNA-GM algorithms with β =

{0.0001, 0.0002, 0.0004, 0.0006, 0.0008, 0.0010, 0.0011}. SNA-GM-SA was run with To = 1,

τ = 0.4 and with 7 iterations followed by 3 iterations at T = 0. The house image shows

more spilling (than the peppers or woman images) especially in the case of SNA-GM-ICM

algorithm. Note that the image was filtered using a Gaussian 5 × 5 filter with σ = 0.8.

Three independent results are shown for each algorithm.
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SNA-GM-ICM SNA-GM-ICM

SNA-GM-SA SNA-GM-SA

Figure 5.26: Segmentation results for jelly beans image using SNA-GM-ICM and SNA-GM-

SA: β = {0.0010, 0.0020, 0.0030, 0.0040, 0.0045}. Highlight regions are visible throughout

the segmented image. Observe that in all cases the dark beans are very noisy due to the

vector angle measure. Two independent results are provided for each algorithm.
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means which results in highly undesirable segmentations.

Once pixels coalesce into regions they are represented by a mean. The distance cal-

culation is based on non-local values and, therefore, the random field no longer exactly

represents model (5.11). This influence of causality (i.e., the past history of included pix-

els will determine which pixels are added next) is one of the main problems associated with

region growing and has been one of the handicaps we have avoided until now. The results

in [156] looked promising but they were in fact based on very carefully chosen parameters.

Slight changes in parameters would cause a great deal of region spilling as is evidenced by

the results in this section.

The unreliability of results using the mean Potts model is illustrated further in Fig-

ures 5.28 and 5.29 where segmentations of two other test images are shown. These results

show clearly that the mean Potts model is clearly not appropriate for image segmentation.

5.5.3 Mixed Models

The main problem with the mean model seems to be a “too rapid” transition to computing

distances based on means. It would be perhaps more desirable to first compute atomic

regions based on the edge model with a conservative β. We can then compute a region

mean or prototype for these regions in order to guard against region-to-region spilling due

to smooth edge transitions (that would spill at a higher β). Therefore, in a final experiment,

we combine the Potts edge model with the Potts mean model by applying the edge model

first as a preprocessing step in order to obtain atomic regions. This operation is followed

by the mean model with a very long β schedule. The transitions between β values are very

gradual in order to allow only a few regions or pixels to join together at any one time.

The advantage of the edge model is in the grouping at the finest scale where local

differences are much more important than regional or global ones. The mean model appears

to be advantageous at higher scales since it is non-local. This set-up fits very well the SNA

framework where we split the optimization problem into two subproblems: one to obtain

small compact regions at a finer scale and the other to group those compact regions at the

higher scales. This perceptual organization framework also agrees with other researchers

who first create atomic regions in order to then group them into larger structures [4, 22,

119].
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SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

SNA-GM-SA SNA-GM-SA SNA-GM-SA

Figure 5.27: Examples of Results for the SNA-GM paradigm using the short schedule

β = {0.0010, 0.0020, 0.0030, 0.0040, 0.0045} for the mean Potts model. SNA-GM-SA was

run with To = 1, τ = 0.4 and with 7 iterations followed by 3 iterations at T = 0. Three

independent results are shown for each algorithm.
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SNA-GM-ICM SNA-GM-ICM

SNA-GM-SA SNA-GM-SA

Figure 5.28: Segmentation results for the peppers image using the SNA-GM paradigm with

β = {0.0010, 0.0020, 0.0030, 0.0040, 0.0045}. SNA-GM-SA was run with To = 1, τ = 0.4

and with 7 iterations followed by 3 iterations at T = 0. The results show a lot of region

spilling which did not occur for the edge model. The mean model took considerably more

time to converge than the edge model especially due to the changing prototypes which

caused new regions to be merged together at higher levels of the hierarchy. The average

statistics for the SNA-GM-ICM algorithm are 405 seconds running time, 48 levels and 2.45

million site visits while for the SA with the given T schedule they are 740 seconds, 58 levels,

and 12 million site visits. There does not seem to be any benefit (be it computational or

from the point of view of desired result) from using SA in this case. Two independent

results are shown for each algorithm.
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SNA-GM-ICM SNA-GM-ICM

SNA-GM-SA SNA-GM-SA

Figure 5.29: Segmentation results for the house image using the SNA-GM paradigm with

β = {0.0001, 0.0002, 0.0004, 0.0006, 0.0008, 0.0010, 0.0011}. SNA-GM-SA was run with

To = 1, τ = 0.4 and with 7 iterations followed by 3 iterations at T = 0. The undesir-

able results are similar to those for other images. Two independent results are shown for

each algorithm.
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The nested aggregation framework lets us combine these two models seamlessly by

carefully using a new β schedule, β = {0.0010, 0.0011, 0.0012, · · · , 0.0044, 0.0045}. Thus,

the edge model was run using β = 0.0010 which was then followed by a very slow β

schedule for the mean model. A very slow schedule is implemented in order to allow

the mean model to adapt slowly since the shape of the function being optimized changes

with each modification in region prototypes. We postulate that if this change happens

slowly enough the segmentation at level s will be a good starting point for the partitioning

operation at level s + 1.

Figure 5.30 and Figure 5.31 show some results using SNA-GM-ICM and SNA-GM-SA

respectively. The algorithm ran on average for 70 − 80 levels taking on average 2 minutes

to complete for SNA-GM-ICM case while taking on average 5.5 minutes (73 levels and

5.9 million site visits) for SNA-GM-SA with a short T schedule (To = 1, τ = 0.4 with 6

iterations followed by 3 iterations at T = 0) and 13 minutes (73 levels and 19.5 million site

visits) for the longer schedule (To = 5, τ = 0.8 with 30 iterations followed by 3 iterations

at T = 0). The results are remarkably stable for both the deterministic and stochastic

versions of SNA-GM. This result confirms the need to create atomic regions when carrying

out image segmentation.

Results obtained for the other images are shown in Figures 5.32, 5.33 and 5.34.

5.6 Summary

Top-down smoothing operations, the β and T schedules, are model- and optimiza-

tion algorithm-dependent respectively while the bottom-up stochastic nested aggregation

smoothing operation is model-dependent. Each of these different smoothing operations

has significant implications for computational speed and the ability to converge near to

the global optimum. There is a clear trade-off between computational speed and global

convergence that is achieved based on how the β and T schedules are specified. In general,

it is well known that a slower schedule for T will lead to better solutions than a faster

schedule [48]. Also, a slower β schedule (i.e., with a larger set of β values) will enable the

algorithm more readily to escape local minima.

The fastest time and least convergence ability is given by T = 0 and a single β value
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Figure 5.30: Examples of results for SNA-GM-ICM using a long β schedule and two models:

several levels at the first β value using the Potts edge model followed by the remaining

β values using the Potts mean model. Some areas exhibit minor region spilling; however,

overall the results are very encouraging especially since they were obtained using ICM.

Three independent results are shown.

(i.e., ICM) while the slowest time and best convergence properties are given by a T schedule

and a very finely graded β schedule (i.e., SNA-GM-SA). Note that the best β schedule

would correspond to a list of all the edge values Φ in the graph sorted in ascending order

until a value of β that defines the model (this corresponds to the Highest Confidence First

algorithm). In other words, if we have the finest possible grading of β so that no Φi,j is

omitted, this would allow the algorithm to merge only those pixels/regions which should

be merged and not any others. This would result in a deterministic algorithm such as

HCF. If some values of Φi,j in the above generated sequence were omitted for the sake of

decreasing the computational complexity, then a stochastic optimization algorithm would

be needed since region-to-region spilling due to small gaps could now occur.

Stochastic nested aggregation has a positive impact on computational speed by pro-

viding geometric convergence through higher levels of the hierarchy. This new framework

for hierarchical function optimization allows the grouping of any number of nodes into

one node based on a well-defined global criterion (the energy model). Algorithm 7 is a

generalization of many algorithms that exist in the literature (including ICM, SA, HCF,
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short β schedule short β schedule short β schedule

long β schedule long β schedule long β schedule

Figure 5.31: Examples of results for SNA-GM-SA using a short β schedule (top row) and

long schedule (bottom row) together with two models: Potts edge model followed by the

Potts mean model. Three independent results are shown for each schedule type.
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SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

SNA-GM-SA SNA-GM-SA SNA-GM-SA

Figure 5.32: Examples of results for SNA-GM-ICM and SNA-GM-SA using a long β sched-

ule and two models: Potts edge model and Potts mean model. We used a short temperature

schedule for SNA-GM-SA. Three independent results are shown for each algorithm.
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SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

SNA-GM-SA SNA-GM-SA SNA-GM-SA

Figure 5.33: Examples of results for the SNA-GM-ICM and SNA-GM-SA algorithms using

a long β schedule and two models: Potts edge model and Potts mean model. We used

a short temperature schedule for SNA-GM-SA. Three independent results are shown for

each algorithm.
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SNA-GM-ICM SNA-GM-ICM

SNA-GM-SA SNA-GM-SA

Figure 5.34: Examples of results for the SNA-GM-ICM and SNA-GM-SA algorithms using

a long β schedule and two models: Potts edge model and Potts mean model. We used a

short temperature schedule for SNA-GM-SA. Highlights are visible in all results. There is

also a considerable amount of noise in segmented dark areas. Two independent results are

shown for each algorithm.
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and region growing).

Through the use of the stochastic nested aggregation framework, we are now able to

use the ICM algorithm without needing to search for an optimal initial set of labels which

in many cases is a suboptimal graph partitioning result obtained using another method

(i.e., oversegmentation in image processing terms). Stochastic nested aggregation is thus

able to break labelling deadlocks which plague ICM and therefore allow the algorithm to

escape many local minima. This enhancement makes ICM a viable alternative to SA for

many problems where a global partitioning of a graph is necessary. In the case of SA,

SNA is able to significantly accelerate its computational speed, therefore making SA a

viable alternative to ICM (many researchers would not use SA due to its computational

complexity). Even the smallest amount of processing at a higher temperature benefits

results thus allowing the optimization using very fast temperature schedules.

SNA is also a framework which allows different models to be used at various levels of

the hierarchy. We have shown that the mean Potts model was not very useful by itself;

however, it proved to be a very effective add-on to the edge Potts model especially at levels

in the hierarchy where atomic regions or partitions have already been formed.



Chapter 6

Pixel Comparison: Color Spaces and

Metrics

The purpose of a metric in image segmentation is to be able to quantify with some meaning

distances between pixels or regions. This chapter discusses statistics- and physics-based

derivations of color distance metrics and semi-metrics that are shading and highlight in-

variant in RGB. In Chapter 4, various distance metrics and semi-metrics were reviewed.

Each of those distance measures have drawbacks:

1. Euclidean distance is not an appropriate physics-based metric in RGB since it is

highly intensity dependent. The same criticism applies to the Mahalanobis distance

measure.

2. Vector angle, although shading invariant in RGB, is not an appropriate physics-based

semi-metric since distance measures for low pixel values are unreliable.

As opposed to the Euclidean distance and the vector angle, statistical distance measures

depend on stochastic information encoded in the data in addition to difference computation

between the pixels being compared. In this chapter, we pose the following question: can a

metric be designed to be shading and highlight invariant, as well as noise resistant?

There are several important issues and assumptions that need to be made under this

basic premise:

149
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1. A metric which is invariant to shading needs to factor out the illumination. We will

assume that the illumination varies linearly with the pixel values (as the illumina-

tion intensity increases, so will the RGB pixel values increase). This assumption is

not always valid especially for very low (dark regions) and very high (usually small

highlight regions) intensity values. However, we are not dealing with perceptually

correct color differences such as for example those achieved in CIE Luv or CIE Lab

[122] where small differences might matter.

2. We will assume that the illumination of the color scene is white light. In [150]

a simple linear transformation based on the highest intensity point in the image

(which is assumed to have the characteristics of the illumination source) was used

to white balance the image (i.e., to ensure that the white light assumption is valid).

However, this transformation is not necessarily easily done as a pixel with similar

characteristics to the illumination color might not be found automatically. In all

cases, images studied in this thesis were obtained (or are assumed to have been

obtained) under white light and therefore we have no reason to believe that this

assumption would not hold.

3. We will assume that we are working in the RGB or sensor space where we can easily

apply the Dichromatic Reflection Model [123]. Therefore, we need not be concerned

with transformations into a different color space.

4. Noise resistance can be achieved with respect to different types of noise. Noise can

frequently introduce errors in measurement and it is important to take it into account.

In this chapter, we consider white noise stemming from the image capture process

which we model as an additive Gaussian distributed noise:

x = a + υx (6.1)

where x is the pixel vector, a is the true representation of x, and υx is Gaussian-

distributed noise with covariance Rx that depends on a. Therefore, the noise for each

x is independent of the other noises.

However, additive Gaussian noise is not necessarily a good assumption since real

CCD camera noise is strongly dependent on the image intensity level and may vary
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from color to color [63]. It includes mainly five noise sources: fixed pattern noise,

dark current noise, shot noise, amplifier noise and quantization noise. Finding image

regions in order to estimate the noise level for different intensities and colors is

generally not possible in a single image since many regions will be too small [139].

We will therefore keep the Gaussian assumption though understand that it does not

fully represent reality.

The chapter is organized in the following manner. First, we will demonstrate why

the vector angle and Euclidean distance are not appropriate distance measures especially

when we would like to measure intensity invariant distances in highly variable and dark

areas. Next, we will introduce the hypothesis testing probabilistic framework which will be

followed by the development of intensity invariant and noise resistant semi-metrics. Finally,

we will discuss specular reflection or highlight invariance and modify our probabilistic semi-

metrics in order to allow them to detect surfaces irrespective of specular reflections. We

will show results throughout the chapter to illustrate our theoretical development.

6.1 Vector Angle Limitations

The distance between two pixels can be computed in several different ways in RGB. Using

the Euclidean distance, the distance becomes intensity-dependent and, therefore, is not

applicable to assessing differences only based on color. Figure 6.1 shows that there are

high differences with respect to pixel intensity.

The vector angle distance measure (4.12) is effectively the square of the sine of the

angle between two vectors. Figure 6.2 shows vector angle distances between various color

pixels in RGB. For very low intensity pixel values in RGB, the distance measure behaves

erratically. That is, for small changes in low intensity pixel values, the measured distance

can be arbitrarily different. In other words, a small amount of noise will create vastly

different results. This indicates that using the vector angle the statistics break down

for very dim (or low intensity) pixels which invalidates its use even though the intensity

invariant feature is very attractive.

We can also approximate the vector angle using the Euclidean distance on RGB points

projected onto the unit sphere known as the normalized color space rgb [61]. This is shown
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Figure 6.1: Euclidean distances between various colors in RGB are shown. A black square

indicates that the colors are similar, while a white one shows high disagreement. Shades

of gray illustrate the nuances in the color differencing results. There is a clear pattern

of having low distances between pixels of similar intensity and large distances between

pixels of very different intensities all without regard to the intrinsic pixel color. The

RGB colors correspond to the following values (from left to right and from top to bot-

tom): {1, 1, 1}, {125, 125, 125}, {250, 250, 250} , {1, 0, 0}, {125, 0, 0}, {250, 0, 0} , {0, 1, 0},
{0, 125, 0}, {0, 250, 0} , {0, 0, 1}, {0, 0, 125}, and {0, 0, 250}.
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Figure 6.2: Shading Invariant Distances Between Various Colors in vector angle in RGB

and using Euclidean distance in the normalized space rgb. The color distances are identical

and therefore we can use these formulations interchangeably. Notice that distances between

pixels with low intensity values such as {1, 0, 0} and {0, 1, 0} show a very high degree of

difference.

in Figure 6.3. Since sin θ ≈ θ for similar colors, not much error is introduced. The color

distances calculated using the Euclidean distance in normalized rgb are the same as the

distances obtained using vector angle in RGB (see Figure 6.2).

6.2 Hypothesis Tests: Three Choices

In order to create a probability-based distance measure, we will first need to introduce

the concept of hypothesis testing. Then we will describe two different hypothesis test-

based distance measures that can be used as shading invariant methods with the desired

characteristics.

There are three ways of formulating the problem:

1. The most commonly used method involves asking the question whether quantities

(in this case pixel values) are from the same class. In essence, this corresponds to



154 Stochastic Nested Aggregation for Images and Random Fields

A

A’

BB’

Figure 6.3: The normalized rgb color space is demonstrated through projecting RGB

vectors onto the unit sphere (shown here in 2-D for ease of viewing). The RGB pixels A and

B (thick black arrows) are projected onto the unit sphere at points A′ and B′ respectively

(small circles on the unit circle). The dotted lines are indicative of the variance of the

pixel values. Therefore, a pixel with low RGB intensities that is projected onto the unit

sphere will have relatively higher variance on the unit sphere than pixels that have high

RGB intensities.
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the following hypothesis test:

H0 : x = y (6.2)

H1 : x 6= y

Expression H0 is usually called the null hypothesis.

2. We could ask how similar a pixel is to a particular class or region prototype without

regard to its relationship with adjacent pixels. This is the typical clustering problem

such as k-means or mixture of Gaussians [35]. This can be characterized as

Hi : x = ai (6.3)

where i = 1, . . . , K represents a class index, and {ai} is the class mean. In this

formulation, as the number of classes grows, the number of tests grows with it.

3. We could also ask to which class each pixel (of a set of adjacent pixels) belongs. The

hypothesis test then becomes

Hij : x = ai y = aj

This formulation is seldom used since as the number of classes grows, the number

of tests grows quadratically quickly becoming unmanageable. However, we can ask

some questions about ai and aj in order to reduce the number of tests to only one.

For example, instead of having formal classes we can estimate ai and aj based on x

and y by asking whether x and y are explained by the same mean (i.e., ai = aj) or

different means (i.e., ai 6= aj).

In this chapter, probabilistic metrics are developed for the first and third options. The

clustering formulation (the second option) is considered with a non-probabilistic distance

measure in Chapter 7.

6.3 Same-Class Hypothesis Test

Noise can frequently introduce errors in measurement and it is important to take it into

account. One way in which this can be done is to assume a particular noise model and
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devise a dissimilarity measure based on this assumption. Consider two pixels x and y

defined under model (6.1). The scalar case (i.e., vectors of size 1) of the hypothesis test

(6.3) becomes

x − y ∼ N (0, σ2
x + σ2

y) (6.4)

where σ2
x is the noise variance for pixel x. We can state this since the variance of the

sum of two independent random variables is the sum of their variances. Therefore, given

pixel model (6.1), we assume that the noise distributions associated with x and y are

independent. This leads to

x − y
√

σ2
x + σ2

y

∼ N (0, 1) (6.5)

which can be restated as the probability

Pr

(

|x − y|
√

σ2
x + σ2

y

> c

)

= 2Q(c) (6.6)

where c is some suitable value for which the hypothesis is true and Q corresponds to the

cumulative normal distribution function:

Q(c) =
1√
2π

∫ ∞

c

e
−x2

2 dx (6.7)

This leads to the probabilistic metric based on the hypothesis test (6.3)

ΦQ(x, y) = − ln

[

2Q

(

|x − y|
√

σ2
x + σ2

y

)]

. (6.8)

It is easy to show that equation (6.8) satisfies the four metric conditions. However, we

would like to obtain an approximation that is similar to other metric forms. To find an

approximation for ΦQ(x, y), we will first need to find an approximation for Q. Suppose we

approximate Q as follows [42]

Q(c) ≈ 1√
2πc

∫ ∞

c

xe
−x2

2 dx

≈ 1√
2πc

e−
c2

2 . (6.9)
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Taking the derivative of (6.9) with respect to c yields

∂ΦQ

∂c
=

−1

2Q(c)

∂

∂c
(2Q(c))

=
1

2Q(c)
· 2 1√

2π
e−

c2

2 (6.10)

≈ e
−c2

2

1
c
e

−c2

2

= c.

(6.11)

Therefore, since the slope of ΦQ(x, y) is approximately linear, ΦQ(x, y) is approximately

quadratic. Thus, we choose as our distance metric

ΦS(x, y) = c2 =
(x − y)2

σ2
x + σ2

y

(6.12)

which is a quadratic function in terms of c. (6.12) is a generalization of the Mahalanobis

distance [35] to a distance metric between quantities x and y which have different prob-

ability distribution functions and hence different variances σ2
x and σ2

y (the Mahalanobis

distance assumes the same probability distribution function for all data points). Note,

that we did not choose the Mahalanobis distance as a starting point; instead, a generalized

Mahalanobis distance was derived from basic principles associated with the formulated

problem. For different initial assumptions, a different metric would be derived.

We go back to the case of multidimensional vectors. In the multidimensional case, the

hypothesis test becomes
√

(x − y)T (x − y) ∼ N (0, Rx + Ry) (6.13)

where Rx is the noise covariance matrix for RGB pixel x. We cannot assume independence

between color bands in RGB since they are correlated. However, we can sum the two

covariance matrices Rx and Ry since they are independent. This leads to
√

(x − y)T (Rx + Ry)−1(x − y) ∼ N (0, 1) (6.14)

which means that we are testing the magnitude of x− y and similarly as in the scalar case

leads to the metric

Φ(x, y) = − ln
[

2Q
(√

(x − y)T (Rx + Ry)−1(x − y)
)]

(6.15)
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And therefore the corresponding approximation is

ΦS(x, y) = (x − y)T (Rx + Ry)
−1(x − y) (6.16)

Thus the metric (6.16) is a generalization of the Euclidean distance between two points

taking into account their individual noise statistics. This equation is of course only valid

as long as the assumption of Gaussian statistics holds.

To make this semi-metric intensity invariant, we need to consider normalized color by

projecting the RGB pixel vectors onto the unit sphere [61]. This means that distance

measure (6.16) will become

ΦS(x̄, ȳ) = (x̄ − ȳ)T (R̄x + R̄y)
−1(x̄ − ȳ) (6.17)

where x̄ = x
|x| represents a normalized vector and R̄x = Rx

|x|2 is the normalized noise covari-

ance matrix. In this formulation, R̄x now varies with the magnitude of x. Because of this

dependence (6.17) is a semi-metric as the triangle inequality is no longer satisfied which

was still the case for (6.16).

Figure 6.4 shows the distance computations using the same-class hypothesis (SCH)

distance (we will call this distance the same-class hypothesis distance measure since the null

hypothesis tests whether the two pixel vectors are the same, i.e., in the same class). The

distances between dark pixels are now a bit lower than distances between dark pixels and

other colors with higher intensities (e.g., compare distances between “dark red” and “dark

green” and between “medium red” and “dark green” in Figures 6.2 and 6.4). Furthermore,

the distances between colors with high intensity values are large as they were before.

This analysis suggests that low intensity pixels will most likely merge with pixels of high

intensity. This is desirable in areas where a shadow falls upon an object which results in

some parts of the object being very dark. However, other areas which are adjacent to this

dark region might become merged with it.

6.4 Common Mean Hypothesis Test

An original approach using the Common Mean Hypothesis (CMH) test (6.4) involves the

estimation of ai based on the values of x and y in order to find the ai that maximizes the
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Figure 6.4: SCH shading invariant distances between various colors in RGB using equation

(6.17). Notice that distances between pixels with low intensity values are now very small

compared to distances between higher intensity pixels while remaining “0” for pixels of

exactly the same color.

joint probability distribution p(x, y|ai). We can also look for the ai that is equidistant in

terms of standard deviations from x and y, in other words the ai for which p(x|ai) = p(y|ai)

is true. For simplicity of notation and without loss of generality, we will use a = ai for the

developments in this section and the next one.

If we first assume that the means a are known, then we can estimate the likelihood

p(x|a) using

p(x | a) =
1√

2π | Rx |
e−

1
2
(x−a)T R−1

x (x−a). (6.18)

(6.18) gives us the well-known measure of how likely it is for x to come from a distribution

with mean a. Note that we can transform this probability into a distance measure by using

− ln p(x|a). We now assume that the prior means a are unknown and ask the question what

is the likelihood that there is a common a which explains both x and y?

Through the independence property (we can assume that x and y are conditionally

independent since their noises are independent), we can state that p(x, y | a) = p(x |
a)p(y | a). Therefore, given that we would like to find out how consistent x and y are with

respect to each other, the desired likelihood is

p(x, y) = max
a

p(x, y | a) (6.19)
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where the max operator is computed over all possible a. This can be a computationally

expensive task using an exhaustive search, as well as depending on whether the set of reals

or integers is used to represent a. Making the conditional independence assumption we

have

p(x, y) = p(x | a)p(y | a) (6.20)

which can also be written by

Φ(x, y) = − ln[p(x | a)] − ln[p(y | a)]. (6.21)

The distance metric can, therefore, be represented by

ΦC(x, y) = (x − a)T R−1
x (x − a) + (y − a)T R−1

y (y − a). (6.22)

This distance measure is very easy to calculate and has no trouble with dark pixels as-

suming that we can find a good a by, for example, minimizing (6.22) with respect to a.

However, (6.22) is dependent on intensity and will not work with illumination-dependent

error covariances. To transform (6.22) into an intensity invariant measure we follow the

same methodology as in the previous section. Namely, we project the vectors x, y and a

onto the unit sphere. Then, we obtain the following distance measure:

ΦC(x̄, ȳ) = (x̄ − ā)T R−1
x (x̄ − ā) + (ȳ − ā)T R−1

y (ȳ − ā). (6.23)

This distance measure is very easy to calculate, has no trouble with dark pixels, is intensity

invariant and will work with non-trivial illumination-dependent error covariances.

ā is not considered to be a region prototype that is commonly accepted in the literature

[35]. Rather, the idea is to find an ā which best explains both x̄ and ȳ and to use this

intermediary quantity as a means of assessing the distance between x̄ and ȳ. As mentioned

at the beginning of this section, there are two different ways to determine ā. First, we

could determine the ā which maximizes the joint conditional probability p(x̄, ȳ|ā). Second,

we could find the ā which best fits p(x̄|ā) = p(ȳ|ā).

6.4.1 Finding the minimum mean

To find the optimum ā on the unit sphere we minimize (6.23) with respect to ā. To keep

the analysis tractable we will assume that Rx = σ2
xI and Ry = σ2

yI and for the intensity
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invariant case we have R̄x = σ̄2
xI and R̄y = σ̄2

yI. In order to minimize (6.23), we perform a

component-based differentiation with respect to āj where j represents the jth component

of the vector, and set these partial derivatives to 0, i.e., ∂
∂āj

p(x̄, ȳ|āj) = 0. For each

component āj the we have

− 2σ̄−2
x (x̄j − āj) − 2σ̄−2

y (ȳj − āj) = 0. (6.24)

Rearranging terms we obtain

āj =

x̄j

σ̄2
x

+
ȳj

σ̄2
y

σ̄−2
x + σ̄−2

y

(6.25)

which simplifies to

āj =
x̄j σ̄

2
y + ȳjσ̄

2
x

σ̄2
x + σ̄2

y

(6.26)

or in vector notation

ā = (x̄T R̄y + ȳT R̄x)(R̄x + R̄y)
−1. (6.27)

Note that if |x̄| = 0 or |ȳ| = 0, ā will correspond to the zero vector which is the desired

behavior.

6.4.2 Finding an equally likely mean

Another way to compute ā is to find the mean which equally accommodates x̄ and ȳ. This

results in the following formulation

(x̄ − ā)T R̄−1
x (x̄ − ā) = (ȳ − ā)T R̄−1

y (ȳ − ā). (6.28)

Therefore, on a component basis we have

(x̄j − āj)
2

σ̄2
x

=
(ȳj − āj)

2

σ̄2
y

. (6.29)

The solution to this equation produces an x̄ that is equidistant from x̄ and ȳ in units of

standard deviation σ̄x and σ̄y. If we apply the square root operator to both sides of (6.29)

and rearrange terms, we obtain:

āj =
x̄j σ̄y + ȳjσ̄x

σ̄x + σ̄y
. (6.30)
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Note that the variables x̄ and ȳ are multiplied through each other’s standard deviation and

not variance as was the case for (6.26).

6.4.3 Discussion

Both (6.27) and (6.30) offer plausible choices for ā. Figures 6.5 and 6.6 show the distance

matrix as before for (6.23) using (6.27) and (6.30) respectively. Notice that Figures 6.5 and

6.4 are identical. In fact, it is easy to show that substituting (6.27) into (6.23) will yield

(6.17). This indicates that (6.17) is a simplification of (6.23) when means are obtained

using (6.27). Therefore, we no longer need to compute means ā for the CMH distance

measure through function minimization reducing somewhat the computational complexity

of each site visit. Certainly the same conclusions apply to (6.23) with ā represented using

(6.27) as did to (6.17).

The results for Figure 6.6 are different from Figure 6.5. Whereas differences between

achromatic colors such as the color white (third color) and low intensity chromatic colors

such as the very low intensity red (color 4) were small in Figure 6.5, they are now large.

This implies that pixels with various shades of gray will not automatically be merged with

adjacent regions which was the case with (6.17). Furthermore, differences between low

intensity chromatic pixels are now more nuanced. Whereas perviously a factor of four or

five separated them, now they are separated by a several orders of magnitude which gives

us more freedom for setting image segmentation parameters.

6.5 Preliminary Results

We will perform the segmentation using the SNA-GM-ICM with the edge Potts model with

different β schedules. The number of labels used will be K = 10 and relabelling will occur

after every level. We will assume that the variance of the noise σ2
i for each color band

i ∈ {R, G, B} is the same and is given by the user. For the peppers image we assume a

σ2
i = 82 while for the toy1 image a σ2

i = 42 was chosen.

1“toy” image [50] publicly available at the following website

http://www.science.uva.nl/research/isla/themes/FeaturesAndColor.php.
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Figure 6.5: Distances between various colors are indicated for the Common Mean Hypoth-

esis (CMH) (6.23) with a mean (6.27). This figure is identical to Figure 6.4.
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Figure 6.6: Distances between various colors are indicated for the Common Mean Hy-

pothesis (CMH) (6.23) with a mean (6.30). Notice that distances between pixels with low

intensity values are now very small compared to distances between higher intensity pixels

while remaining “0” for pixels of exactly the same color.
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Figure 6.7 shows an example of the segmentation of the peppers image. As opposed

to the vector angle results where areas of dark pixels contained a proliferation of small

regions, the results for the SCH distance measure show that pixels in dark regions can be

grouped together or grouped with an adjoining region with a well defined color. However,

regions of different color can still merge together if they are connected by a darker region.

This is a highly undesirable side-effect of the devised semi-metric. Also, note that highlight

areas are detected as separate regions as previously in Figures 5.24 and 5.32.

Figure 6.8 shows the results for the toy image. Note that vector angle results for a

lower β are generally worse especially around highlight areas whereas for a higher β the

resulting image appears much cleaner; however, one object (in the upper left panel) has

been completely absorbed by the background from the image. Regions of very low intensity

help to separate objects from the background (e.g., the ball in the lower left panel). For

the SCH color distance, regions of constant color are grouped together and separated from

others. One very dark shadow in the lower left panel causes the ball object to merge with

the background color (expected result). Many edge pixels are grouped separately from the

objects due to jpeg compression artifacts in the image. Furthermore, the proliferation of

small regions along the edges causes large regions such as the background and the sphere

to have only a few pixels of common border. If the distance across those pixels is small

then region merging will occur and edge regions will be left unmerged. This error would

be preventable by using a mean model with the SCH color distance. The pixels which is

used to compute the mean would be weighted by the corresponding variances (i.e., low

intensity pixels would be weighed less than higher intensity ones). This is left as a future

exercise.

Figure 6.9 shows results for the common mean hypothesis distance measure with equally

likely mean. Not surprisingly, the results are similar to those in Figure 6.7 with perhaps

slightly better performance shown by less region-to-region spilling. As before, highlights

appear as separate segmented objects. Both of these distance measures with SNA-GM-

ICM took on average 230 seconds, 22 levels and 1.8 million site visits. For the toy image

using SNA-GM-ICM the statistics were 60 seconds running time, 330000 site visits and 25

nested levels.
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Vector Angle

Original SNA-GM-ICM (edge model) SNA-GM-ICM (mixed models)

Same-Class Hypothesis Color Distance Measure

SNA-ICM: β = 0.65 SNA-ICM: β = 0.65 SNA-GM-ICM: β schedule

Figure 6.7: Results on the peppers image using the Same-Class Hypothesis (SCH)

color distance measure (6.17) in RGB. SNA-GM-ICM used with vector angle with

edge model (β = {0.0010, 0.0020, 0.0030, 0.0040, 0.0045}) and with mixed models (β =

{0.0010, 0.0011, 0.0012, · · · , 0.0044, 0.0045}). SNA-GM-ICM used with SCH had a sched-

ule of β = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65}. Note that dark regions appear as individual

regions or are merged with similarly colored lighter regions. Some regions of differing color

are merged together usually through the intermediary of a dark region.
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Vector Angle

Original SNA-GM-ICM (last β = 0.0015) SNA-GM-ICM (last β = 0.0045)

Same-Class Hypothesis Color Distance Measure

SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

Figure 6.8: Results on the toys image (size: 256 × 256) using the Same-Class Hypothesis

color distance measure (6.17) in RGB. The β schedule for the first SNA-GM-ICM with

vector angle was β = {0.0010, 0.0020, 0.0030, 0.0040, 0.0045} and for the second it was

β = {0.0005, 0.001, 0.0015}). A higher β is needed to produce less noisy vector angle-based

images at the cost of one region merging into the background from the result. SNA-GM-

ICM used with SCH results were obtained using a schedule of β = {0.25, 0.5, . . . , 2.25, 2.5}.
Some regions of differing color are merged together usually through the intermediary of a

dark region. Edge areas produce many small regions due to jpeg compression artifacts in

the image.
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Figure 6.9: Results on the peppers image using the Common Mean Hypothesis distance

measure (6.23) with equally likely mean (6.30). Examples of results for SNA-GM-ICM

with a schedule of β = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65}. Note that dark regions appear

as individual regions or are merged with similarly colored lighter regions. Some regions

of differing color are merged together usually through the intermediary of a dark region.

Three separate results are shown.

6.6 Color Spaces: Highlight Invariance Projections

Since shading invariance has been achieved using probabilistic semi-metrics, we now turn

our attention to specular reflection which is quite problematic for image segmentation (cf.

Section 4.2). Specular reflection or highlight invariance can be achieved for example by

using the vector projection method of Tominaga [133] where the average intensity of the

pixel is subtracted from each pixel component such that:






R′

G′

B′






=







R

G

B






−







R + G + B

R + G + B

R + G + B






/3. (6.31)

In this transformation, the reflectance variation caused by specular reflection is removed by

projecting the observed reflectance in an n-dimensional vector space along the illumination

vector onto an (n-1)-dimensional subspace that is perpendicular to the illumination vector

[133]. Therefore from a 3-dimensional RGB space we now have a 2- dimensional highlight

invariant space where one of {R′, G′, B′} is a linear combination of the other two bands.

From a practical point of view, a 3-D plot of the RGB pixels values making up a
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Figure 6.10: Fruits image.

homogeneously-colored region containing a highlight patch would show two connected

clusters (one for the homogenous color and one for the highlight). For example, given

the original image in Figure 6.10, Figure 6.11 shows a distribution of RGB pixels for four

differently colored fruits. The four clusters (obtained using the Mixture of Principal Com-

ponents algorithm [150]) appear highly spread-out and are non-linear (do not lie along a

straight line in RGB space), because each cluster is composed of both body and specular

reflections.

(6.31) transforms each set of nonlinear clusters into a single linear cluster representing

the body reflection. This is well illustrated in Figure 6.12, where the original nonlinear

clusters now appear as linear groupings. Given that the RGB components are assumed

to be white balanced, the application of (4.5) and (6.31) eliminates the interface reflection

term and reduces the sensor responses to 2







R′

G′

B′






= α(x)

∫

So(λ, x)E(λ)
1

3







2RR(λ) −RG(λ) −RB(λ)

−RR(λ) + 2RG(λ) −RB(λ)

−RR(λ) −RG(λ) + 2RB(λ)






dλ (6.32)

= α(x)

∫

So(λ, x)E(λ)







R′
R(λ)

R′
G(λ)

R′
B(λ)






dλ (6.33)

This formulation is dependent on the shading factor (illumination) and the body reflec-

tion (material color), which makes this color representation highlight invariant. Individual

2A preliminary version of this work is archived in [150].
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Figure 6.11: Distribution of pixels in the RGB space from the original image in Figure 6.10.

The straight lines are the principal vectors obtained with the best mean squared error fit

using the Mixture of Principal Components [150]. Both the red and orange fruits have

been clumped into one larger cluster. Whereas three of the four clusters depicted in the

image correspond to fruit colors, the fourth represents all of the highlight areas.
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Figure 6.12: Distribution of pixels in the R′G′B′ space from Figure 6.10(a). Compare with

the RGB distribution in Figure 6.11. The straight lines are the principal vectors obtained

with the best MSE fit from [150]. The alignment of the four cluster prototypes with the

four color clusters is clearly seen; each of the four cluster prototypes corresponds to a

colored fruit.



Pixel Comparison: Color Spaces and Metrics 171

elements of the pixel vector in the new representation will be shifted according to the

average of the body reflection term. This results in the new space having negative coor-

dinates. Equivalently the spectral sensitivity functions, R′
R(λ), R′

G(λ), and R′
B(λ), in the

new system also have negative values.

Three properties were derived from this representation [150]. The first property states

that all RGB colors fall into one of six quadrants in the new space. The second one

indicates that all gray values (including saturated highlight areas) naturally collapse to

the (0, 0, 0) point. Pixels that are nearly saturated in intensity and nearly gray in color

will be projected near to (0, 0, 0). Finally, the third property demonstrates that the same

color can only exist in quadrants that have at least one adjacent edge.

Highlight invariance can also be reformulated into a 2-dimensional representation as

indicated earlier. Consider that (6.31) can be rewritten as

R′ =
2R − G − B

3

G′ =
2G − R − B

3
(6.34)

B′ = −R′ − G′

This can be summarized in the following linear transformation

[

R′

G′

]

= H







R

G

B






(6.35)

where

H =

[

2/3 −1/3 −1/3

−1/3 2/3 −1/3

]

(6.36)

is the highlight invariant transformation matrix. We will use this transformation to modify

(6.17) and (6.23) into highlight invariant color distance semi-metrics. First, however, we

address the issue of modifying vector angle to adapt it to a highlight invariant space.
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6.7 Vector Angle for Highlight Invariance

In order to be able to use the vector angle distance measure (4.12) in a space with negative

coordinates we need to ensure that we can correctly determine the distance between vectors

since we no longer operate in only the positive quadrant. The cosine of an angle (i.e., the

traditional definition of vector angle) denoted by cos θ produces values in the range [−1, 1].

However, cos2 θ only produces values in the compressed range [0, 1] due to the squaring

operation. Computing the distance measure (4.12) in standard RGB or normalized rgb was

not a problem since all vectors had positive values. However, since the highlight invariant

transformation introduces negative coordinates, we have
xi

T xj

|xi|·|xj |
6=
∣

∣

∣

xi
T xj

|xi|·|xj |

∣

∣

∣
.

In order not to compute the arcsin to obtain the angle in (4.12), we will force the

multiplier of
(

xi
T xj

|xi|·|xj |

)2

to carry the sign of
xi

T xj

|xi|·|xj |
. This leads to the equation:

ΦV H(i, j) = 1 − xi
T xj

|xi| · |xj |

∣

∣

∣

∣

xi
T xj

|xi| · |xj |

∣

∣

∣

∣

(6.37)

which gives values in the range of [0, 2]; i.e., for all values where
xi

T xj

|xi|·|xj |
is negative the range

of distances is (1, 2]. This is a semi-metric as it does not satisfy the triangle inequality

condition. Note that many pixels now map to the null set where vector angle is undefined.

For this reason, a prototype-based Markov Random Field model was implemented to cope

with the vector angle uncertainty. This research is described in Chapter 7. In the next

section, we will use (6.37) with highlight invariance transformation (6.36).

6.8 Probabilistic Highlight and Shading Invariant

Distance Measures

To make a highlight invariant distance measure, we will first transform the RGB space

into the reduced R′G′ space and then carry out a similar analysis to the shading invariant

distance measures. We will first analyze the transformation of the SCH distance measure

(6.17) since it does not require the computation of a mean followed by the CMH distance

measure (6.23) with equally likely mean (6.30).
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We can easily transform our pixel definition (6.1) under the transformation (6.35). This

will yield the following new pixel model:

x̃ = H(a + vx)

= Ha + Hvx

= ã + ṽx (6.38)

where ṽx is the noise component with covariance

R̃x = HRxH
T

= σ2
x

[

2/3 −1/3

−1/3 2/3

]

= σ2
xH

′ (6.39)

Even if we assumed a diagonal covariance Rx, this assumption no longer holds for R̃x.

With these preliminaries we are now ready to transform the probabilistic color distance

measures.

6.8.1 Same-Class Hypothesis Test

Distance measure (6.17) can be reformulated based on the new pixel model (6.38). Since

we are projecting onto the unit circle to obtain intensity invariance our new quantities will

be a new normalized color vector ¯̃x = x̃
|x̃| and a new normalized noise covariance matrix

¯̃Rx = R̃x

|x̃|2 . Thus, the new highlight invariant and shading or intensity invariant distance

measure is

Φ(¯̃x, ¯̃y) = (¯̃x − ¯̃y)T ( ¯̃Rx + ¯̃Ry)
−1(¯̃x − ¯̃y) (6.40)

In this formulation, ¯̃Rx now varies with position on the unit circle since the color bands R′

and G′ of the new highlight invariant space are correlated. Previously the noise covariance

matrix was dependent on the magnitude of the color vector. Also note that the inverse of

H ′ is

H ′−1
=

[

2 1

1 2

]

(6.41)
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Figure 6.13: Highlight Invariant Same Class Hypothesis (HI-SCH) distances (6.40) be-

tween various colors are indicated. Notice that distances between pixels with gray level

values (including very dark and very bright) and all other pixels are now “0” just like the

differences for pixels of exactly the same color. This computation assumes that ¯̃Rx = ∞
and ¯̃Ry = ∞ for the zero vector. Of course in practice, those would be very large numbers

and therefore the distances would be negligibly above zero.

which simplifies the computation of the matrix inverse and makes the distance measure

easier to implement.

Figure 6.13 shows the distance computations using the highlight invariant same-class

hypothesis (HI-SCH) distance. The distances between achromatic and chromatic pixels are

now all 0. This means that all pixels which are very bright such as highlights should merge

with the surrounding regions. At the same time pixels which are dark will also merge with

surrounding color pixels. One undesirable side-effect is that gray values that are neither

light or dark will also be merged in with surrounding chromatic pixels. This is inevitable

since all achromatic pixels map to {0, 0, 0} under the highlight invariant transformation

(6.35).

Furthermore, the distances between colors with high intensity values are large as they

were before. This analysis suggests that achromatic, as well as low intensity pixels will most

likely merge with chromatic pixels of medium-to-high intensity. Areas that are naturally

achromatic (e.g., gray roads, white objects, etc.) will merge together with the neighboring

chromatic regions or objects.
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6.8.2 Common Mean Hypothesis Test

Making the Common Mean Hypothesis Test-based distance measures highlight invariant

is a much more difficult task since the derivation of the mean ¯̃a based on pixels ¯̃x and
¯̃y is dependent on the covariance matrix. Since the covariance is no longer diagonal in

nature there is a dependence between the two vector components ¯̃ai (where i = 1, 2) which

significantly complicates the distance computation process since it requires using a gradient

descent method to converge onto plausible choices for ¯̃a given each combination of ¯̃x and
¯̃y. Given that the concept of highlight and shading invariance is successfully demonstrated

based on the Same Class Hypothesis test, making the Common Mean Hypothesis Test

Distance Measure highlight invariant is left as future work.

6.9 Results

The distance measure (6.40) was used with SNA-GM-ICM and SNA-ICM. The standard

deviation for the zero vector was set to σ = 100 which is large compared with the standard

deviation for all other vectors. Results are shown on the peppers image in Figure 6.14. It

is clear that highlights and shaded areas (such as the dark regions between the peppers)

have been integrated into the surrounding regions. Note that the pepper objects appear

mostly noise free while there is a proliferation of small regions at the edges between objects

of different color. Furthermore, SNA-ICM using vector angle (with highlight invariance)

results show that where dark regions and highlights appear, there is a proliferation of small

regions.

In Figure 6.15, results for the toy image are shown. Vector angle together with the

highlight invariance transformation achieves excellent segmentation results due to the noisy

nature of distances in very dark areas which keep different regions apart (whereas in the

case of the probabilistic distance measure, chromatic regions could be merged together

because they both border a very dark intensity area). Also, note that the highlights in the

toys image are not saturated which makes the image much easier to segment for vector

angle. In the case of the highlight invariant SCH distance measure, shading and highlight

invariance is achieved. There is some region-to-region spilling through dark areas due to

the characteristics of the semi-metric.
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In Figure 6.16, the saturated highlight on the Pooh image3 is subsumed into the regions

in the case of the probabilistic metric but not in the case of vector angle. However,

the first vector angle-based segmentation looks much better than all the others. A noise

standard deviation of σ = 4 was used for this image. The region merging in the case of

the probabilistic distance measure might have been avoided with the use of a mean-based

method to compute region-to-region distances on higher levels of the hierarchy. This should

be part of a future development.

6.10 Summary

In this chapter, we have shown three intensity invariant and noise resistant distance mea-

sures and modified one of those measures to be also a highlight invariant distance measure.

We have also introduced a new vector angle measure for a highlight invariant space. The

distance measures have been derived from first principles and are well grounded in statistics.

All shading invariant distance measures are semi-metrics as the triangle inequality is no

longer satisfied. These semi-metrics allow the extension of vector angle (and the Euclidean

distance in rgb) to highlight invariance and especially noise resistance. The effectiveness

of these semi-metrics has been shown on image several segmentation results. However,

some segmentation results suffer from region-to-region spilling which could potentially be

avoided with the use of a mean model on higher levels of the hierarchy.

3pooh11.jpg image obtained from publicly available database used in [109]. Website was last at

http://cobweb.ecn.purdue.edu/∼jbpark/gallery.htm.
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Vector Angle

SNA-ICM, β = 0.01 SNA-ICM, β = 0.015 SNA-GM-ICM

Highlight Invariant Same Class Hypothesis Distance Measure

SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

Figure 6.14: Results on the peppers image using the HI-SCH distance measure. The top

row shows the vector angle distance measure obtained using SNA-ICM and SNA-GM-ICM

(graduated model: β = {0.001, 0.002, 0.003, 0.004, 0.005, 0.010, 0.015}). Three results for

SNA-GM-ICM obtained with a schedule of β = {0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Note

that virtually all highlights and dark regions have been subsumed into the surrounding

regions by the new distance measure which is definitely not the case for vector angle alone

(where dark regions and highlights appear as many regions). Some regions of differing color

are merged together usually through the intermediary of a dark region. These images were

obtained on average in 180 seconds after an average of 22 nested levels and 1.5 million site

visits.
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Vector Angle

SNA-ICM, β = 0.01 SNA-ICM, β = 0.01 SNA-ICM, β = 0.01

Highlight Invariant Same Class Hypothesis Distance Measure

SNA-GM-ICM SNA-GM-ICM SNA-GM-ICM

Figure 6.15: Results on the toys image using the highlight invariant same class hy-

pothesis distance measure. Three results for SNA-GM-ICM ran with a schedule of

β = {0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75}. Note that virtually all highlights and dark regions

have been subsumed into the surrounding regions by the new distance measure which is

also the case for vector angle. Results are also shading invariant. Note that some chromatic

regions are merged because they are connected via a dark region.
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Vector Angle

Original image SNA-ICM, β = 0.15 SNA-ICM, β = 0.01

Highlight Invariant Same Class Hypothesis Distance Measure

SNA-GM-ICM SNA-GM-ICM

Figure 6.16: Results on the pooh image using the HI-SCH distance measure. Three results

for SNA-GM-ICM ran with a schedule of β = {0.05, 0.1, 0.2, . . . , 2.8, 2.9}. Note that the

large highlight on the forehead of Pooh has not been subsumed into the region color

regions in the vector angle result on the left. In the second vector angle result, the Pooh

object merges with the background. The probabilistic distance measure does not have any

problems with the highlight; however, since texture is present in the image, this leads to

flawed image segmentation results.
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Chapter 7

Pixel Grouping: Prototype-Based

Methods

Many results in Chapter 5 are encouraging for reducing the computational burden of

Simulated Annealing or Iterated Conditional Modes. We will now address a very different

problem: clustering pixels with contextual constraints. In prototype- or clustering-based

methods, computation is performed on single pixels without taking into consideration

spatial information. These methods are usually set up to minimize the mean squared error

of fitting the data to the prototypes [35]. This is usually done using vector quantization

(VQ). VQ has many forms and depending on the end application different algorithms have

been developed. Some of the better known are the k-means and its many variants [35],

mixture of principal components algorithms (a vector angle-based variant of k-means) [34]

(vector angle is used as similarity criterion instead of Euclidean distance), and mixture

of Gaussians [35], all detailed in Section 3.2. The primary drawback of these techniques

is their inability to take into account local context to avoid the formation of many small

extraneous regions. Furthermore, one has to usually specify the number of classes/labels

K to be used in the processing.

On the other hand, the primary drawback of region growing methods [59, 92, 137] is that

they are strictly local, pixel-neighbor models and suffer from the region-to-region spilling

problem: two vastly differently colored pixels may be grouped into a single region if they

are linked by noisy or intermediately-colored pixels (see detailed treatment in Sections 3.3

181
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Algorithm 9 A Vector Angle-Based Region Growing Algorithm Using Region Prototypes

1: Select seed pixels within the image.

2: for Each seed pixel do

3: Set the region prototype wk to be the seed pixel;

4: Compute (4.12) between the region prototype and the candidate pixel;

5: Compute (4.12) between the candidate and its nearest neighbor in the region;

6: Include the candidate pixel if both similarity measures are higher than

experimentally-set thresholds;

7: Update the region prototype by calculating the new principal component;

8: end for

and 5.3.7).

In this chapter, we develop prototype-based algorithms based on region growing and

Markov Random Field-based methodologies. First, we will describe a region growing model

for color image segmentation based on earlier work on grayscale images [147]. Next, a

prototype-based MRF model will be described with some similarity to [107]. The chapter

will conclude with results based on both methods.

7.1 Prototype-Based Region Growing

A new region growing algorithm1 is proposed in this section based on the vector angle color

similarity measure and the use of the principal component of the covariance matrix as the

“characteristic” color of the region with the goal of a region-based segmentation which is

perceptually-based. Our method is described in Algorithm 9.

The proposed region growing method is based on two criteria:

1. A distance threshold which ensures that adjacent pixels are similar. The distance

measure used to test against this threshold could be encoded by the Euclidean dis-

tance (4.10) or any other distance measure. We propose to use the vector angle

(4.12).

1A preliminary treatment of this approach was given in [151, 154].
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2. A measure for the spread of the pixel values within a region. For grayscale images

in the original paper [147], this criterion measures the spread between the minimum

and maximum pixel values in a region; namely, maxi∈Vr
xi − mini∈Vr

xi, where xi

represents the gray value of pixel i in region Vr. When the transition is made to a

multidimensional pixel computing this difference becomes very expensive since we

need to find the maximal difference between two vectors in an non-ordered set. The

complexity of this operation is O(|Vr|2) which becomes computationally very expen-

sive for regions with many pixels. Therefore, to limit the computational complexity

the second criterion is based on the distance from the region prototype to the candi-

date pixel; i.e., maxi∈Vr
(wr − xi). This distance gives an indication of how close the

candidate pixel is to the prototype representing the region. This criterion minimizes

the mean squared error of fitting each prototype to the region’s pixels.

The two region definition criteria are similar to those proposed in [146, 147]. Wang

and Bhattacharya [147] gave a new definition of a connected component of a gray image

which depends on two parameters: one based on the differences of the gray values of the

neighboring pixels and the other based on the maximum difference between the gray values

of the pixels in a region. Wang et al. [146] presents a region growing method based on

[147] in which each region is defined by two values: the color gradient (calculated using

the Euclidean distance) between two adjacent pixels and the maximum distance between

two colors within this region.

Algorithm 9 presents several advantages over other region growing color image segmen-

tation algorithms:

1. It is based on the concept of vector angle. As was shown in the case of MPC [148, 149],

the vector angle is a shading-invariant color similarity measure, implying that inten-

sity variations will be discounted in the region growing process, which is clearly not

the case when using the Euclidean distance or the color spaces in [146] (the chro-

maticity planes u and v provide illumination independent information; however, they

are used in conjunction with the XY Z color space which is illumination sensitive).

2. Since spatial information is taken into account, regions having a slightly different

color, but still spatially distinct, should appear as separate regions due to the region
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growing process. Furthermore, instead of computing the region prototype using the

vector mean, we use the first principal component of the covariance of the data in

the region thus computing the “mean” direction of the pixels in the region.

3. A final difference concerns the seed point generation. Clearly a significant disadvan-

tage of this approach to color image segmentation is the need for seed pixels, and

careful consideration needs to be given to the selection of those pixels. In [146], a

complex neural network-based approach is used to determine seed pixels. Alternative

approaches include finding those pixels in the color image with the greatest intensity

globally, finding points with maximum local intensity or to use the MPC algorithm

to select the seeds based on the clustering result. In our algorithm, the seed points

are found by determining the local maximum intensity using the standard second

derivative test from calculus.

Although the sensitivity to the sequence of included pixels is mitigated in Algorithm 9

through the use of region prototypes, this algorithm is still sensitive to initial seeds simi-

larly to other region growing methods. This is a major impediment to obtaining reliable

results as with different initial conditions, different results will be obtained. One way to

lessen considerably the reliance of an algorithm on initial conditions is to provide a prob-

abilistic framework such as Markov Random Fields. This is the topic of the next section.

Segmentation results using Algorithm 9 are presented at the end of the chapter.

7.2 Adaptive MRF-Based Clustering

We propose to combine clustering with contextual constraints under a Gibbs/Markov Ran-

dom Field modelling framework in order to apply clustering within the spatial context [107]

(see Section 3.4.2 for details of past work). Therefore, we intend to find the segmented

image directly as the result of energy minimization of some appropriately-defined Gibbs

random field.

In [150], the authors describe a principal component analysis and vector angle

clustering-based approach for color image segmentation. In this method, the prototype

vector is described as the principal vector (as opposed to principal curve) of the RGB
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color cluster and the calculation of the distance from this “cluster center” to a pixel in the

image is done using the vector angle. The number of clusters is selected and the algorithm

chooses the optimal (in the mean squared error-sense) multi-vector fit to the data [34].

The illumination invariances are well captured by this method, however there are several

drawbacks:

1. For small (black) RGB values the algorithm breaks down and produces extremely

noisy angles.

2. All colors must fit into a predetermined number of clusters.

3. Border areas composed of composite colors are classified arbitrarily.

The most notable drawback of color clustering methods [89, 111, 134, 148] is that they

normally do not take any spatial relationships into account, and determine the segmen-

tation strictly on a pixel-by-pixel basis, normally using the Euclidean distance. We will

demonstrate for the problems of our interest, specifically the segmentation of images in-

volving illumination effects, some degree of spatial dependence is crucial in formulating an

adequate approach. The ability for Markov/Gibbs methods to model spatial dependencies

will make them a very natural fit to our context2.

7.2.1 Model Definition

We will formulate a color image processing and segmentation technique in the context of

the Dichromatic Reflection Model [123, 145], which was introduced in Section 4.2. In this

context, highlight and shading invariant color image segmentation means the finding of

regions, homogenous in color, irrespective of illumination effects.

We will use the Potts model (5.10) which we reproduce here for ease of reference:

U(ℓ) =
∑

i,i′

[

αΦ(xi, xi′)δli,li′
+ β(1 − δli,li′

)
]

(7.1)

where α and β control the relative constraints on the homogeneity of a single region,

and the degree of region fragmentation, respectively. Model (7.1) is intuitive and easily

implemented.

2A preliminary treatment of this approach was given in [40, 152].
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The primary drawback of (7.1) is that it is strictly a local, pixel-neighbor model and

suffers from the same problems as other region-growing approaches: two very differently col-

ored pixels may be grouped into a single region if they are linked by noisy or intermediately-

colored pixels. A second undesired effect is that K constrains only the number of region

labels, not the number of regions; that is, in regions of noise or color-gradients, (7.1) can

generate a proliferation of small regions. Finally, the label criterion, controlled by β, mea-

sures boundary length, rather than region volume (see detailed discussion of the limitations

of Gibbs sampling in Section 5.1 on page 75).

An alternative approach using a global MRF model would overcome the region growing

drawbacks. Pappas [107] introduced the adaptive k-means algorithm where an MRF-based

refining strategy on the clustering result is done with model (3.5). Using this model allows

the MRF energy to include a term penalizing the distance between a pixel and its associated

prototype. In this thesis, this idea is further extended to allow the prototypes to be based

on quantities related to the distance measures used between the pixel and the prototype,

as well as to use continuous Gibbs sampling to obtain the prototypes themselves.

If we associate with a pixel i label li (or li,j for pixel (i, j)) and a prototype vector {wk}
for a region labelled k from a set L = {1, . . . , K} (i.e., li corresponds to k for each pixel i)

then each region is forced to be well defined:

U [{li, wli
)}] =

∑

i,i′

[

Φ(xi′ , wli
) + β(1 − δli,li′

)
]

. (7.2)

Note that wk ≡ wli
. Model (7.2) is a tradeoff between a completely local region growing

approach, where many spurious regions can be created, and a global clustering approach

where regions with differing features (such as color) can be inadvertently merged. It uses

vector angle (4.12) as the distance measure Φ.

7.2.2 Color Segmentation

Model (7.1) misses one essential point: not all of the vector angles are computed with the

same accuracy. Even a small amount of pixel noise on a dark or highlight region results in

nearly random vector angles, which (7.1) would choose to separate into single-pixel regions.

Therefore, in regions where the vector-angle criterion is vague (that is, in saturated or dark
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regions), a large number of pixels may have to be flipped to see any change in the energy,

implying that only the slowest of annealing schedules will successfully converge.

Given the covariance of the vector angle difference, computed by analytic or Monte-

Carlo means [40], we introduce weights

ui,i′ =
1

var(ΦV (x̃i, x̃i′))
(7.3)

where x̃i represents the pixels in the highlight invariant space, to assert the degree of

confidence of the terms in the energy (7.1):

U(ℓ) =
∑

i,i′

[

ui,i′Φ(xi, xi′) + β(1 − δli,li′
)
]

(7.4)

Model (7.4) is a very credible segmentation criterion, representing a considerable advance

beyond standard vector-angle methods, and yet (7.4) has the same drawbacks as (7.1).

The degree to which the region color is to be asserted at each pixel should be spatially-

varying, now for two reasons:

1. The color-dependent effect of noise, particularly for dark and highlight pixels.

2. We are normally not interested in pixels in regions of high color gradient; at the very

least, these pixels should not unduly influence the Gibbs energy by being inconsistent

with the region color wk.

If we let

ui,i′ = min

{

1

var(ΦV (x̃i, x̃i′))

1

varN (ΦV (x̃i, x̃i′))

}

, (7.5)

we obtain a highlight invariant pixel reliability measure. Note that the variances are

the pointwise one, based on a noise model, and a spatial one, computed over a local

neighborhood N , then our segmentation model (7.2) becomes

U [{li, wli
}] =

∑

i,i′

[

ui,i′Φ(w̃li
, x̃i) + β(1 − δli,li′

)
]

(7.6)

This gives us a concise and coherent representation of the color image segmentation problem

by incorporating both local and global constraints. The global constraints are defined by

global color region labels obtained through some vector quantization process as in [150].

Local constraints are included by virtue of using pixel level constraints in the MRF model.
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7.2.3 Calculating the Region Prototypes

Two different methods can be used to determine the region prototypes {wk}. As in previous

algorithms [107], the region’s prototype can be computed as the mean of the pixels or nodes

in the region. For the algorithm presented here, this would mean computing the first

principal component of the covariance matrix of the region pixels as this is done in MPC

[34, 150]. The initial region prototypes would be initialized using the vector quantization

output such as that obtained from the MPC.

The other option would be to obtain the region prototypes by sampling the distribu-

tion of all pixels within the region. Ideally, {wk} would be found using continuous Gibbs

Sampling. The sampling and annealing for clustering-based methods takes place not only

over label indices {l(i, j)}, but also over the continuous valued region prototypes {wli
}.

However, due to the computational intractability of finding the optimal {wli
} in IRd, we

need to transform this continuous optimization problem into a discrete optimization prob-

lem by quantizing the possible values of {wli
}. Note that the initial region prototypes

would be assigned randomly (for faster processing they could be assigned through a vector

quantization step [107]).

Recall that the Gibbs distribution for continuous values is written as:

P (ℓ) = e−U(ℓ)/T /Z (7.7)

where U(ℓ) is the energy being minimized, and the partition function Z is defined as

Z =

∫

e−U(ℓ)/T dℓ. (7.8)

As with other Gibbs sampling approaches we do not need to calculate Z, as we limit

ourselves to computing the marginal conditional probability at each pixel.

Since the conditional marginal distributions are continuous, we obtain {wk} by quan-

tizing the solution space and obtaining the marginal distribution by using (2.11) (see

Section 2.4 on page 21). Thus given marginal distributions and quantization of {wk}, the

probabilities (7.7) can be calculated. Drawing samples from the conditional marginal distri-

bution of the Gibbs distribution implements the continuous Gibbs sampler. Algorithm 10

describes the prototype-based MRF method.
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Algorithm 10 Prototype-Based MRF-Based Image Segmentation Algorithm

1: All pixel labels are randomly initialized

2: Region prototypes {wli
} are initialized to some vector quantized values (either k-means

or Mixture of Principal Components depending on the distance measure used)

3: for Iterations i do

4: for Each pixel in the image do

5: Minimize the energy in model (7.2) or (7.6) by sampling labels using the discrete

Gibbs sampler [48]

6: Sample from the conditional Gibbs distribution of the region pixels

7: end for

8: Lower the temperature T

9: end for

Applying simulated annealing to the usual 256 quantization levels present in grayscale

images and even more so to 2563 levels in RGB images is computationally prohibitive.

Therefore, the region color associated with a particular label is obtained by drawing a

sample from the distribution representing all the pixels that have this label. In practice, a

color space could be further quantized and only coarse region features would then be used

as prototypes. However, this would also take a considerable computational effort. Our

practical implementation would only require that potential color regions be sampled from

pixel vectors associated with that region label. Although this does not allow the use of

intermediate or interpolated pixel values for the regions, in practice this is not necessary

as we are trying to identify regions homogenous with respect to a particular feature with

as many clusters as is necessary.

7.3 Results

7.3.1 Region Growing

Results were obtained on the fruits image shown in Figure 7.1(a). The black area represents

the lack of regions since there were no seed pixels there and no regions were able to grow

into those areas. Eight regions were found in Figure 7.1(b). The results clearly show that



190 Stochastic Nested Aggregation for Images and Random Fields

most of the highlights have been subsumed into their respective surfaces. However, some

highlights still do remain. There are two possible causes for this:

1. Parameters of the algorithm could be further adjusted.

2. The highlight areas are saturated with the illumination color.

The algorithm was run with an angle tolerance of 1 on both distance measures (i.e.,

prototype-to-pixel and pixel-to-pixel). Experimentation showed that a higher tolerance

would subsume more of the highlight areas but also would cause regions to merge which

are different in color (e.g., the two fruit regions near the bottom of the image merged to a

greater extent). The number of classes was fixed for MPC [150] and therefore all non-black

pixels had to be classified as one of the regions whereas in the region growing approach

only pixels satisfying aggregation criteria were included in the final partition.

A small number of pixels in the fruits image is fully saturated which results in several

pixels corresponding to the zero vector due to the highlight invariance transformation (see

Section 6.6). When too much light reaches the camera sensor, saturation of the image

pixels with illumination light occurs. Vector angle (4.12) (see page 68) is undefined for

the zero vector which explains why there are small “holes” in the regions corresponding

to the location of the saturated highlights. This shows a fundamental inadequacy of the

region growing paradigm. A stochastic approach such as Markov Random Fields is a much

more appropriate framework for dealing with the results of between pixel vector angle

computations (see Chapter 5 for details).

7.3.2 MRF Modelling

To make a comparison as straightforward as possible, all MRF results were initialized from

a random start, although in practice initializing from an MPC or another segmentation

result could accelerate convergence. For models (7.6) and (7.2) the label prototypes wk are

determined using the algorithm presented in [150].

Results were obtained on an artificial image of colored bands, shown in Figure 7.2(a).

The artificial image varies in intensity horizontally (i.e., from left to right and a saturated

highlight is present near the right border). Some additive uniform uniformly distributed

noise was added to this image.
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(a) (b)

(c)

Figure 7.1: Results for prototype-based region growing algorithm: (a) original image, (b)

region growing result and (c) seeds determined using the local maximum intensity [151].
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The MPC result on the artificial image is shown in Figure 7.2(b). The highlight part

is clearly a mixture of the three other segmentation classes due to having a nearly zero

vector representation in the R′G′B′ space, and the absence of spatial constraints prevents

the ambiguity from being corrected. For the MRF models, the results in Figure 7.3(a) and

Figure 7.3(b) clearly illustrate the problems of boundary length discussed in Section 5.1,

because of the lack of region-defining constraints such as a prototype region vector, bound-

ary length or area size constraints. It is interesting to note that under careful examination,

regions generated on both sides of the border between each color band pair are not part

of the same class. Figure 7.3(c) demonstrates the type of result that is obtained using

(7.2). As desired, no highlight parts remain as these areas have been subsumed into their

adjacent regions.

The free parameter β clearly controls the significance of the color-angle dot product in

relation to the spatial label contribution in the energy term; clearly in the limit of a small

value of β, the MRF result converges to that of MPC. Figure 7.3(d) shows the results for

the same color bands, but now the vector angle calculation is weighted in terms of the

accuracy to which the angle can be determined (which is affected by darkness or degree

of highlight), as in (7.6). The main difference between models (7.2) and (7.6) seems to be

the faster speed of convergence of the latter over the former.

Similar results are obtained for the adaptive prototype case and are shown in panels

(e) and (f) in Figure 7.3. The main difference between these results and the previous ones

was that the adaptive models were initialized using a random set of prototypes whereas

the fixed adaptive models were initialized using the results of the Mixture of Principal

Components algorithm. The adaptive models ran for approximately the same number of

iterations on average as the fixed models. However, each iteration (i.e., cycle through

all points in the image) was considerably more computationally intensive in the adaptive

model case.

7.4 Conclusions

A new framework for adaptive color image segmentation using Markov Random Fields

and continuous Gibbs sampling has been presented. The new method presents several
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(a) (b)

Figure 7.2: Color band image: (a) Original, (b) MPC segmentation.

No Prototypes

(a) Model (7.1) (b) Model (7.4)

Fixed Prototypes

(c) Model (7.2) (d) Model (7.6)

Adaptive Prototypes

(e) Model (7.2) (e) Model (7.6)

Figure 7.3: Results of prototype-based MRF models on color band image.
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advantages: adaptability of global constraints (region colors) to the data, sampling over

both region labels and region colors using the Gibbs sampler (both discrete and continuous),

optimization of local contextual constraints (taking into account local features) with a

global energy function (making sure that regions are optimally segmented with respect to

each other). MRFs provide a flexible framework optimizes adaptively and globally local

constraints.



Chapter 8

Pixel Comparison: Phase

Unwrapping

The chapter details an original image segmentation-based contribution to the generation

of highly accurate digital elevation maps through processing of interferometric Synthetic

Aperture Radar (SAR) images. In the past four decades the processing of SAR images

has been used extensively for terrain mapping and other remote sensing applications [16,

117]. Operating at microwave frequencies, SAR systems produce images based on the

electromagnetic and geometrical properties of a surface in almost all weather conditions.

By providing its own illumination, a synthetic aperture radar can be used regardless of

the time of day. Thus, SAR data by themselves or together with data from other remote

sensing instruments are increasingly applied to geophysical problems [117] such as polar

ice research, biomass measurements, land use mapping, vegetation mapping, ocean wind

estimation and soil moisture mapping.

A conventional SAR only measures the location of a target in a two-dimensional coor-

dinate system, with one axis along the flight track or along-track direction and the other

axis defined as the range from the SAR to the target otherwise known as the cross-track

direction. In a SAR image, the target locations are distorted relative to a planimetric

view which may lead to the incorrect interpretation of the imagery for many applications.

Acquiring a SAR image is inherently a coherent process where a phase and amplitude of

the radar signal correspond to an image pixel. The complex vector sum of radar echoes

195
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from each scattering element (corresponding to a resolution cell on the ground) determines

the phase of an image pixel based on the two-way range to the satellite which will vary by

several hundred wavelengths across a resolution cell [82]. Thus, by itself, the phase of an

image pixel appears random.

Interferometric SAR or inSAR data is fundamentally different from SAR data as it is

based on two SAR images such that given a repeat acquisition, a correlation between the

phases of corresponding image pixels exists. There are two possibilities: either the repeat

acquisition is made at the same time with two sensors in space (resulting in images with

the same orbital geometry and constant ground scattering characteristics) which is the case

for ERS-1/2 [57] or the acquisition is made using the same radar at two different times

(resulting in images having parallel spatially separated orbits and most likely different

ground scattering characteristics), for example RADARSAT [56, 108]. For the first case,

phase values are correlated and the phase shift corresponds to the difference in range. In

the second case, the time difference in acquiring the images causes a loss of coherence which

makes the images more difficult to process [100].

The phase shift at the scale of the overall image corresponds to an interference pattern

which is a function of both orbital geometry and surface topography. Knowing the orbital

geometry, it is then possible to infer the surface topography [117]. Therefore, the basic

idea behind SAR interferometry is that three dimensional data can be extracted from

the interferometric pattern based on the complex SAR image pair. This leads to much

more accurate digital elevation models with such applications as cartography and change

detection which is very useful for studying earthquakes and other tectonic movements of

the Earth which is possible when both the orbital geometry and surface topography are

known. The quality of correlation between two SAR acquisitions can also be determined

and is known as the coherence. Coherence indicates how much correlation there is in the

phase data. For example, coherence is low for areas where the phase changes abruptly

such as significant changes in elevation. The phase plane gives us the modulo 2π phase

information (i.e., the range is [0, 2π]) while the coherence is a measure of the reliability of

the phase value (given in the [0, 1] range).

InSAR involves the derivation of topographic information from the radar phase which

can then be used for digital elevation model (DEM) generation [16]. Elevation is pro-
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portional to the full phase, whereas the measured phase is modulo 2π, necessitating a

well-defined process to recover the full phase values via fringe-counting or phase unwrap-

ping. The relationship between the measured and full phases is given by

φi = Pi + 2kiπ (8.1)

where φi is the full phase and Pi is the measured phase at pixel i. The main problem resides

in finding the integer ki in order to reconstruct the original phase φi. If phase measurements

are noise-free, this can be easily done as long as there is no steep topography. However,

decorrelation noise, atmospheric distortions and size of the collected images make actual

measurements more challenging to process [117]. The main unwrapping problems occur in

noisy areas or in areas of high elevation where the phase is compressed into narrow bands

and cannot be easily unwrapped. In general, phase unwrapping is a very difficult inverse

problem as we cannot make any prior assumptions about image location (other than that

a transition occurs between the modulo 2π measured phases) since we could be measuring

any part of the Earth. Even if we knew exactly the position, the topography of the land

might have changed due to tectonic movements and therefore we cannot condition our

results based on prior measurements.

Figure 8.1 shows a typical measured phase and coherence signal. Observe that the

phase image has bands of pixels with well delineated borders in most areas. Since the

phase is measured modulo 2π, the point at which there is a sharp edge between two phase

values corresponds to the transition between two fringes. Given the prominence of edges

between measured phases, the separation of these phase bands could be done using an

image segmentation algorithm [162].

In this chapter, we will adopt an image processing framework based on Stochastic

Nested Aggregation (SNA) and the Potts model developed in Chapter 5 in order to solve the

phase unwrapping problem. In phase unwrapping, phase discontinuities are very prominent

with respect to all other pixel-to-pixel transitions and can be easily modelled as edges.

The Potts model is a natural choice to model those discontinuities since its most basic

form is based on pixel differences and not region characteristics. Once the phase image is

segmented, the relative topographic ordering between regions can be computed in order

to find the k integers that are required to reconstruct the original phase. In addition to
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Figure 8.1: An inSAR image pair showing Mt. Vesuvius: original phase image (left), and

original coherence image (right). the phase image shows bands with phase values between

0 (dark pixels) and 2π (light pixels). The coherence image shows which phase values can

be trusted (light pixels) and which are uncertain (dark pixels).

using the cost function of [17], we also develop an approximate cost function to drive the

segmentation and evaluate its performance.

This chapter is organized in the following manner. Section 8.1 presents an overview of

current and past methods for phase unwrapping. Section 8.2 reviews hierarchical models

which were used for the processing of inSAR images. Section 8.3 summarizes a probabilistic

cost function with a non-linear relationship between phase and coherence which was used

in a network flow paradigm [17]. Section 8.4 describes the new phase unwrapping model.

Section 8.5 summarizes the principal results obtained using the cost function of [16] and

the new cost function. The final section concludes the chapter.

8.1 Literature Review

There are two main approaches to phase unwrapping. The first class of algorithms is based

on the integration with branch cuts approach initially developed by Goldstein et al. [53].

A second class of algorithms is based on a least-squares (LS) fitting of the unwrapped
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solution to the gradients of the wrapped phase [51]. We will also review approaches based

on network flow and image segmentation separate from branch cuts given their current

significance. For a comprehensive summary of various approaches see [52, 117].

8.1.1 Path Integral Methods: Branch Cuts

One approach to phase unwrapping would be to calculate the first differences of the phase

at each image point in the vertical and horizontal directions as an approximation to the

derivative. The result can then be integrated. By directly applying this approach local

errors due to phase noise are propagated across the full SAR image [53]. To mitigate the

propagation of error, many branch-cut algorithms unwrap the phase via paths that lead

to self-consistent solutions thus trying to isolate error sources prior to integration [53].

The first step is to calculate the phase differences in order to map them into the interval

[−π, π). The assumption is that the true unwrapped phase does not change by more than

2π between adjacent pixels. Unwrapping errors occur due to inconsistencies introduced

when this assumption is violated (e.g., because of statistical variations or abrupt shifts in

the true phase).

In the error-free case, the integral of the differenced phase should be zero since the

solution should be independent of the path of integration (note that the integration is

done about a closed path formed by four mutually neighboring set of pixels). Therefore,

nonzero results indicate phase inconsistencies. These points are called residues and are

assigned positive or negative charges depending on the sign of the sum (by convention

summing is done in a clockwise manner). Integration results in the sum of the enclosed

residues. Consequently, non-zero residues must be avoided by connecting, for example,

residues with opposite charges through branch cuts that the path of integration cannot

intersect [52].

An interferogram may have a slight net charge which can be mitigated with a connection

to the border of the interferogram. Once branch cuts have been selected, integrating the

differenced phase (given that paths of integration do not cross branch cuts) finishes the

phase unwrapping.

The key characteristic of branch cut algorithms is how the selection of branch cuts is

achieved [117]. In most cases, the number of residues is very high making the evaluation



200 Stochastic Nested Aggregation for Images and Random Fields

of the totality of possible solutions a computationally impossible task. Thus, heuristic

methods have usually been adopted for branch cut selection algorithms in order to limit

the search space [52, 53].

8.1.2 Path Integral Methods: Network Flow

Network flow is used to convert the phase unwrapping problem into a discrete optimization

problem where the global cost of loop integrals is being minimized [16, 17, 23, 29, 30, 36].

The network flow problem is defined as a set of nodes, a set of arcs connecting the nodes,

a supply-demand function on each node and cost functions associated with each node [17].

Two conditions must be satisfied: the sum of all flow supplies and demands must be zero

and at each node the total outgoing flow must be the same as the total incoming flow plus

the flow generation within the node. The flow on each arc represents the residual (i.e., the

number of 2π multiples between the wrapped and unwrapped phase gradients) and is the

quantity that we would like to discover.

Residuals are defined as [30]:

kq =
1

2π
(φi − φi′ − (Pi − Pi′)) (8.2)

where q is an arc between nodes i and i′. Then the phase unwrapping problem is given by

min
∑

q

cq|kq| (8.3)

where cq represents the nonnegative confidence weights on the residuals. The residue loop

integrals are set up using a 2 × 2 window. Therefore given pixels a, b, c and d (with a, b

in the top row and c, d in the bottom row of the 2× 2 matrix), we have the following loop

integral constraint: kab+kbc−kcd−kda = 1
2π

(Pab + Pbc − Pcd − Pda). Now if we assume that

x+
q = max(0, kq) and x−

q = max(0,−kq) where x+
q ≥ 0 and x−

q ≥ 0, then we can rewrite

the problem as a minimum cost network flow by using kq = x+
q − x−

q and |kq| = x+
q + x−

q .

The residues are given by applying the difference operator to a phase image while c±q are

given by a cost function (see Section 8.3).

The network flow mechanism works very well and methods differ by how they calculate

the cost function [16, 23, 29, 30, 36]. Our method is similar to network flow in that a global
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energy is being minimized locally. The difference between the methods is that we need not

unwrap the whole image in one step, rather, using nested aggregation the unwrapping can

be done gradually in a hierarchy of image segmentations.

8.1.3 Path Integral Methods: Image Segmentation

In the image segmentation domain, a region growing approach was used for phase un-

wrapping [162]. Their algorithm unwraps the phase by using phase information from

neighboring pixels to predict the correct phase of each new pixel to be unwrapped. In

addition, they apply a reliability criterion to verify each unwrapping attempt. In order

to unwrap the phase via the most robust path, this criterion is slowly relaxed. Finally,

regions are sometimes allowed to be merged as they grow into one another.

However, region growing methods as detailed in Section 3.3 are highly dependent on

initial conditions and the sequence of pixels merged into the respective regions. Therefore,

it is difficult to assess their performance since results could be widely different based on

the implementation used.

8.1.4 Least Squares

The least squares-based methods provide an alternate set of phase unwrapping approach.

These algorithms minimize the difference between the gradients of the solution and the

wrapped phase in an LS sense [51]. The LS problem may be formulated as the solution of

a linear set of equations. However, for typical image dimensions, the matrix is too large to

obtain a solution by direct matrix inversion. A computationally fast and efficient solution,

however, can be obtained using a fast Fourier transform (FFT) [51]. The unweighed LS

solution is sensitive to inconsistencies in the wrapped phase (i.e., residues), leading to

significant errors in the unwrapped phase. A potentially more robust approach is to use a

weighted LS solution. In this case, an iterative computational scheme (based on the FFT

algorithm) is necessary to solve the linear set of equations, leading to significant increases

in computation time.

Strand et al. improve on the weighted LS solution using a block least-squares (BLS)

method [126]. This approach tessellates the input image into small square blocks with only
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one phase wrap. These blocks are then unwrapped and merged together. By specifying a

suitable mask, objects of any shape can be processed. The BLS method is shown to be

superior quantitatively and qualitatively on synthetic images with different noise levels.

8.1.5 Discussion

There are significant differences between least squares and branch cut algorithms. Branch

cut algorithms usually isolate high residue density areas from low ones resulting in holes in

the unwrapped solution. Errors in a branch cut solution are localized and always integer

multiples of 2π with a result consisting of two types of regions: correctly unwrapped

regions and regions with an error that is an integer multiple of 2π. On the other hand,

LS algorithms produce continuous solutions even where the phase noise is high potentially

introducing large-scale errors since errors are continuous and distributed over the entire

solution.

Phase unwrapping using path integration is a well established method which has been

applied to a large volume of interferometric data [17, 23]. On the other hand, unweighed

LS algorithms are not sufficiently robust for most practical applications [117]. Weighted LS

can yield improved results; however, these results are highly weights-dependent. Selecting

weighing coefficients is a problem of similar complexity to that of choosing branch cuts

[117].

Given the relative success of path integral methods, we will purse this strategy us-

ing the stochastic nested aggregation framework. A Markov Random Field approach is

applicable in this case given that the Potts model is ideally suited to tackle the phase un-

wrapping segmentation problem. This is because the Potts energy in its most basic form

(see Section 2.5 on page 21) models edge discontinuities and not region characteristics.

In phase unwrapping, phase discontinuities are very prominent with respect to all other

pixel-to-pixel transitions and can be easily modelled as edges.

8.2 Hierarchical Methods for Phase Unwrapping

To find a phase unwrapping solution often entails a substantial computational effort. It is

not unusual to have to process very large images (e.g., in excess of 107 pixels) which makes



Pixel Comparison: Phase Unwrapping 203

the problem very challenging. To speed up phase unwrapping, hierarchical methods can

be used. For example, Carballo and Fieguth [16, 17] developed a hierarchical network flow

method based on a divide-and-conquer approach (which could also be easily adapted to

other algorithms such as those for image segmentation and branch cuts). This bottom-up

irregular hierarchy-based method has been described earlier in Section 3.5.3.

In summary, the first step subdivides the image into smaller phase unwrapping subprob-

lems (e.g., 100×100 pixel blocks) which are then combined in the second step. Second, the

combination step itself can be interpreted as an unwrapping problem, to which they apply

a modified network flow solution. This formulation allows images of virtually unlimited

size to be unwrapped leading to decreases in the algorithm execution time and memory

requirements. This method is considerably slower than our proposed approach due to the

initial subdivision of the image into large blocks. In stochastic nested aggregation, we can

choose to create initially very small regions (e.g., two pixels in size). This allows us to pro-

ceed to segment regions in a geometric fashion achieving O(N) computational complexity

which is much faster than most other phase unwrapping methods and just as fast as graph

cuts.

Another hierarchical approach involves using the multigrid algorithm [55] in a least

squares formulation [43, 113]. One algorithm carries out phase unwrapping using the

weighted least squares method optimized using multigrid Gauss-Seidel relaxation [113].

By transferring the problem to ever coarser grids, the multigrid algorithm relies on trans-

forming the low frequency components of the errors into high frequency components in

order to remove them. Fornaro et al. devised a finite element method using an efficient

multigrid implementation [43]. The technique produces a least squares solution in the

time domain introducing weighting functions without increasing computational require-

ments. The computational speed is the main advantage of the multigrid-based techniques;

however, least squares methods produce undesirable large-scale errors. Our method, being

based on image segmentation introduces errors based on region-to-region spilling which

produces localized errors where the result consists of correctly unwrapped regions and re-

gions with an integer multiple of 2π error. Therefore, in contrast to least squares methods

where there is always some error present, our method should produce results in most areas

with zero error.
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8.3 Review of Phase Unwrapping Cost Functions

Several models or cost functions have been used in phase unwrapping [17, 29, 117]. The

simplest model is a function of phase discontinuities [29]. The distance measure between

two adjacent pixels would then be summarized by

Φp(φi, φj) = φi − φj (8.4)

where i ∈ Nj and j ∈ Ni for all i and j. However, in inSAR phase unwrapping where

the coherence map is also available, it is advisable to update the model to include some

measure of confidence in (or the cost of) phase measurements.

Costantini later used the coherence values as weights for the phase differences [30].

Ghiglia and Pritt thresholded the phase slope variance map to obtain a cost function [52].

Eineder et al. obtained a binary cost map by thresholding the amplitude, charge density

and flatness [36]. Chen and Zebker thresholded each of the coherence map and the edge

detection map of the interferogram magnitude to decide which phase differences to trust

[23]. Note that all of these methods are ad-hoc.

Carballo and Fieguth formulate the phase-unwrapping problem as a maximum likeli-

hood (ML) estimation based on phase statistics [16]. They estimate the probability of

phase discontinuities based on coherence and topographic slope. Specifically, they base

their derivation on the probability density function for single-look and multi-look inter-

ferometric phase distributions. Their cost function is based on the probability of a zero

residual whose values are shown in Figure 8.2 (they also require the probabilities of “+1”

and “-1” residuals). Since this is the most rigorous specification of a relationship between

phase differences and the corresponding coherence, we will later use it in our Potts model

in order to segment SAR interferograms.

8.4 Phase Unwrapping Using the Potts Model

Phase unwrapping can be formulated as an image segmentation on the interferogram due

to the ease of modelling edge discontinuities using the Potts model. The individual phase

regions (corresponding to the ki integers) will be individually grown from the finest level
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Figure 8.2: Phase unwrapping cost functions: p(0) is the probability of a zero residual as

given by [16]. The horizontal axis represents the coherence values while the vertical axis

indicates the phase differences in the [−π, π] range. An absolute difference in phase of

more than π is automatically considered to be a phase discontinuity.

(pixels) to the coarsest (segmented image) through a hierarchy of intermediary regions. At

the finest levels, we will merge together only the phases which have little or no difference

between them (i.e., at least |Pi − Pi′ | < π) modulated by the confidence we have in those

phases based on the coherence signal. We will use the Potts model (5.11) (see page 100)

to model the segmentation process given a discontinuity measure or cost function that we

describe below.

8.4.1 New Phase Unwrapping Cost Function

Consider the probabilistic model in Figure 8.2. Observe that there is a dependence between

coherence and phase difference that is non-linear; namely, that as the phase difference in-

creases and the coherence decreases, there is a higher likelihood that there is a discontinuity.

Thus the model only merges those parts of the image which are the most reliable in order

to avoid problems with noise and jumping across phases. Our proposed model will mirror

this development.

The distance measure devised by [16] is difficult to compute. An approximation of
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the probability of zero residual might be sufficient to produce desirable phase unwrapping

results. We propose the new cost function or distance measure as

Φm(i, j) = (1 − min (Ci, Cj))
w + υΦE(φi, φj) (8.5)

where Ci is the coherence at pixel i and ΦE is the Euclidean distance between phases φi and

φj. υ is a weighing parameter such that υ < 1
2
. w is the exponent which controls the shape

of the model; we set w = 2 in most of our experiments. Figure 8.3 shows pre-computed look-

up tables for distance measure (8.5) and different values of υ and w. Note the difference

in behavior: as we increase w the function tends to accept less reliable pixels for the same

phase difference. As we vary υ, the proportion of the phase component becomes more

prominent which means that coherence will play a smaller part in determining the phase

discontinuity.

For model (8.5) with w = 2 and υ = 0.008 the range of coherence values is between

[0, 1]. The phase difference component will have a range of approximately [0, 0.05]. This

means that largely the segmentation will be dependent on the coherence. If the two pixels

are not coherent “enough,” the difference between them will be deemed large. As we

increase w we start trusting phase differences more since (1 − min (Ci, Cj))
w decreases.

The transition equations take the same forms as (5.12) and (5.13). When pixels are

aggregated into regions, the distances Φm are summed together to obtain a cumulative

phase aggregation criterion. Since this distance measure is based on four quantities (two

coherences Ci and Cj and two phases φi and φj), it is a semi-metric as the triangle inequality

does not apply (this is especially true since the metric would be different for different

coherence values).

8.4.2 Unwrapping Segmented Regions

Once image segmentation has been carried out and individual phase regions have been

identified, the phase of each of those regions needs to be unwrapped relative to its neigh-

bors. The phase should be unwrapped according to how reliable or coherent the connection

is between the adjacent regions. In other words, regions that are connected with highly

coherent edges should be unwrapped first because they exhibit the highest level of con-

fidence among the pixels in the image. The reliability of an edge is determined by first
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Figure 8.3: Plots of pre-computed look-up tables showing the probability distributions

used to compute the costs using the new phase unwrapping cost function (8.5). The left

plot shows values for phase differences (maximum magnitude of π) vs. minimum coherence

for w = 2 and υ = 0.08. For comparison, we also show a cost function with w = 10 and

υ = 0.01 on the righthand side. Note that through w and υ we can effectively control the

shape of the function and approach the optimal representation shown for p(0) in Figure 8.2.

calculating the minimum between-pixel coherence min (Ci, Cj).

The between-region coherence coefficient is then determined by summing the minimum

between-pixel coherence across regions edges by using a formulation similar to the transition

equations in Section 5.3:

B
(s+1)
r,r′ =

∑

t∈V
(s)
r

∑

t′∈V
(s)

r′

B
(s)
t,t′ (8.6)

where B
(0)
r,r′ = min (Ci, Cj). This measure of region edge reliability was chosen as it permits

the use of both short reliable edges or very long unreliable edges (in this case since the edge

is long, it is assumed that it is collectively reliable since a long edge is highly unlikely). The

edges between all regions are sorted with respect to the BRC parameter and processed in

accordance to their ranking. This process is illustrated in Figure 8.4. Notice that regions

with a highly reliable coherence are merged first creating “islands” of unwrapped phase.

As the unwrapping proceeds, these unwrapped “islands” are merged together. This process

assures the user that the phases are unwrapped only via the most reliable of paths.
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Figure 8.4: An illustration of the phase unwrapping process after the measured phase image

has been segmented. Segmented phase regions (delineated by letters of the alphabet) are

unwrapped with respect to their adjacent nodes in order of decreasing total between region

coherence (8.6) (since we want first to unwrap regions which have a very reliable edge

between them). Therefore, in the diagram the regions will be unwrapped in the following

order: IJ, CD, EF, GH, AB, (AB)(CD), (EF)(GH), K(IJ), etc.
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8.5 Results

We used the edge Potts model (5.11) in order to model the segmentation process. The

simple edge model is the ideal model for phase unwrapping as we are only interested regions

where the transitions between measured phases are high creating natural boundaries for

image segmentation whereas regions where phase differences are low are of no interest.

Here a mean Potts model would not make sense since regions between modulo 2π phase

transitions are not homogenous (by definition) with respect to the phase.

The threshold for total edge coherence (i.e., the sum of all minimum adjacent pixel

coherences for an edge of arbitrary length between two regions) was set experimentally

at 0.25. Performance evaluation is easily done for the synthetic images since a digital

elevation model (DEM) was provided in each case. We use Algorithm 11 to evaluate

the percentage of pixels hmax/N that are correctly labelled. Since the difference between

the largest correctly unwrapped region and the truth elevation might not always be zero,

an algorithm was needed to determine the largest self-consistent area that is unwrapped

correctly.

Algorithm 11 Phase Unwrapping Evaluation Algorithm

1: Consider a reference DEM, Xref , and the produced DEM, Xres;

2: Xdiff = Xref − Xres;

3: Create a histogram of the values in Xdiff ;

4: Identify the histogram bin with the highest number of elements, hmax;

We will test both models shown in Figure 8.3, as well as the cost function shown in

Figure 8.2. These tests will give us an idea of the power of image segmentation for unwrap-

ping inSAR phases. Results are obtained using the SNA-ICM algorithm (see Section 5.5

on page 125), and SNA-GM-ICM was run with two iterations at each level in order to

minimize computational cost. SNA-SA and SNA-GM-SA were also tested although re-

sults were not significantly different to warrant their presentation. Additionally, simulated

annealing-based processing was considerably more computationally expensive than using

ICM.
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8.5.1 Simulated Data Set

Figures 8.5 show a simulated measured phase image (Long’s Peak) together with a coher-

ence image based on correlation values. The image segmenter was run with Carballo’s zero

residual model [17] with β = {0.5, 0.55, . . . , 1, 1.05}. The resulting segmented images with

the corresponding DEMs and difference images against the true elevation surface data are

shown in Figures 8.6. A second test was performed with model w = 2 and υ = 0.4 where

a high value was needed for υ due to a large amount of noise in parts of the Long’s Peak

image. The corresponding β schedule was specified as {0.5, 0.6, . . . , 1.2, 1.3}. The results

for this test are shown in 8.7.

The results for Long’s Peak show a credible image segmentation and DEM reconstruc-

tion using the probability of zero residual [17]. The average error rate for a set of ten

experiments was 14% which is mostly due to region spilling (especially areas in the top left

corner and bottom right corner where very sharp transitions occur). This is worse than

Carballo et al.’s network flow result with an average error of 4% for the Long’s Peak image

[17].

However, SNA with a complexity of O(N) is able to solve the problem much faster

than network flow. Network flow can be solved with varying complexity depending on the

algorithm used. For example the Edmonds-Karp algorithm has complexity O(|V | · |E|2)
(where |V | or N is the number of nodes in the graph and |E| defines the number of edges)

and guaranteed convergence [28]. Another alternative is the Ford-Fulkerson algorithm with

a complexity of O(|E| · maxflow) which is dependent on the maximum flow value in the

graph (which could be large); in addition, it is not guaranteed to converge for non-integer

flow values [28]. SNA does not have these limitations and could be applied to network flow

in the future.

Figure 8.7 shows one result running model (8.5) with w = 2, and υ = 0.4. Error rates

are also on average of 12% (average of ten runs). Since some regions extend diagonally

through single pixel connections (see bottom right side of image), they cannot be grouped

as single regions. This is a direct consequence of using a first order neighborhood (i.e., a

four pixel neighborhood) in the model which does not allow diagonal relationships. Note

that υ = 0.4 and not υ = 0.08 as was set for the Mt. Vesuvius image (see below). If we

set υ = 0.08, results would be drastically different with little phase unwrapping done in
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Original phase

Original coherence map

Original digital elevation model

Figure 8.5: Set of simulated data for Long’s Peak, Colorado. The data were obtained

by simulating measured phases from true surface elevation data of Long’s Peak and were

obtained from [52].
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Segmentation result

Measured digital elevation model

Difference between result DEM and ideal DEM in Figure 8.5

Figure 8.6: Results on the Long’s Peak image using the probability of zero residual [16].

Note the discontinuities throughout the resulting image. These usually correspond to

mountain peaks where there are compressed phase transitions due to sharp elevation

changes. In addition, the area next to the left image border is very noisy leading to

an incorrect segmentation.
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Segmentation result

Measured digital elevation model

Difference between result DEM and ideal DEM in Figure 8.5

Figure 8.7: Results on the Long’s Peak image using model (8.5) with w = 2 and υ = 0.08.

Note that the region in the top left corner is very noisy and leads to incorrect results.
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the upper left corner of the image due to high levels of noise as shown in Figure 8.8 with

an increased error rate of 24%.

The main problem with image processing based techniques for phase unwrapping is

region spilling. Most of the region spilling occurs through single pixel connections of large

regions. While a lot of these spills can be avoided using SNA-GM-ICM and SNA-GM-SA,

some spills unfortunately cannot be avoided in the current setting. Since the mean model

is not available to us due to the non-homogeneity of each region, a more robust model will

be needed to rival network flow in terms of error rates. Errors due to image segmentation

spread very easily throughout the image with just a few mis-segmented pixels. It would

also be interesting to apply network flow to phase unwrapping problems within the SNA

framework.

8.5.2 Real Data Set

Results are presented on the Mt. Vesuvius data shown in Figure 8.1. Here the true

elevation map is not known; therefore, we cannot evaluate the results quantitatively and

must limit ourselves to a qualitative analysis. The segmentation done according to the

zero residual of [16] is presented in Figure 8.9. The segmentation appears plausible with

very few regions that are problematic (transition from light blue to deep blue in the top

left corner has a discontinuity). Other areas appear to be correctly unwrapped including

the middle bottom area.

The segmentation of Long’s Peak’s phase image would suggest that the model to be used

on other inSAR image pairs is w = 2 and υ = 0.4. However, this model caused extensive

region spilling in Mt. Vesuvius with a resulting undesirable digital elevation model. The

model chose to segment the Mt Vesuvius interferogram was w = 2 and υ = 0.08. This

lead to the visually appealing segmentation and digital elevation model in Figure 8.10.

Notice that the main problem areas are in the middle bottom area. Figures 8.11 and 8.12

are also shown in order to show how β influences the segmentation result. A lower β is

more conservative and allows less region spilling. However, this also results in many small

regions proliferating especially in areas of low coherence. A higher β allows more merging

which in some areas is excessive. In this case, very few pixels remain unassigned; however,

many areas although unwrapped show discontinuities. This is because of the region spilling
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Segmentation result

Measured digital elevation model

Difference between result DEM and ideal DEM in Figure 8.5

Figure 8.8: Results on the Long’s Peak image using model (8.5) with w = 2 and υ = 0.08.

Due to the undesirable segmentation especially in the left half of the image, results show

an elevation map with many errors.
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Segmentation result using zero residual [17] Measured digital elevation model

Figure 8.9: Results for the Mt. Vesuvius image using the probability of zero residual.

Some unwrapping was not correctly done in the upper left hand corner in a “blue” colored

transition. However, overall the segmentation and unwrapped phase are credible. The

holes in the DEM can be filled in using interpolation [17]. The SNA-GM-ICM algorithm

was run using schedule β = {0.5, 0.55, . . . , 1.0, 1.05} with on average 40 levels and 9 million

site visits.

that is much more prevalent with a higher β.

8.6 Conclusions

In this chapter, we have demonstrated that a principled, probability-based approach to

phase unwrapping is feasible without a high computational cost. The proposed approach

presents several advantages over other phase unwrapping algorithms. First, it is hierarchi-

cal and as such is able to use efficiently multiscale processing producing results in O(N)

time. Second, MRF models such as the edge Potts model are a natural choice for modelling

measured phase since measured phase through its sharp discontinuities at multiples of 2π

fits a piecewise constant function. Third, the use of a probabilistic distance measure (or
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Segmentation result using model (8.5) Measured digital elevation model

Figure 8.10: Results for the Mt. Vesuvius image using (8.5): w = 2 and υ = 0.08, β = 0.6.

Very few problems (compared to Figure 8.11 thanks to a more aggressive pixel/region merg-

ing parameter β. However, problems start appearing in other areas of the reconstructed

image (see especially reconstructed phases in the middle of the bottom of the image where

due to region spilling phases are reconstructed incorrectly).
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Segmentation result using model (8.5) Measured digital elevation model

Figure 8.11: Results for the Mt. Vesuvius image using (8.5): w = 2 and υ = 0.08, β = 0.4.

Many problem thought the reconstructed phase image (“islands” of differently colored

regions). This is due to the segmentation result which shows that most of the mountain

areas which have low coherence have not been segmented. The SNA-ICM algorithm was

run using β = 0.4 with on average 15 levels and 3.4 million site visits.
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Segmentation result using model (8.5) Measured digital elevation model

Figure 8.12: Results for the Mt. Vesuvius image using (8.5): w = 2 and υ = 0.08, β = 0.75.

β causes most pixels to aggregate and therefore few unassigned pixels remain. However,

the unwrapping has many problems such as the middle bottom area of the image as well

as parts of the top portion (transitions from light blue to deep blue).
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its approximation) allows for making principled decisions to determine which phases are

similar and which ones are not given the amount of phase difference and the confidence in

the phase embodied by the coherence. Finally, the model (8.5) is not as accurate as some

of the previously determined models [17]; however, it is much simpler to implement and

produces credible results (e.g., better performance than Carballo’s model on the synthetic

image). The shortcomings in the results compared to network flow methods could also be

attributed to the image segmentation framework used in this thesis. That is, the model

for segmentation is edge-based and dependent only on pixel-to-pixel gradients. Perhaps

a model using several pixels on each side of an edge to characterize an edge might pre-

vent much of the region spilling that occurs. Using nested aggregation on the network

flow framework should produce similar results to [17] with a considerable reduction in

computational complexity and is left as a future exercise.



Chapter 9

Conclusions

9.1 Summary

The main motivation behind this thesis was to contribute to the state of the art in pixel

similarity and pixel grouping methods. This objective was achieved by devising stochastic

nested aggregation, an original fine-to-coarse irregular hierarchy of segmentations (or graph

partitions), and designing new color semi-metrics. In summary, we made the following

thesis contributions:

1. The introduction of stochastic nested aggregation gives us an alternative option for

Gibbs sampling acceleration from graph cuts. The new method has geometrical

convergence to the stationary probability p(ℓ) with a computational complexity of

O(N) which is a considerable improvement over O(N3) (for simulated annealing).

The speed-up is more significant when homogenous regions within an image are

large thanks to the pyramidal structure of nested aggregation. In practical terms,

Gibbs sampling can be sped up by a factor of 1000-10000 (or more) depending on

the graph size, the size of the largest partition in the coarsest level graph, and the

optimization algorithm used within the SNA framework. Furthermore, stochastic

nested aggregation does not need a stopping criterion as it is minimizing an energy

function with a unique optimum point.

2. Stochastic nested aggregation also improved on Iterated Conditional Modes (ICM)

221
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[7], a local deterministic approach to optimization, by breaking label configuration

deadlocks which give rise to local minima. The creation of a new reduced order graph

at each hierarchy level enables escaping from the local minimum as the structure of

the grid surrounding the deadlocked region has been altered. Additionally, the speed-

up for ICM was even more significant than for SA, enabling ICM to become a fast

global deterministic optimization approach that is a competitive alternative to other

global approaches.

3. The introduction of a Graduated Models strategy for Stochastic Nested Aggregation

in order to avoid getting stuck in an undesirable local minimum (e.g., avoid region-

to-region spilling in image segmentation) is an important improvement on the single

model. We applied Graduated Models successfully to the Potts energy model where

we varied β, the region coupling parameter, from a low value (all pixels or nodes

are their own regions) to the desired value (where regions homogenous in features

have formed). Therefore, through careful nested aggregation simulated annealing

and ICM converge to a very good local minimum. In the limit, when all edge weights

are used in sequence, SNA-GM becomes the special case Highest Confidence First

algorithm.

4. The stochastic nested aggregation framework allows us to use different models at

various levels in the nested hierarchy. Thus, we introduced a region mean-based Potts

energy which uses a region mean (as opposed to the pixel gradient-based computation

in the classic Potts model) in order to compute pixel-to-region and region-to-region

distances. We used the first principal component of the covariance matrix of a region’s

pixels (essentially the mean direction of the pixels) to represent this mean. However,

the mean model proved to be an inadequate tool by itself. Therefore, we allowed SNA

to first aggregate pixels into a region using the edge-based Potts model and carry

out processing at coarser scales using the mean Potts model. Such a progression

invalidates the condition that we are solving the same problem at all levels in the

hierarchy which makes this process very difficult to analyze theoretically. However,

practical image segmentation results showed the importance of this adaptation.

5. The Mixture of Principal Components (MPC) paradigm [34] where regions are de-
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fined by the principal component vector corresponding to the largest eigenvalue of

the covariance matrix of the data in each region was adapted to the Markov Ran-

dom Field framework. Furthermore, the class or region prototypes were determined

probabilistically by continuous Gibbs sampling from a region prototype distribution.

In the domain pixel distance measures, two problems were specifically of interest:

physics-based color image segmentation of real world color scenes and phase unwrapping of

interferometric Synthetic Aperture Radar (inSAR) images based on image segmentation.

With respect to physics- or reflectance-based color distance measures, several contributions

have been made:

1. We showed that projecting RGB pixels into a 2-dimensional subspace results in a

highlight invariant color space in which a modified vector angle distance measure

can be used to achieve shading invariance thus allowing for reflectance-based image

segmentation. However, this type of processing does not take noise into account and

is ambiguous for the zero vector where many saturated highlight pixels are projected.

2. Due to the unpredictable behavior of the vector angle distance measure for pixels

with low RGB intensities, three new color distance measures were introduced. These

distance measures are based on a probabilistic interpretation of color in order to

create a shading invariant and noise resistant color distance measures in RGB: the

Same Class Hypothesis distance measure, the Common Mean Hypothesis distance

measure with most likely mean, and the Common Mean Hypothesis distance measure

with equally likely mean.

3. The highlight invariant transformation was applied to the Same Class Hypothesis

distance measure in order to create a new probabilistic distance measure that is both

shading and highlight invariant.

4. Since the vector angle distance measure shows unpredictable behavior when pixel

values have very low intensities, a vector angle accuracy criterion that trusts pixel

values with high intensity and distrusts pixel values of low intensity was introduced

for a Markov Random Field clustering-based application.
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Finally, in the domain of pixel similarity for phase unwrapping problems, the application

of stochastic nested aggregation with an edge Potts model to the interferometric synthetic

aperture radar phase unwrapping problem using both coherence and phase information

was done for the first time in this thesis. Furthermore, a new measure for carrying out the

segmentation based on phase and coherence maps was devised and tested. This measure

is an approximation of the model-based probabilistic cost function developed in [17].

9.2 Future Extensions

Many possible research avenues may be followed to improve on this work.

9.2.1 Stochastic Nested Aggregation

There are several unanswered questions that remain for the Stochastic Nested Aggregation

framework:

1. A Graduated Models strategy was presented as a means to avoid local minima. The

nature of local minima for the Potts model in graph partition in general and image

segmentation in particular is that they are dependent both on the value of β and the

structure of the graph itself. It would be useful to know what are the limitations on

a β schedule and whether an optimal schedule can be derived.

2. A related idea is the relationship between edge gaps and the β schedule. As gaps

in edges widen, the edge at that particular location becomes ambiguous. One useful

question would be to ask at what point does an edge gap cease being a gap and

become a narrow part of some region? Since this is a subjective topic, psychological

experiments would be needed to assess the human point of view.

3. Many models of pixel and region interaction exist over and beyond the simple edge

and mean Potts models applied in this thesis. For example, a region interaction

model might be based on an edge between sets of pixels two to three rows wide.

Such an edge might be much more robust against region-to-region spilling as many

spills occur due to single pixel transitions between large regions. One could also
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envision another mixed model where small regions are built using the edge model

and the coarser scales are processed using a more complicated model.

4. Another type of model altogether could be applied to the nested aggregation frame-

work. For example, regions could be represented by a prototype with distances

computed between the region prototype and individual pixels or pixels within re-

gions adjacent to that region. This model would function in much the same way like

Markov Random Field-based clustering approaches [40, 107] and would minimize the

total between class variation [150]. The advantage of this method would be to com-

bine a classical global prototype-based method with a method which works in a local

context (i.e., an edge-based Potts model in the Markov Random Field framework).

5. Gibbs sampling is a very robust method to obtain samples from unknown distribu-

tions. However, other means exist such as the Metropolis-Hastings and the Gener-

alized Metropolis-Hastings (of which Gibbs sampling and Metropolis-Hastings sam-

pling are special cases) algorithms [88, 157]. Metropolis-Hastings could prove to be a

much faster alternative given that only one test is performed for each node-to-node

comparison rather than K tests based on K labels. This test can be rejected many

times if it does not minimize the energy (or if a higher energy state is not accepted).

The Gibbs sampler, on the other hand, eliminates the need for rejections since it tests

all possible alternatives. In some practical applications, this difference in speed (at

the possible cost of solution quality) could be a needed compromise. Furthermore, it

is not certain that results would be much worse than those generated by the Gibbs

sampler (they might still be acceptable) which is a proposition that must be tested.

6. One of the major limitation in showing the practicality of the nested aggregation

framework has been the integration of texture discrimination into the Potts model.

Many researchers have worked on this in the past (see [22, 88] for details of many

methods) and many texture descriptors exist and can be integrated easily into this

framework. Simple texture descriptors need to be tested to make sure that they can

be used in the SNA framework.

7. There are several constraints that can be placed on a region other than a region or
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pixel coupling term. They include the size of the region, shape and other attributes

that might be important in a given segmentation task [94, 142]. These parameters

have often a considerable impact on the functioning of a model such as Potts and

their integration into a nested framework is not evident. Studies should be carried out

integrating these parameters in an non-ad-hoc manner and testing their usefulness

in generating meaningful segmentations.

8. Finally, the SNA framework could be integrated with others in order to devise a more

robust graph partitioning framework. For example, integrating SNA with graph cuts

could be very useful. Graph-cuts works by recursively subdividing an image until

the desired energy is minimized while nested aggregation does the same from the

bottom up. Both methods could be used to optimize the same function. One could

take several of the levels for both methods prior to reaching the optimal solution and

use an energy minimization scheme to optimize the final partitioning based on both

results thus creating an “irregular” multi-grid monte carlo method. There would be

difficulties associated with devising an appropriate energy-based solution since there

would not be in practice a one-to-one correspondence between regions generated with

graph cuts and nested aggregation (although in theory when minimizing the same

global criterion the solution should the same).

9.2.2 Distance Measures

Probabilistic distance measures have been derived for computing shading and highlight

invariant-based distances between color pixels to achieve color constancy in image segmen-

tation. Much work remains in terms of the integration of the new distance semi-metrics

with image segmentation algorithms.

1. There is a need to derive and test the highlight invariant Common Mean Hypoth-

esis Test Distance Measure. The components of the “mean” vector in this method

are necessarily dependent on each other since the covariance matrix is not diagonal

(especially due to the highlight transformation). The computation of these means

will have to be done using an iterative gradient descent method which is going to

significantly impact the computational time of the segmentation algorithm. It would
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be interesting to find out if the performance of this metric is better than the HI-SCH

semi-metric (6.40).

2. One major limitation of the current approach is the specification of a single noise

standard deviation or variance value. This is a very crude assumption that might be

seriously flawed and perhaps could explain some of the pitfalls of current distance

measure implementations. The optimal way to specify the variance of the noise would

be to specify a different value for each intensity/color pair. This is not feasible using

a single image and therefore a database of noise variances needs to be used [90].

3. Prototypes need to be developed for the new distance measures. The prototypes

could be based on the formulas for the “means” (6.30) or (6.27) since we need to

take into account variance when computing prototypes for image regions. These

prototypes would allow the design of new mean-based Potts models that could more

effectively segment images with shading and highlights when used at the higher levels

of the SNA hierarchy.

Phase unwrapping is a vast field of research where much development has happened

due to the practical importance of processing inSAR images. Many challenges remain in

devising better cost functions for the segmentation of phase images. These cost functions

or distance measures could also be used in other algorithms such as network flow. Given

that the same cost functions were used in network flow [16] as in image segmentation in this

thesis, a detailed analysis is needed to study why network flow performs better on synthetic

images (4% error for network flow vs. 12% for stochastic nested aggregation using the edge

Potts model). Furthermore a detailed study testing a larger range of parameters for the

new model (8.5) is required (e.g., fractional exponents could approximate better the shape

of the zero residual function from [16]).
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Appendix A

Hierarchical Model Equivalence

Proof

Suppose we have a set of nodes L; then, we have some energy function:

U =
∑

i,j∈L

{Φi,jδli,lj + βi,j(1 − δli,lj)} (A.1)

where li is the label of node i. Suppose we divide L = A ∪B such that all the nodes in B

are grouped into one; then,

Ū =
∑

i,j∈A{Φ̄i,jδli,lj + β̄i,j(1 − δli,lj)}+
∑

i∈A,j=b{Φ̄i,jδli,lj + β̄i,j(1 − δli,lj)}
(A.2)

and where b is the node index corresponding to B. Therefore,

U − Ū =
∑

i,j∈A{(Φi,j − Φ̄i,j)δli,lj + (βi,j − β̄i,j)(1 − δli,lj)}+
∑

i∈A,j∈B{Φi,jδli,lj + βi,j(1 − δli,lj)}−
∑

i∈A,j=b{Φ̄i,jδli,lj + β̄i,j(1 − δli,lj)}+
∑

i,j∈B{Φi,jδli,lj + βi,j(1 − δli,lj)} − 0

(A.3)

We can simplify this equation by setting β̄i,j = βi,j and Φ̄i,j = Φi,j for ∀i, j ∈ A. Fur-

thermore, since by definition the region with label lb corresponds to all regions with all lj

∀j ∈ B; therefore, we can assume that lb = lj ∀j ∈ B and by extension β̄i,b =
∑

j∈B βi,j
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and Φ̄i,b =
∑

j∈B Φi,j . This then leaves

U − Ū =
∑

i,j∈B

{Φi,jδli,lj + βi,j(1 − δli,lj )} (A.4)

which further simplifies to

U − Ū =
∑

i,j∈B

Φi,j (A.5)

since δli,lj = 1 ∀i, j ∈ B. Therefore, under the proposed grouping the energy function U

and Ū differ only by a constant. Finally, if the optimum solution to U satisfies li = lj

∀i, j ∈ B, then by definition U and Ū have the same optimum. If li 6= lj for some i, j ∈ B,

then the equations do not hold and the equivalency cannot be established.
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